
Towards a Diagnosis Framework for the
Verification of Critical Systems Design

Vincent Leildé1, Vincent Ribaud2, Ciprian Teodorov1, and Philippe Dhaussy1

1 Lab-STICC, team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
firstname.lastname@ensta-bretagne.fr,

2 Lab-STICC, team MOCS, Université de Bretagne Occidentale, Avenue le Gorgeu,
Brest, France Vincent.Ribaud@univ-brest.fr

Abstract. For critical systems design, the verification tasks play a cru-
cial role. If abnormalities are detected, a diagnostic process must be
started to find and understand the root causes before corrective actions
are applied. Detection and diagnosis are notions that overlap in common
speech. Detection basically means to identify something as unusual, di-
agnosis means to investigate its root cause. The meaning of diagnosis
is also fuzzy, because diagnosis is either an activity - an investigation -
or an output result - the nature or the type of a problem. This paper
proposes an organizational framework for structuring diagnoses around
three principles: that propositional data (including detection) are the in-
puts of the diagnostic system; that activities are made of methods and
techniques; and that associations specialize that relationships between
the two preceding categories.

Keywords: Diagnosis, Verification, Critical systems, Framework

1 Introduction

Critical systems are concerned by dependability, i.e. the ability of an entity to
perform as and when required [7], that requires the means of improving the
quality of systems design. This should be realized in three cyclical phases: ver-
ification, diagnosis and correction. Verification aims to demonstrate whether a
system meets specification properties, also called verification conditions. This
may be achieved using various techniques such as static analysis, simulation or
model-checking. Model checking is an automated technique that, given a finite-
state model of a system and a formal property, systematically checks whether
this property holds for that model [8]. If a property is violated, a counter-example
is produced as a trace from the initial state to the state in which the error was
detected. When a property is falsified, a diagnosis process is triggered with the
objective of outlining the root causes that violated the verification conditions.
Then from this diagnosis, generally realized through detection, localization and
identification tasks, the system is corrected and the verification cycle is repeated.

Several frameworks and approaches are proposed to perform diagnosis, but
most of them are restricted to only one kind of diagnosis. Indeed, there are two



2 Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy

reasons of such lack of relevant diagnosis tools. On the one hand, the verification
process, in particular by model checking, is not well managed and controlled [27]
producing a large amount of heterogeneous interrelated models. It naturally in-
creases the complexity of extracting the essence of errors, in particular locating
causes from detailed source-level traces of a failing run [16]. On the other hand,
diagnosis is also loosely formalized. As a result, models produced during the de-
sign and verification process are not well adapted to diagnosis tasks. Therewith,
diagnosis is weakly integrated with other tasks and collaboration between tools
and processes is not smoothly achieved.

For the above reasons, understanding and formalizing the diagnosis is in-
tended to foster the definition of diagnosis tools and methodologies, and reduce
the set of diagnoses. If diagnosis is applicable in different fields (medicine, su-
pervision of industrial processes), frameworks differ, and cannot be fully applied
to trace-based diagnosis. We propose an organizational framework for diagnosis
systems, based on three concepts: activity, propositional object and association.

2 Background

If model-checking is often dedicated to faults detection, some frameworks also
employ it for faults localization. For instance, slicing-based approaches [29] use
dependency analysis to retrieve the set of elements which contains the fault.
State space reduction [19] aims at reducing the state space size by exploiting the
concurrent transitions commutativity. Ball et al. [9] introduced an approach to
compare the counter-examples with successful traces and thus isolate faulty state
transitions. In [10], the authors propose a Symbolic Model Checking framework
for safety analysis diagnosis. These approaches focus on trace processing, and the
identification task, i.e. identifying the specific nature of faults, is not considered.
Consequently, a semantic gap between design models and traces still holds.

Some approaches allow for a complete diagnostic. For instance in [17], the
authors define a framework that combines an abductive model-based diagnosis
approach with a Labelled Transition System. This kind of method is also experi-
enced by [6], who associated logic learning with trace-based diagnosis and error
correction using positive and negative traces. These approaches are restricted
to one diagnosis technique, model-based, that imposes the presence of either a
fault or a well-functioning model, which is not always available.

Venkatasubramanian [28] has broadly classified fault diagnosis methods into
quantitative model-based methods, qualitative model-based methods, and pro-
cess history based methods. This classification provides a large spectrum of meth-
ods and techniques, but focuses on industrial processes, and put aside important
techniques for trace-based diagnosis like interaction-based techniques.

To the best of our knowledge, there are no frameworks for characterizing diag-
nosis systems, unrestricted to any diagnosis techniques, activities or application
domains. Therefore, we focus on understanding diagnosis in order to identify a
core set of concepts that can be applied for any diagnoses systems.



Title Suppressed Due to Excessive Length 3

3 Conceptual Framework

Our goal is to propose a framework for characterizing diagnosis systems, not
restricted to a diagnosis technique or method. We will start from a general defi-
nition of diagnosis given by Merriam Webster [2] : ”diagnosis is an investigation
or analysis of the cause or nature of a condition, situation, or problem”. This
framework is based on three concepts: - Activity, a set of mechanisms or tasks
used to perform the diagnosis ; - Propositional object, tangible or immaterial,
produced or consumed by activities ; - Association between propositional objects
and activities.

3.1 Activities

The foremost part of the diagnosis definition refers to an activity, whether an
investigation or an analysis. Other kinds of activities can be carried out during
a diagnosis and an activity is itself composed of internal activities.

Main diagnosis activities. According to the literature, diagnosis systems
support three main activities, fault detection, isolation, and analysis [28].

Fault detection establishes that a system run raises so-called abnormal event.
In the particular case of verification by model-checking, detection is done by
model-checking itself. Subsequently after the detection, one requires an evalua-
tion of the magnitude of the abnormal situation, to choose whether a diagnosis
is required or not[4].

When required, the ensuing step consists in isolating the subset of elements,
part of models, that needs to be corrected [14]. Isolation is performed through
various techniques, such as slicing-based approaches [29], state space reduction
techniques [19] or counter-example comparisons [9].

Once suspicious elements are localized, the analysis task, associates causes
to the observed abnormalities. This is generally a reasoning process [3], either
deduction, induction or abduction. Deduction is concerned by deducting knowl-
edge from already learned knowledge, induction identifies general rules from ob-
servations, and abductive reasoning discovers causes from facts by elaborating
hypothesis. In abductive thought, one can have different answers, and therefore
have to decide among alternatives [13]. Each type of reasoning fits with a dif-
ferent situation, abduction produces ideas and concepts to be explained, then
induction contributes to the construction of the abductive hypothesis by giving
it consistency, finally deduction formulates a predictive explanation from this
construction [12]. Nevertheless, we always reason by looking for the fastest way,
this is the principle of the cognitive economy [15].

Mechanisms. An activity is performed through a set of mechanisms, gath-
ering tools and methods, that can be organized in various categories, qualitative
or quantitative model based and process history based. We complete this list with
a category called interaction, relevant in case of trace-based diagnosis.

Model-based methods assume that a model of the system is available, repre-
senting its correct (consistency-based) [26] or abnormal behavior (abductive-
based)[30]. In consistency-based, the reasoning consists in rejecting a set of
assumptions using the correct behaviour, in order to restore consistency with



4 Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy

(abnormal) observations [11]. In the opposite abductive-based reasoning works
with causes and effects models, it includes approaches like [6].

Under the process-history based methods, only the availability of large amount
of historical process data is needed. It allows for knowledge extraction techniques,
like data mining or statistical analysis. Regarding model-checking, Liu [23] uses
statistical models to remove false positive traces. Besides, probabilities can also
be applied, using decision trees or Bayesian networks. Focusing on learning, Neu-
ral networks and Case-based reasoning [5] try to reproduce the human way of
reasoning. But when a strong expertise is available, one can simply use expert
systems [20], gathering problems set, rules and an inference engine.

Interactions mechanisms play an important role in trace-based diagnosis. In-
teractive tools allows for observing, controlling, understanding and altering the
system execution. By storing the execution traces, omniscient debuggers enable
back-in-time navigation features, postmortem query processing, trace-analysis
and reduction facilities, and execution replay [25]. Besides, a large number of vi-
sualization tools exists [18], including a wide range of diagram structures ranging
from waveforms, finite state machines, business representations.

3.2 Propositional Objects

Activities handle different kind of information [2], in the one hand ”situation
or problem”, and in the other hand ”cause or nature”. As information may
be tangible or immaterial, and we define any information items as propositional
objects that are, or represent sets of propositions about real or imaginary things.

Situation or problem represent observations about the system. A situation
is a way in which something is positioned with respect to its surroundings [2].
Regarding model-checking, it comprises design models, properties, exploration
graphs or model-checker configurations. A problem is a difficulty that has to be
resolved or dealt with [2]. Problems are revealed by symptoms, effects or visible
consequences of the passage of the system into an abnormal state. Regarding
model-checking it includes counter-examples. As stated by [26], ”real world di-
agnostic settings involve observations, and without observations, have no way
determining whether something is wrong and hence whether a diagnosis is called
for”. Thus situation and problem are both observations, i.e. acts of recognizing
and noting a fact or occurrence [2], about the system.

Cause or nature are both explanations or diagnoses, i.e. statements or con-
clusions from diagnosis analysis [2], which are not always observable [21]. A cause
is a reason for an action or condition [2], and is part of a causality phenomenon.
A nature is a kind or class usually distinguished by essential characteristics [2],
and is concerned with classification aspects.

3.3 Associations

Propositional objects and activities are linked over associations. Following a sys-
temic triangulation, we organize associations in three viewpoints, causality, con-
cerned with functional aspects, nature, concerned with structural aspects, and
evolution, concerned with historical aspects.



Title Suppressed Due to Excessive Length 5

Causality is defined by [24] as a sequence of linked events. Consider for
instance a car with flat tires that suddenly slips on a water poll, resulting to an
accident. The accident is a succession of related events. Closed to our concerns,
a Fault, an Error and a Failure are considered for [7] as causal events, a fault
may produce an error, which may lead to a failure.

Nature consists in determining the type, the characteristics or the essence
of something, ”what the object is”. By taking up the example of a car, the
owner inspects each tires and finds that some are more damaged than others,
and classifies one tire in the category ”too flat”. The nature association itself
can be refined in more specific relations, like generalization or specialization.

Evolution represents the historical, that is linked to the evolutionary nature
of the system, ”what the system was or is becoming”. Considering the example
above, a man is driving when suddenly an impact happen somewhere closed to
the car wheels. He remembers he found one flat tire during his last car inspection,
and supposes the tire is scratched.

Fig. 1. Full adder

4 Framework by example

A system is an organization forming a network especially for serving a common
purpose [2]. It emphasizes that a system pursues an objective. We present dif-
ferent kind of diagnosis systems using our framework, each pursuing a different
objective. We refer to the classical example of a one bit adder [26], an illustration
is given in figure 1 from [1]. A full adder is composed of five gates, A1 and A2
are AND gates, X1 and X2 are XOR gates, and O1 is an OR gate.

(Analysis ∨ Investigation) (Analysis ∨ Investigation) (Analysis ∨ Investigation)

of the of the of the

(Cause ∨ Nature ∨ Evolution) (Cause ∨ Nature ∨ Evolution) (Cause ∨ Nature ∨ Evolution)

of a of a of a

(Situation ∨ Problem) (Situation ∨ Problem) (Situation ∨ Problem)

⇒ Pedagogical objective ⇒ Curative objective ⇒ Prognosis objective

Table 1. Diagnosis Systems Examples

An analysis of the nature of a situation pursues a pedagogical objec-
tive. If we are not aware of the purpose of a digital circuit, we might build
the truth table which sets out the output values for each combination of input
values. The truth table is a diagnosis that helps to understand how the circuit



6 Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy

works (assuming the circuit behavior is normal). The analysis associates out-
puts (observations) to inputs (facts) and tries to figure out the nature of the
circuit. Regarding verification, simulation activity helps to understand the way
the system behaves, or ensure it behaves correctly.

An investigation of the cause of a problem pursues a curative objective.
Consider we expect from the circuit a full adder behavior, and thus one expected
property is P1 : ”for the set of entries A=1, B=1 and C=1, the result is S=1 and
Cout=1”. Assume that the XOR gate X1 was inadvertently replaced by an OR
gate. Then the output of the circuit conflicts with the property P1, i.e. S=0 and
Cout= 1”, and we must investigate the cause of the failure. Regarding model-
checking, if a violation of functional specifications is discovered by a model-
checker. One have to correct the design or model accordingly.

An analysis of the evolution of a situation pursues a prognosis objec-
tive. Given a set of properties (probably non-exhaustive), running the model-
checker over the set without any errors yields an indication that the circuit, as
far we know, behaves correctly. The underlying diagnosis is used as a prognosis
of circuit major dysfunctions. In software, design patterns, like security patterns
[31], are prevention mechanisms. Regarding model-checking of system design, if
we consider a set of historical state spaces, one could apply design prognosis by
using statistical and probability analysis.

5 Conclusion

In this paper we presented a framework for understanding diagnosis, and we de-
fined some core concepts. Associated propositional objects represent knowledge
about the system to be diagnosed, and they are processed by diagnosis activities
and their underlying means. We believe that this minimal set of concepts will
enable the exploration of the possible and constrained compositions of diagnostic
systems, reducing the minimal set of diagnoses. This work paves the way for the
construction of an organizing system, an ongoing work [22], for storing system
data (propositional objects), interpreting them (association), and diagnosing the
critical systems (activities).

References

1. Cburnett gfdl (http://www.gnu.org/copyleft/fdl.html), via wikimedia commons

2. Dictionary and Thesaurus | Merriam-Webster

3. Reasoning and the Logic of Things Charles Sanders Peirce, Kenneth Laine Ketner
| Harvard University Press

4. Model-based Fault Diagnosis Techniques. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2008)

5. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Commun. 7(1), 39–59 (Mar 1994)

6. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for diagnosis
and repair. Communications of the ACM 58(2), 65–72 (2015)



Title Suppressed Due to Excessive Length 7

7. Aviienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on 1(1), 11–33 (2004)

8. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press, Cambridge,
Mass (2008)

9. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN. vol. 38. ACM (2003)

10. Bertoli, P., Bozzano, M., Cimatti, A.: A symbolic model checking framework for
safety analysis, diagnosis, and synthesis. In: MoChArt’16. pp. 1–18. Springer (2006)

11. Bourahla, M.: Model-Based Diagnostic Using Model Checking. IEEE (2009)
12. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in

verification by AI techniques. Artificial Intelligence 112(1), 57–104 (1999)
13. Charniak, E.: Introduction to artificial intelligence. Pearson Education India (1985)
14. Cleve, H., Zeller, A.: Locating causes of program failures. p. 342. ACM Press (2005)
15. Fiske, S.T., Taylor, S.E.: Social Cognition. McGraw-Hill Education, New York, NY

(Oct 1991)
16. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model

Checking Software, pp. 121–136. Springer (2003)
17. Gromov, M., Willemse, T.A.: Testing and model-checking techniques for diagnosis.

In: Testing of Software and Communicating Systems, pp. 138–154. Springer (2007)
18. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-

niques. In: CASCON ’04. pp. 42–55. IBM Press (2004)
19. Holzmann, G.J.: The Theory and Practice of A Formal Method: NewCoRe. In:

IFIP Congress (1). pp. 35–44 (1994)
20. Ignizio, J.P.: Introduction to expert systems: the development and implementation

of rule-based expert systems. McGraw-Hill, New York (1991)
21. International, N.: Nursing Diagnoses 2015-17: Definitions and Classification. Wiley-

Blackwell, 10 edition edn. (Aug 2014)
22. Leilde, V., Ribaud, V., Dhaussy, P.: An Organizing System to Perform and Enable

Verification and Diagnosis Activities. In: International Conference on Intelligent
Data Engineering and Automated Learning. pp. 576–587. Springer (2016)

23. Liu, Y., Xu, C., Cheung, S.: AFChecker: Effective model checking for context-aware
adaptive applications. Journal of Systems and Software 86(3), 854–867 (Mar 2013)

24. Mackie, J.L.: The cement of the universe: a study of causation. Clarendon library of
logic and philosophy, Clarendon Press, Oxford, 5. dr. edn. (1990), oCLC: 258760915

25. Pothier, G., Tanter, ., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Notices 42(10), 535–552 (2007)

26. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1),
57–95 (1987)

27. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Jour-
nal on Software Tools for Technology Transfer (STTT) 4(2), 246–259 (Feb 2003)

28. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault
detection and diagnosis. Computers & Chemical Engineering 27(3) (Mar 2003)

29. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

30. Wotawa, F., Rodriguez-Roda, I., Comas, J.: Abductive Reasoning in Environmen-
tal Decision Support Systems. In: AIAI workshops. pp. 270–279. Citeseer (2009)

31. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security.
Urbana 51, 61801 (1998)


