
Model Checking Security Pattern Combination
Fadi Obeid

Université Bretagne Loire
Laboratoire Lab-STICC

UMR CNRS 6285
ENSTA Bretagne, Brest

Email: fadi.obeid@ensta-bretagne.org

Philippe Dhaussy
Université Bretagne Loire
Laboratoire Lab-STICC

UMR CNRS 6285
ENSTA Bretagne, Brest

Email: philippe.dhaussy@ensta-bretagne.fr

Abstract—A security pattern is a reusable solution for
a specific security issue. Based on an insecure model, and
using a combination of security patterns, we can generate a
model respecting some security requirements constituting a
security policy. The resulting model needs to fulfill the security
requirements without affecting the original functionalities and
services. The security patterns need to be consistent with each
others, as well as the model, they also need to cover the whole
security spectrum resulting in completeness. We can use model
checking techniques in order to insure the correct functionality,
as well as the consistency and completeness of the generated
model. In this paper, we describe our approach to combine
an architectural model with security patterns to generate a
secure model. This model is later verified using model checking
techniques to validate the properties of the model itself as well
as the used patterns. Finally, using an experimental use case, we
demonstrate the possible spatial complexity of our approach.

Keywords: Security Patterns, Formal Verification, Model Checking

I. INTRODUCTION

A security pattern is a reusable solution to a recurring
security problem. It provides detailed guidelines for imple-
menting an architectural solution for a specific security prob-
lem. Security patterns should be considered as methodological
tools to describe technical solutions related to security in a
specific context. They impose decisions that must be taken into
consideration when designing architectures. They facilitate
communication between experts and non-experts.

Many security patterns have been proposed in the literature
[17]. Associated with these patterns, some authors have pro-
posed methodologies for their implementation and integration
into software architecture models. The description of the
patterns includes a description of their requirements which
must be respected when integrated into an architecture.

In this work, we study methods and concepts for generating
models that comply with specific security policies and security
requirements. These models are verified later using model
checking techniques. In order to achieve this objective, we
define the meta model of the insecure architectures, and create
a library of security patterns. Based on the model, the library,
and a security policy, we generate a secure model following
specific combination rules. Finally, the result is used as an

Partially supported by Research Grant from Brest Metropolis as well as
the French Government Defense Procurement and Technology Agency -
Information Department (DGA-MI).

input of a model checking in order to validate the properties
of the model, the patterns, and the security policy.

Although we work on an abstract level, the application
part of our work considers supervisory control and data
acquisition (SCADA) systems. These systems control many
critical infrastructures, such as nuclear facilities and chemical
plants. The SCADA environment, due to its limitations and
constraints, is lacking satisfactory security measures.

This paper is organized as follows: In section II we provide
references to related work on security patterns, formal verifi-
cation, and SCADA. We describe our meta model in section
III. This meta model is inspired by SCADA architectures.
In section IV we define the library for the used security
patterns. In section V we explain our approach to combine
the patterns with the model. We demonstrate our verification
tools in section VI. Finally, we provide an experiment to test
our approach in section VII, this experimentation provides a
brief complexity analysis as well.

II. RELATED WORK

A survey on security patterns can be found in [24]. [23]
and [11] introduce many security patterns. A full description
of integrating security patterns into systems is found in [17].
[14] presents a pattern language unifying and classifying all
published security patterns at the time. Many security patterns
are explained with their formal constraints in [21], enabling
the verification of these patterns

A survey on formal verification of security protocol im-
plementations is found in [4], focusing on the automatic
verification of models close to the real implementation. Many
research efforts were made on model checking of design
patterns [3], [8], [2], [19]. [9] is directly related to our work
since it verifies security pattern combinations. In this paper,
the authors explain how wrongly combining security patterns
may result in several errors.

Many studies [16], [15], [25], [20], [12] address the security
issues in SCADA. These studies provide theoretical solutions,
security guidelines, and different approaches to improve se-
curity in SCADA. [13] and [26] propose SCADA-specific
security solutions and SCADA-specific IDS respectively. [10]
is directly related to the application part of our work since the
authors of this article propose using security patterns to design
secure SCADA systems.

III. META-MODEL

In this article, we consider the reader to already have basic
knowledge about a SCADA architecture [5]. For the sake of
our work, let’s consider only the following components in a
SCADA: (1) A PLC which sends commands and receives
information about the status of its section. (2) An Actuator
which executes commands. (3) A Sensor which sends data
regarding a physical condition such as temperature, etc.

In addition, we have communication devices responsible
for separating the sections, and also, forwarding messages
between components and sections. Finally, we have external
clients (relative to the architecture) sending requests to internal
components, these requests are in the form of commands to
modify something, or demands of information about a section.

If we abstract this architecture, to a high level, we end up
with two types of components: (1) communication compo-
nents, responsible for communicating messages and separating
sections. (2) access components which provide the services for
reading or writing resources.

For example, an actuator executes a command by writing a
resource (change the level of a valve for example). A sensor
sends data by reading a resource. Finally, we have the external
clients which send requests and receive responses. These
requests are either to write a resource (modify something),
or read a resource (demand information).

Figure 1 demonstrates our meta model, including: The com-
munication ComComp and access AccComp components,
and the clients Client. Messages are exchanged using FIFO
channels. And finally, the message divided into two parts: (1)
The communication info part comInfo which is visible to
anyone. (2) The data part Data which is only visible to the
target of the message. Finally, both parts are authentic, mean-
ing that a component cannot modify any part of the message
without modifying its source. In other words, we considered
an already implemented signature based communication, with
the Data part being encrypted.

Figure 1. Meta Model

Figure 2 demonstrates the minimal automate for each entity.
The client Client initiates a requests initReq(), sends it
send(), and waits for a response in the WaitResp state.
Once a response is received receive(), the client goes back
to its initial state Idle so it can initiate a new request. The
communication component ComComp receives a message
receive() and goes to the state Received. If the message
can be forwarded canFrw() the component goes to Sending,
sends the message send() and goes back to Idle to receive
other messages. If not !canFrw(), the message is ignored
and the component goes back to Idle. In the same fashion,
the access component AccComp has its own minimal required
automate to provide access to resources.

Figure 2. Minimal Entities Automates

IV. SECURITY PATTERNS

In general, securing an architecture involves the integration
of several security patterns. The management of the entire
security policy is therefore shared between several patterns.

We focus on four patterns that we can extend later on
the same methodological bases to include additional security
measures. These patterns work together (fig. 3) to achieve a
fully secure access:

• The SingleAccessPoint (SAP) pattern unifies the
access ports to mediate security checks through a single
access point.

• The CheckPoint (CHP) pattern is dedicated to check-
ing whether the security policy is respected or not, and
applying countermeasures.

• The Authorization (AUTH) pattern implements se-
curity measures for access rights.

• The FireWall (FWLL) pattern implements security
measures for restricting and filtering messages.

Figure 3 demonstrates how these patterns work together
to secure a component. Whereas, SecPol is AUTH in the
case of an access component AccComp and FWLL in the
case of a communication component ComComp. In case
of a policy violation, the corresponding counter measure is
called. In this article, SAP and CHP are always used when
AUTH or FWLL are used. Therefore, the composition
{SAP,CHP,AUTH} can be implemented on an access
component to secure access to the its resources. The com-
position {SAP,CHP,FWLL} is used on a communication
component to secure communication between its associated
components (in a supposed secure zone) and other entities.

Figure 3. Specified Patterns

Each of these patterns is defined by its name, description,
functionality, and security properties. Other aspects such as
structure and behavior are also needed, but not included in
this article. In the following, we describe the SAP pattern,
followed by a formalization of some of its security properties.

A. Single Access Point

The SAP introduced by [22] aims to implement a single
access point to improve control and monitoring of inputs.
SAP calls other patterns such as CHP to perform checks
on information passing through this point.

In addition, SAP has some basic controls. In the case of
our meta-model, we can consider the SAP in the case of com-
munication components and access components. In the case of
an access component, the SAP checks whether the demanded
resource in a request is available, if not, it can directly send a
negative response. In the case of a communication component,
the SAP checks whether the demanded target is available, if
not, it can directly send a negative response.

The application of this pattern therefore prevents external
entities from directly accessing resources or communicating
with targets. The single access point is an appropriate place
to possibly capture a log of the historical (Log) access. This
data can be useful for checking the sequencing of accesses
according to their rights.

We identify two types of SAP :
• SAP_C unifying the access point to accessing a secure

zone associated with a secure communication component.
• SAP_A unifying the access point to accessing resources

in a secure access component

The functionalities of SAP are:
• Control: If SAP receives a message, it is controlled:

– In the case of SAP_C, the control verifies if the
requested target is available.

– In the case of SAP_A, the control verifies if the
requested resource is available.

• Response: In the case of target (or resource in the case
of SAP_A) unavailability, a negative response is sent.

B. Formal Properties

A security policy is described by security objectives that
are a set of security properties that can be defined in a
formal form. These properties are grouped into three large
classes [1]: Confidentiality, Integrity, and Availability. Each
property represents the conditions that the system must meet.
An incorrect definition, or the partial application of a policy,
can cause the system to be in an unsafe state. While security
patterns fulfill the security requirements of a security policy,
they also have their own requirements that need to be fulfilled.

In the case of SAP , a classification of requirements is
proposed in [21]. We consider some of these requirements
in the case of a communication component integrating SAP .

Firstly, we consider the following formal notions:
• Mess: All possible messages.
• Ents: All entities (components and clients).
• SCcomps: All secure communication components.
• c.comps: all components associated with the secure com-

munication component c.
• sent(c,m): true if component c sent message m.
• received(c,m): true if component c received m.
• controlled(c,m): true if component c controlled (at

SAP level) message m.
• neg(c,m): The negative response to the request in mes-

sage m, produced by component c (using c as a source).
The properties are then formalized as follow:
• Authenticity: If a message from outside a secure zone, is

received inside the secure zone, it should have been con-
trolled by the secure communication component securing
this zone.
prt_SAP_C_1:
∀ m ∈ Mess, ∀ cc ∈ SCcomps, ∀ c ∈ cc.comps,

received (c, m) ∧ m.source /∈ cc.comps

⇒ controlled (cc, m)

• Availability: If a message is received by a secure com-
ponent, and is targeting the secure zone (its source
is not inside the secure zone), and the target is not
available (its target is not inside the secure zone), then,
the secure component should send a negative response to
this message.

prt_SAP_C_2:
∀ m ∈Mess, ∀ cc ∈ SCcomps,

received (cc, m) ∧ {m.source,m.target} * cc.comps

⇒ ♦ sent (cc, neg (cc, m))

• Confidentiality: Messages exchanged between compo-
nents inside a secure zone, should never be read by
outside entities.

prt_SAP_C_3:
∀ m ∈ Mess, ∀ cc ∈ SCcomps, ∀ e ∈ Ents,
received (e, m) ∧ {m.source,m.target} ⊆ cc.comps

⇒ e ∈ cc.comps

• Integrity: Messages exchanged between components in-
side a secure zone, should never be modified by outside
entities.

prt_SAP_C_4:
∀ m ∈ Mess, ∀ cc ∈ SCcomps, ∀ e ∈ Ents,
sent (e, m) ∧ {m.source,m.target} ⊆ cc.comps

⇒ e ∈ cc.comps

In our study, we formalized dozens of properties for the four
studied security patterns. In our experiments, we instantiate
all these properties on the cases of modeled architectures in
which the security mechanisms are integrated. Then, during
the verification process of model-checking, we translate all
instances of properties into invariants, observers, or LTL
formulas.

V. SECURITY PATTERN COMPOSITION

Figure 4 demonstrates our composition approach. To gener-
ate a secure architecture, we need to specify the architecture
elements based on the already discussed meta-model. These
elements are accompanied by a security policy defining the
security requirements to be fulfilled. Based on these require-
ments, we can define the patterns semantics (which patterns to
use and where). We also extract some scenarios to stimulate
the generated architecture.

Finally, we can compose the architecture, with the patterns
semantics, to generate a secure architecture. We use the
assumptions and scenarios with the architecture to generate
regular and attack scenarios. Finally, based on the require-
ments, we generate invariants and observers to validate the
secure architecture. The generated tuple (Secure architecture,
scenarios, properties) is then used as the input of our model
checker which would verify the properties and validate the
secure architecture.

We formally describe the security policy which is important
in order to apply the correct patterns in the correct places.
In this article, we provide a simple, yet sufficient, formal
description of the security policy.

Consider we have the access components c1 and c2, the
communication component c3, the client e1 and finally the
resource r1 of c1. A policy can be described as follows:

• protect(c1, READ, r1) provokes AUTH pattern on c1
to protect reading resource r1.

• protect(c3, {c1, c2}) provokes FWLL pattern on c3 con-
sidering a secure zone containing c1 and c2.

• allow(e1, c1, READ, r1) conditions the policy of c1 to
allow e1 to read resource r1.

Figure 4. Security Pattern Composition Approach

• rule(c3, comInfo = (ANY, c1, ANY), except =
{(e1, c1, Req)}) conditions the policy of c3 to prohibit
messages with any source, if the target is c1, and no
matter the type of the message. With the exception of
requests from e1 to c1. ANY is a wild-card used to
include any variable of a type.

When a pattern is needed for a component, this component
is transformed based on its minimal automate.

Figure 5 demonstrates how the minimal automate of the
communication component ComComp (defined in figure 2)
is modified with this transformation. From the Received
state, the component verifies the signature. If the signature
is correct, SAP is called to verify the availability of the
target. If the target is not available !available(), a negative
response is prepared m = neg(m). If the target is available
available(), CHP is called to verify the conformity of the
message with the security policy. In case the message is
conform conform(), it is forwarded, if not !conform(),
TrigAct is called to apply the correct countermeasure. For
simplicity, the countermeasure here is preparing and sending a
negative response. We have formalized transformation rules to
automatically generate the new automata based on the original
insecure ones.

Figure 5. Secure Communication Component

VI. VERIFICATION TOOLS

We carry out verifications using the OBP tool 1. Figure 6
gives an overview of this tool.

Figure 6. OBP Verification Tool

To carry out verifications, we generate the models in FI-
ACRE 2 which specifies the behavior of our architecture as
well as its interactions with the environment. In figure 7 we
have an excerpt of FIACRE which is the part of the code where
SAP verifies the availability of the targeted component before
sending a negative response or calling CHP . CHP verifies
the access rights before approving to forward the message or
calling a countermeasure (TrigAct).

Figure 7. FIACRE Example

We formalize the security requirements using CDL [7]
which is associated with the OBP tool. In figure 8 we show the
SAP_C_1 property applied as an observer on a component
named comp. The observer is triggered once comp receives
a message. If the source of the message is friendly (in the
same secure zone), the observer goes back to its initial state
for future verifications when another message is received. If
not, the observer checks whether the message was controlled
or not, if it was controlled, the observer goes back to its initial
state, if not, the property is rejected.

1OBP was developed in the reception team at Ensta Bretagne, it is
accessible for free on http://www.obpcdl.org.

2Language defined in the framework of the TopCased project
(http://www.topcased.org).

Figure 8. CDL Example

Normal scenarios, as well as attack scenarios can be de-
scribed in either CDL or FIACRE. Describing scenarios in
CDL allows to take advantage of the work on the reduction
of the complexity during the explorations of the models [6],
which is a well-known problematic aspect of model checking.

VII. EXPERIMENTATION

As an illustration, we consider an architecture in which se-
curity mechanisms have been integrated (fig. 9). For example,
this architecture corresponds to an abstract model of a vetronic
vehicle architecture [18] or a SCADA architecture.

A. Architecture Description

The architecture (fig. 9) is composed of 4 types of processes:
GCS: access component, but also can forward messages with-
out controlling nor modifying them. NET : communication
component which controls and forwards messages. PLC:
indirect access component, they apply access rights. DEV :
Access components affected by requests sent to a PLC, DEV
cannot apply security measures.

A request is sent by an environment client to PLCi which
verifies the access rights and sends the message to DEVi.
The response of DEVi is sent to PLCi which sends the
final response to the environment. The principle is that,
DEVi cannot implement security measures, so we forbid it
to communicate with other components than PLCi. To do so,
NET2 filters communications that are not between DEVi and
PLCi (inbound or outbound).

Figure 9. Secure Architecture

B. Scenarios and Results

During our experiments and during properties verification,
we submit our architecture to regular and attack scenarios of
various forms. Some attacks are stopped by NET components
(does not pass message filtering). Other attacks are stopped
by PLC components (do not have sufficient access rights).
The environment has four types of actors (clients): CLT : has
authorized access to some PLC resources. SPM : violates
firewall rules. ATT : violates access rights. PEN : same as
ATT , but, can use internal communications directly.

The resulting behavior, was as expected. Depending on
the type of the client, the following happens: CLT : The
requests went through PLC and DEV , and the final response
was positive (ans = ACK). SPM : NET_1 responds with
ans = NAK ATT : PLCi responds with ans = NAK
PEN : No response, nor forward, due to signature violation,
the component that received the message, ignored it.

C. Verification

If we consider the property prt_SAP_C_2 which is appli-
cable to all components of the type NET integrating a SAP .
An instance of this property on NET_1 in CDL:

propertyLTL prt_SAP_C_2_NET_1 is

{ [] (
| pre_NET_1_received ∧ not pre_NET_1_available |
= > < >

| pre_NET_1_sent ∧ NET_1.mess.ans = NAK |) }

With the predicates: pre_NET_1_received is true if
NET_1 has received a message, and pre_NET_1_sent is
true if NET_1 has sent a message. pre_NET_1_available
is true if the message target in NET_1 is available, and
NET_1.mess.ans is the answer (ACK or NAK) in the
message prepared in NET_1.

We variate the actors composition to include multiple at-
tacks (SPM,ATT, PEN) and multiple regular clients CLT .
We notice that no actual property was violated. However, a
special observer was violated detecting the behavior of PEN
when a message is installed directly behind a component of
type NET . We also verified the different properties in a cyclic
application, where clients and attacks were implemented using
FIACRE so they would continuously send requests.

D. Complexity Analysis

To analyze the complexity of our approach, we generated
specific scenarios with a number of clients CLT and messages
per client. In the following, we illustrate scenarios of the form
A_i_j with i clients of type CLT sending requests simultane-
ously. Each client sends j requests, where each request waits
for the response of the previously sent request from the same
client. In other words, we have i parallel clients sending j
sequential messages each. Each of these messages pass from
ENV1 to GCS1 to NET1 before arriving to the targeted
PLC. The PLC forwards the command after verifying it to
the targeted DEV through NET1, GCS2, and NET2. The

response is sent from DEV to PLC and back from PLC to
ENV1. In these specific scenarios, all the messages are legit,
so each message takes exactly the same amount of transitions
from the request creation to the reception of the response.
When multiple messages are transiting in parallel, we notice
the combination between all the possible configurations result-
ing in a more important difference between the behaviors of
the secure and insecure models.

Table I demonstrates the results of using multiple actors
and multiple messages per actor. These results are separated
between the insecure and the secure architecture model. Each
contains the number of resulting configurations in the explo-
ration of OBP , the number of transitions, and the depth. The
number of configurations is the number of different possible
states of the whole system. The number of transitions is
the number of possible transitions for the system from one
configuration to another. Finally, the depth, is the length of the
sequence of transitions taken by the system from its original
configuration (before the environment starts interacting with it)
to its final configuration (after all requests has been sent and
responses received). The depth is usually dynamic depending
on the different possible routes that can be taken, but, in this
example, all routes have the same length, which is intentionally
done to normalize the possibilities for a better comparison
between secure and insecure model.

Table I
EXPERIMENTATION RESULTS

Insecure Model Secure Model
Scenario nb. confs nb. trans Depth nb. confs nb. trans Depth
A_1_1 49 48 48 63 62 62
A_1_2 97 96 96 125 124 124
A_1_3 145 144 144 187 186 186
A_1_4 193 192 192 249 248 248
A_2_1 2 344 4 415 96 3 686 6 977 124
A_2_2 11 207 21 424 192 17 755 34 028 248
A_2_3 26 590 51 027 288 42 208 81 153 372
A_2_4 48 493 93 224 384 77 045 148 352 496
A_3_1 110 137 299 913 144 204 621 560 051 186
A_3_2 1 394 467 3 871 044 288 2 623 843 7 301 556 372
A_3_3 5 396 320 15 039 747 432 10 183 726 28 435 959 558
A_3_4 13 605 189 37 982 760 576 25 707 157 71 886 920 744
A_4_1 5 114 765 17 939 618 192 10 953 437 38 624 884 248
A_4_2 180 143 913 646 742 856 384 392 578 705 1 412 820 112 496
A_4_3 1 150 191 955 4 145 224 977 576 2 515 317 972 9 082 222 251 744

Figure 10 demonstrates the ratios of configurations, tran-
sitions, and depth, between the insecure and secure model.
We notice that the ratio of the depth is a constant, meaning
that even if the route is longer in the case of a secure model,
the difference is stable. Both the configurations and transitions
ratios change slightly when changing the number of messages.
However, the change is more interesting when the number of
parallel actors is changed.

Finally, these results are based on regular scenarios with
legit clients, these clients always have their requests accepted
and going all the way to DEV and back. Using attack sce-
narios based on the other actors (SPM,ATT, PEN) results
in fewer configurations, transitions, and depth, in the secure
model than the insecure one. This is due to the fact that the
requests of ATT have a negative response directly from the
PLC. SPM have even less configurations, transitions, and
depth, since their requests receive a direct negative response
from NET_1. PEN go even lower with their requests being
ignored by the receiving component.

Figure 10. Ratios Between Secure and Insecure

VIII. CONCLUSION

Our goal was to provide rules to generate the secure
architecture, and tools to formally validate that the resulting
architecture complies with a given security policy.

In this work, we studied how to generate a secure archi-
tecture based on an insecure one, a security policy, and a
library of security patterns. The resulting model is verified
using model checking to validate the requirements of the
architecture, the security policy, and the patterns as well. We
have placed ourselves in a framework of SCADA architectures,
however, the reflections developed in this work are of a generic
nature and could be adapted to other types of architectures.

During our work, we were confronted with this vast prob-
lematic where many parameters have to be taken into account
to answer the security needs of the architecture. We have
opted for implementation choices that may not be the best
possible ones. Further work needs to be done to optimize
these implementations and to identify the right criteria for
comparison between the different strategies.

During the experiments, we restricted ourselves to the
limited number of four patterns. But a similar approach could
be undertaken for the integration of other patterns described
in the literature. For a given security policy, the question is:
Which method of integration of the patterns do we defend?
What is the impact on complexity and robustness against
attacks? What are the compromises to find?

The perspectives of this work concern several axes to be
taken into account. They concern the taking into account of
security policies which can be complex and defined in a dy-
namic way. These policies must be based on an indispensable
formalization from which an architectural model generation
process can be considered. A wider choice of security mecha-
nisms will be needed as well as the automation of the process
of integration and composition of more numerous and different
patterns. Finally, in addition to simulated use cases, we are
working on a use case involving V etronics.

REFERENCES

[1] T. R. D. 5200.28-STD. Trusted Computer System Evaluation Criteria.
Department of Defense, 1985.

[2] P. Alencar, D. Cowan, J. Dong, and C. Lucena. A pattern-based
approach to structural design composition. In Computer Software
and Applications Conference, 1999. COMPSAC’99. Proceedings. The
Twenty-Third Annual International, pages 160–165. IEEE, 1999.

[3] P. S. Alencar, D. D. Cowan, and C. J. P. d. Lucena. A formal approach
to architectural design patterns. In FME’96: Industrial Benefit and
Advances in Formal Methods, pages 576–594. Springer, 1996.

[4] M. Avalle, A. Pironti, and R. Sisto. Formal verification of security
protocol implementations: a survey. Formal Aspects of Computing,
26(1):99–123, 2014.

[5] S. A. Boyer. SCADA: supervisory control and data acquisition. Inter-
national Society of Automation, 2009.

[6] L. L. R. Ciprian Teodorov, Philippe Dhaussy. Environment-driven
reachability for timed systems : Safety verification of an aircraft landing
gear system. Int. Software Tools for Technology Transfer (STTT), 2016.

[7] P. Dhaussy, F. Boniol, J.-C. Roger, and L. Leroux. Improving model
checking with context modelling. Advances in Software Engineering,
2012.

[8] J. Dong, P. S. Alencar, and D. D. Cowan. Ensuring structure and
behavior correctness in design composition. In Engineering of Com-
puter Based Systems, 2000.(ECBS 2000) Proceedings. Seventh IEEE
International Conference and Workshopon the, pages 279–287. IEEE,
2000.

[9] J. Dong, T. Peng, and Y. Zhao. Model checking security pattern com-
positions. In Quality Software, 2007. QSIC’07. Seventh International
Conference on, pages 80–89. IEEE, 2007.

[10] E. B. Fernandez and M. M. Larrondo-Petrie. Designing secure scada
systems using security patterns. In System Sciences (HICSS), 2010 43rd
Hawaii International Conference on, pages 1–8. IEEE, 2010.

[11] E. B. Fernandez and R. Pan. A pattern language for security models.
In proceedings of PLOP, volume 1, 2001.

[12] I. N. Fovino, A. Coletta, A. Carcano, and M. Masera. Critical state-
based filtering system for securing scada network protocols. Industrial
Electronics, IEEE Transactions on, 59(10):3943–3950, 2012.

[13] I. N. Fovino, A. Coletta, and M. Masera. Taxonomy of security solutions
for the scada sector. Project ESCORTS Deliverable, 2, 2010.

[14] M. Hafiz, P. Adamczyk, and R. E. Johnson. Growing a pattern language
(for security). In Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming and
software, pages 139–158. ACM, 2012.

[15] V. M. Igure, S. A. Laughter, and R. D. Williams. Security issues in
scada networks. Computers & Security, 25(7):498–506, 2006.

[16] R. L. Krutz. Securing SCADA systems. John Wiley & Sons, 2005.
[17] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,

and P. Sommerlad. Security Patterns: Integrating security and systems
engineering. John Wiley & Sons, 2013.

[18] E. Stipidis. Vetronics system integration. pages 401 – 415, April 2006.
[19] T. Taibi and D. C. L. Ngo. Formal specification of design pattern combi-

nation using bpsl. Information and Software Technology, 45(3):157–170,
2003.

[20] Y. Wang. sscada: securing scada infrastructure communications. Inter-
national Journal of Communication Networks and Distributed Systems,
6(1):59–78, 2010.

[21] R. Wassermann and B. H. Cheng. Security patterns. In Michigan State
University, PLoP Conf. Citeseer, 2003.

[22] J. Yoder and J. Barcalow. Architectural patterns for enabling application
security. Urbana, 51:61801, 1997.

[23] J. Yoder and J. Barcalow. Architectural patterns for enabling application
security. Urbana, 51:61801, 1998.

[24] N. Yoshioka, H. Washizaki, and K. Maruyama. A survey on security
patterns. Progress in informatics, 5(5):35–47, 2008.

[25] B. Zhu, A. Joseph, and S. Sastry. A taxonomy of cyber attacks on scada
systems. In Internet of things (iThings/CPSCom), 2011 international
conference on and 4th international conference on cyber, physical and
social computing, pages 380–388. IEEE, 2011.

[26] B. Zhu and S. Sastry. Scada-specific intrusion detection/prevention
systems: a survey and taxonomy. In Proceedings of the 1st Workshop
on Secure Control Systems (SCS), 2010.

	Introduction
	Related Work
	Meta-Model
	Security Patterns
	Single Access Point
	Formal Properties

	Security Pattern Composition
	Verification Tools
	Experimentation
	Architecture Description
	Scenarios and Results
	Verification
	Complexity Analysis

	Conclusion
	Bibliography
	References

