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ABSTRACT 

Supervisory control and data acquisition (SCADA) systems have their own constrains and specifications. 

These systems control many of our critical industrial infrastructures, yet they are hardly secured. The 

biggest problem in securing these systems is the lack of cryptography support especially that most 

SCADA systems work in real-time which is not compatible with most cryptography algorithms. 

Additionally, a SCADA network may include a huge amount of embedded devices with little 

computational powers which adds to the cost of any security improvement. In this paper we present a new 

approach that would secure SCADA communications by coding information without the need of the 

complex cryptography algorithms. The reconfigurable information transmitter agent (RITA) protocol that 

we present does not need the already installed devices to be modified nor replaced, it only needs to add 

costless electrical chips to these devices. This approach can also be used to secure any type of 

communication that respects the protocol's constraints. 
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1. INTRODUCTION 

Information Security (InfoSec) is the act of protecting a set of information against unauthorized 

entities. A complete protection means that the information can be created, manipulated, and red 

by authorized entities only. The measurements to ensure InfoSec depend a lot on the state of the 

information, whether the information is stocked in a data base, being processed, or being 

communicated between entities. In this article we are interested in the measurements taken to 

secure the communication of information. 

Securing a communication is needed when the channel being used for communication is 

considered insecure as in the case of Internet communication, wireless communication and 

others. In most cases, InfoSec relies on cryptography algorithms to ensure a secure 

communication. The complexity of a cryptographic algorithm requires additional power, time 

and space. Although good cryptography algorithms exist, few are considered secured today. An 

additional problem with cryptographic algorithms is that many were considered to be secure 

until attacks and analysis proved they are not, which means that what is considered secure today 

may be insecure tomorrow. 

SCADA systems are considered secured by isolation, still, they can be attacked from the inside. 

Also, due to the augmented connectivity to the outside, it is wise to consider effective security 

measurements before being able to have authorized outside access. 



 

While security protocols are implemented in many systems, most of SCADA systems are still 

unsecured. Most companies that rely on SCADA systems do not consider securing these 

systems because of the expected high costs. This high cost is the consequence of cryptography 

use which also breaks the real-time constraint of SCADA systems. 

Our proposal is to replace cryptography with a measurement that is expected to have a 

satisfying security level with a very low cost (power, time, and space). Our approach does not 

need for the already installed system to be replaced nor upgraded which means that the SCADA 

system would be available during the shift from unsecured to secured. 

In this article, we will present the concept of our proposal while unfolding the first and most 

basic version of our protocol. 

2. SCADA 

SCADA systems can be found in modern industrial facilities such as water pipes, power plants, 

oil refineries, chemical factories and nuclear facilities. These systems use coded signals over 

communicating channels to monitor and control numerous devices on multiple and distant sites. 

Unlike standard networks, most of the SCADA nodes are special purpose embedded computing 

devices with limited capacities such as remote terminal units (RTUs) and programmable logic 

controllers (PLCs). These nodes exchange data (exp. temperature is x, water level is y, etc.) and 

commands (exp. turn off water) between each others and with the supervisory system. The 

supervisory system can also build statistics about the system and how it is being used based on 

the received data. 

Figure 1 presents a general SCADA network and its communication to a second SCADA, a 

local network, and the Internet. 

 

Figure 1. General SCADA network presentation 

In addition to using special purpose embedded computing devices, other SCADA properties 

also affect their security as well, we are mainly interested by the following [1]: 

• Non-stop availability: Devices are required to work non-stop for years, exp. traffic lights. 

• Geolocation: Nodes can be very sparse and geographically extensive, exp. water pipelines. 

• Hard conditions: Nodes may exist in hard physical conditions, exp. chemical factories. 

• Performance: Devices must have a hard real-time constraint, exp. microchips industries. 



 

Many security problems are caused by the properties mentioned above: The use of special 

purpose devices with limited input/output choices causes communicated messages to be easily 

predictable. Cryptography is hardly supported since performance would be dramatically 

reduced. Renewing and updating devices would be very expensive, this is caused by the 

geolocation of the devices and the availability constraint. The geolocation constraint also allows 

possible unexpected links to the outside reducing system security. And finally, the geolocation 

and hard conditions of devices discourage temper resistance. Any approach to secure SCADA 

systems should consider those properties and specifications. 

SCADA properties are not the only aspects causing security problems, many of the choices 

(made by SCADA manufacturers and users) that characterize current SCADA systems also 

reduce SCADA security [1]: 

• Using open standards which grant attackers more knowledge of the system. 

• Using COTS (commercial off-the-shelf) hardware and software (which lacks of security). 

• Using fail-safe constraints increases safety while decreasing security. 

• Protocols vulnerabilities, whether conceptual or caused by implementation errors. 

3. RELATED WORK 

Many efforts were put to secure SCADA communication [2,3,4,5]. In the technical and research 

world, these efforts led to solutions which would insure a high level of security in SCADA. In 

practice, the proposed solutions are expensive and their requirements are not met in the SCADA 

networks. Since none of these solutions is proven to be perfect, no one would take the risk and 

pay the elevated price, which is in some cases changing their whole SCADA system. The 

imperfection of these solutions would mean constant updates and upgrades that SCADA 

managers would not risk. For these reasons, we think that any SCADA security solution that 

desires to pass from the research world to practice should have perfection properties. Also a 

good security solution for SCADA systems would not need to replace the already installed 

materials. 

The only known perfectly secure cryptosystem is the Vernam cipher, also called the one-time 

pad. Gilbert Vernam patented this invention in the USA in July 1919 [6]. A few years later, a 

variation of the one-time pad was patented in Germany by Siemens and Halske [7]. The one-

time pad is based on a list of shared keys that can only be used once. If implemented in SCADA 

systems, the list of shared keys need to be updated constantly which is very time consuming in 

most cases (exp. water pipes). 

In 1949, Claude Shannon proved that the one-time pad is indeed unbreakable and that any 

unbreakable system must have the same essential characteristics as the one-time pad [8]. The 

most essential characteristic of the one time-pad is the use of a different key for each 

encryption. 

To the best of our knowledge, there are no other cryptosystems that were considered 

unbreakable since the one-time pad. 

4. PROTOCOL 

In this section we will explain the principles of the protocol and its characteristics. We will also 

demonstrate the communication schema, and finally we show some details of the needed 

security measurements for the protocol to work effectively. 



 

4.1. Principles of the Protocol 

The most important principle of our protocol is the secret sharing between two entities that we 

call security boxes. These security boxes are considered twins, our security relies on the 

possibility for these twins to share and maintain a secret which is similar to a symmetric key in 

the case of cryptographic algorithms.  

The shared secret is a table of randomly pre-initialized values, along with a secret algorithm 

with predefined random operations. To make sure the performance is almost intact, the chosen 

operations are simple binary compositions (exp. binary XOR) and substitutions. Also, most of 

the operations take place after sending/receiving a message and not before. That way, the 

message is sent and processed with almost no security related latency. 

The 2-security boxes are initialized together before being placed each on the entry/outlet of any 

type of device that needs its communication secured. A security box can be an embedded device 

or an algorithm implemented on another already existent device such as a computer program, a 

smart phone application, etc. Any communication between the 2 devices would go through both 

security boxes, the first security box translates the communicated message to a matching secret 

message and the second security box would reveal the match for the received secret. After 

sending or receiving a secret message, a security box would change the secret table. 

Figure 2 represents a synchronous version of the communication using our security protocol. 

The twins Agent A and Agent B communicate synchronous messages. In our latest version of the 

protocol asynchronous communication is possible. Each time a security box sends or receives a 

message it changes the used value in the table using function f. Function f's output depends not 

only on the input but on the current state of the security box (ex. whole table, number of 

communicated messages, etc.). This dependency exists for security reasons so outputs would 

not be redundant or have a pattern. 

 

Figure 2. Simple Synchronous Method 



 

4.2. Characteristics 

The security boxes transform a plain message to a secret message/code and vice versa to ensure 

that messages in the channel are unintelligible to any eavesdropper that may be analysing 

channel communication. Only intelligible messages are accepted by the security boxes. 

The security boxes can be used as a middle-ware between 2 devices, the translation from plain 

to secret message and vice versa can be different from one side to the other to make sure both 

devices send and receive messages they understand. 

The security boxes can also be used as a middle-ware between the devices and the 

communication channel, no matter what form of message the device produces. The security box 

transforms a produced message into a secret message that respects the protocol used in the 

communication channel without the need to change or adjust the secured device itself. The only 

modifications are the ones we do to the security box itself. 

A very important aspect of the security boxes is that they do not require any changes from the 

devices being secured. It is up to the security box to adjust itself depending on the secured 

devices. To do so, the security device can either be a general box which would require 

configuration depending on the secured devices. This would increase the flexibility of the box 

while reducing its performance and security level. The second method is to have boxes specially 

designed depending on the requirements of the secured devices. Although the second method 

provides less flexibility, it insures maximum performance and security. While the second 

method seems extreme with its need to recreate a security box depending on the requirements, it 

is feasible since the part that would change in the security box is very small and easy to modify. 

4.3. Communication Schema 

Figure 3 describes the communication schema using our protocol. A and B are communicating 

in a synchronous fashion. A creates a clear message clm and sends it to A.mySecurityBox which 

codes it into a matching coded message com and forwards it to the communication channel 

before updating the secret table using the contents of com and other variables. B.mySecurityBox 

is waiting for this message, it receives com, generates clm and sends it to B before updating its 

own version of the secret table using the same variables and operations. Finally B would answer 

by creating a new clm (response) and sending it to A in the same fashion. 

 

Figure 3. Communication Schema 



 

4.4. Function Necessities and Security Measurements 

The size of the secret table depends on the requirements of the secured devices and the different 

possible signals. For example, to control a lamp with 3 possible commands and 3 possible 

responses, we need a table of 3 values (for the most basic implementation of our mechanism).  

The cryptosystem needs to insure confusion and diffusion [8]. To make sure that the minimum 

required confusion and diffusion is offered we use substitution boxes. It is also considered 

important that the transformation of the secret table is irreversible. This would reduce the 

possibilities of future analytical attacks. 

It is clear that the values in the table should be different one from the other at any point of time 

or the same value would have multiple meanings which results in an ambiguous message. 

A list of unacceptable/undesired values contains values considered to decrease the security of 

our system such as zero in addition to any value with Hamming weight equal to 1 or even 2. 

these values are never used in the secret tables. 

Getting a substitution box output should be normalized regarding time, power, etc. If we have a 

substitution box of the form X = numberOfRows and Y = numberOfColumns, and we are 

searching for the output OUT(row=x,col=y) then we should also search for a phantom output 

OUT(row=X-x,col=Y-y) without actually using it. 

Any list/table search should consider the same approach. Looking for the value x in list T should 

have phantom = T[l-i] where l is the length of T and i is the index of x in T. 

Although most phantom outputs are used after sending/receiving, they still affect the 

performance and power consumption of our approach. Therefore, phantom outputs should only 

be used when side channel attacks are considered as threats to the system. 

5. DISCUSSIONS 

In this section we will analyse the robustness of our approach and show an effective way of 

implementing it on already installed systems. 

5.1. Robustness Analysis 

Consider the following: A and B communicating using our protocol, they use a table of 3 values. 

A sends a message with value X1 to B and replaces X1 with X2, X1 is intercepted by an attacker. 

From the attacker's (let us call him C) point of view, X1 has no signification other than a strange 

signal being sent from A to B, since C cannot understand the meaning of this signal then the 

confidentiality requirement is respected. 

The integrity requirement is also respected since if C tries to change X1, or to invent a message 

and send it to B, it has a negligible chance of succeeding. The success probability is actually 

a/(2
b
 – c) where a is the number of possible values (3 in our example), b is the number of used 

bits 32, and c is the number of unacceptable values 1+32 if we only refuse values with 

hamming weight equal to 0 and 1. 3 / (2
32

 – 33) = 6 * 10
-10 

which is 6 times lesser then the 

probability of gaining the jackpot Mega Millions multi-state lottery in the United States. 

If C tries to redirect X1 to A, A would not accept it since X1 was replaced by X2 and does not 

have any meaning to A any longer. The only thing C can do is to interrupt messages from A to B 

and B to A. Interrupted messages cannot be replaced, therefore, if A and B use a time constraint 

(the system knows something wrong if no message is received for t seconds) then both devices 

would know there is an undergoing attack or a connection problem.  



 

5.2. Installation Method 

Let us consider devices A and B are already functioning in our system, we wish to secure the 

communication between these 2 devices. If we do not want to break the communication 

between the devices we proceed as follows: 

First we add the security box to A by switching the cables connecting A to the security box, and 

adding a cable between A and its security box. The security box would simply forward 

messages from A without securing them. Then we add the security box to B, once installed the 

security box would send a notification to A's security box to start securing messages. After the 

secured communication is well established, unsecured messages would stop being accepted. 

While a security box is being installed on a machine, this machine will not be able to send and 

receive messages only for the instance of cables switching. 

In addition to the security boxes, we use port boxes (Figure 4). The current ports would simply 

route the messages to the correct channel. The ports may also be used to scramble the messages 

which would add to the system security while slightly affecting performance. 

The structure of a secret message would contain the following information: ID of the sender 

(portID_A, boxID_A, and deviceID_A), ID of the receiver (portID_B, boxID_B, and 

deviceID_B), sequences of the message (box_seq and device_seq), and finally the coded data 

itself. Additional information can be added to the message if needed. Some information can also 

be reduced if it is found heavy for a system. For example, we can remove boxID_A since it is 

boxID_B's twin and the only one who could have sent the readable message. In some cases, a 

box and a device can have the same ID and messages sequences which would also reduce the 

size of the secret message. 

 

Figure 4. Using Port Boxes 

6. GENERAL STRUCTURE 

The connection between a device and a security box should not be exposed to other devices, 

entities, or the outside since it is unsecured. The connection between a port and a security box 

should be a single line or messages would be routed wrongly, messages passing this connection 

are already secured. The communication between ports can pass through any type of channels 

(wireless, Internet, etc.), messages are secured during this communication. 

Our protocol can be used to support communication between multiple devices (Figure 5). 

Consider the following security boxes twins: A and AA, B and BB, C and CC. Devices 1 and 2 

communicate with devices 4 and 5 through A and AA. Device 5 communicates also with device 

3 using 2 twins: B,BB and C,CC. Device 3 and device 5 cannot communicate with each others. 

If a message is sent from Device 3 to device 5 passes by the first twin B,BB and a second 

message passes by the second twin C,CC, there is a chance for the second message to arrive 

before the first one, therefore it is unsafe to have devices communicate with each others using 

multiple security boxes unless both devices 3 and 5 have the capacity of readjusting the order of 

received messages. 

Finally, we have Port 1 communicating with ports 2 and 3. 



 

In conclusion we have the following: 

• A security box can secure multiple applications/devices. 

• A port can be connected to multiple security boxes and communicate with multiple ports. 

• A device can communicate with multiple devices using the same security box. 

• A device can communicate with a device using multiple security boxes if both devices have a 

measurement that keeps track of the correct messages order. 

 

Figure 5. General Structure 

7. IMPLEMENTATION 

In this section we show an example of how the protocol can be used, and exhibit our simulation. 

7.1. Example 

Let us consider the following example that do not mention the use of port boxes (Figure 6). 

 

Figure 6. Lamp Control Example 

We have a smart phone with many applications, one of which would control a lamp through a 

wireless communication channel. We need to make sure the communication between the lamp 

and the application is secured from any attack. The attacks may take advantage of the wireless 

insecurity or an insecure application installed on the smart phone. We create 2 security boxes: 

one would be an embedded device that is installed on the lamp's input/output, the second 

security box would be an algorithm on the smart phone and controls the input/output of the 

lamp control application. 

Any communicated message between the lamp and the application would be translated into a 

secret message that has no meaning to any outsider (attacker) which guarantees confidentiality. 

Changing this message would result in a meaningless message which insures the integrity of the 

communication. 



 

 

Figure 7. Simple Synchronous Method Example 

In this example (Figure 7), we are using a table of 3 items, having 3 possible indexes means 3 

different signals (information) sent and 3 different signals received. In the following we have: 

TURNON = ISON = 0, TURNOFF = ISOFF = 1, STATUSCHECK = OK = 2. 

The first and most basic method consists on changing a value after using it. Agent_A (ID=468) 

and Agent_B (ID=834) start with a shared secret table T and a secret function f. A (ID=43) starts 

by sending a CHECKSTAT order, which is index = 2. Instead of actually sending 2, Agent_A 

would send T[2] which is 16. After sending 16, Agent_A would change T[2] using f to obtain 

37. Since 37 replaced 16, it would have the same index in the table T, and since the index is the 

actual indicator of the meaning of a message, then 37 would have the same meaning as 16 but 

with a different visible value. In other words, the next time A sends a CHECKSTAT order, or 

receives an OK response, the visible value in the message would be 37. 

7.2. Simulation 

To test our protocol, we created a simulation of the lamp example using a python script on an 

Intel i5 CPU (2.60GHz*4) with 4GB of ram. We used the last version of the protocol which 

includes the following: 

• All data are in 16-bits (table values, substitution-boxes values, coded messages, etc.) 

• Asynchronous communication between twin security boxes. 

• Many additional security measurements to make sure the security requirements are fulfilled. 

• An improved version of the f function responsible for changing the secret table. 

• Dynamic substitution boxes. 

• An improved and secured use of messages sequencing. 

• Possibility to send and receive unanticipated messages instead of expected signals only. This 

option reduces the performance. 

• A resend option to be able to resend unreceived or erroneous messages. 



 

During our simulations we were able to test different architectures with multiple devices, 

security boxes, and ports. Simulations were successful and showed no direct patterns on 

millions of communicated messages. 

With all the security measurements implemented, we were able to communicate 4000 messages 

per second for each twins. 

8. CONCLUSION 

The SCADA community is looking for a security protocol that has a low cost and does not need 

constant upgrades. The protocol should also respect the constraints of SCADA such as the low 

computational power and the real-time environment. 

Our security protocol can be a solution to SCADA security since on one side it has a good level 

of security based on simple operations and on the other side it does not require for the already 

installed system to change nor to stop working. 

The most important security concerns (confidentiality, integrity, and availability) are taken into 

consideration. The simplicity of the used functions would outplay cryptographic algorithms in 

the matter of performance especially in the case of embedded devices. 

No direct patterns were found, still, we have to continue analysing our protocol for indirect 

patterns. 

We have already advanced in the design of the protocol to be able to communicate normal 

messages instead of a pre-set of values. We have also added a number of security measurements 

that consider potential attacks on the basic version of the protocol. 

We may find uses of our protocol outside of the SCADA community if the requirements are met 

and the constraints are respected. For the moment, we focus our work on SCADA systems. 

We are currently tuning our simulation to achieve the best possible performance. 

We will soon implement our latest version of the protocol on a SCADA platform that we 

acquire. We have also considered collecting the communicated packages and diffuse them for 

white hat analysis. 

We consider doing some security analysis to test the robustness of our protocol against specific 

attacks such as correlation and differential power analysis. 

We are working with other partners that wish to implement our security protocol in their latest 

project which aims to put sensors on the repeaters of submarine communication lines to observe 

and forward information to a research centre. 
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