
Computing and Informatics, Vol. 32, 2014, ??–??, V 2016-Feb-29

TOWARDS A TRANSFORMATION APPROACH
OF TIMED UML MARTE SPECIFICATIONS
FOR OBSERVER-BASED FORMAL VERIFICATION

Nadia Menad1, Philippe Dhaussy2, Rachida Mekki1, Zoé Drey2

1University of Science and Technology of Oran Mohamed Boudiaf
Department of Computer Science
Faculty of Mathematics and Computer Science, Algeria
2UEB, Lab-STICC Laboratory UMR CNRS 6285
ENSTA Bretagne, France
e-mail: nadia.menad@univ-usto.dz, firstname.name@ensta-bretagne.fr

Abstract.

Modeling timing constraints of distributed systems and multi-clock electronic
systems aims to describe different time requirements aspects at a higher abstraction
level. An important aspect is the logical time of the behavior of these systems. To
model these time requirements, a specification language with multiple clock domains
called Clock Constraint Specification Language (CCSL) has been introduced, in
order to enrich the formalisms of existing modeling tools and also to facilitate the
description and analysis of temporal constraints.

Once the software has been modeled, the difficulty lies in both expressing the
relevant properties and in verifying them formally. For that, formal transforma-
tion techniques must be introduced. However, it remains difficult to exploit initial
models as such, and to integrate them into a formal verification process.

This paper introduces a methodology and an original tool chain for exploiting
UML MARTE models enriched with CCSL specification. These will be integrated
together with a range of tools for expressing and verifying time constraints. We pro-
pose a more general translation approach that verifies not only CCSL constraints
implementations but also properties of the complete model including all the func-
tional components. We evaluate our approach with a case study.

Keywords: Formal verification; model-checking; CCSL time constraints;
observer automata.

1002 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

1 INTRODUCTION

In the field of modeling software architectures of control-command systems, dis-
tributed systems or multi-clock electronic systems, the specification of systems is
often associated with temporal constraint specifications. These systems are often
critical and the requirements to be respected during the modeling step, concern not
only the determinism but also temporal constraints at a functional level. In the sys-
tem development process, the designers look for methods and languages that allow
them to describe their architectures, throughout the cycle and at various levels of
abstraction. At each level, the modeling of such systems should allow the expression
and the manipulation of time requirements, and the evaluation of the accuracy and
efficiency of applications in terms of temporal and measurable requirements.

For this purpose, the concept of abstract modeling of logical clocks has been
introduced with the Clock Constraint Specification Language (CCSL) [1] within
MARTE [2] and has been adopted by the OMG [3]. CCSL is a language to de-
fine causal, chronological and temporal relationships. It aims to complement the
existing formalisms and to provide models that can be analyzed so as to assess their
accuracy with regard to requirements expressed by the designer. It is therefore
essential to adopt temporal analysis approaches by integrating verification and val-
idation processes based on robust formal notions, in order to meet current quality
requirements of these systems.

To address this issue, several studies have proposed an engineering approach
founded on models, and the use of semi-formal notations such as UML, enriched with
formal notations. For example, the UML MARTE profile aims to express temporal
constraints on UML models. The models that are built must not only be simulated
but also formally analyzed so as to check the temporal requirements defined by the
designer. However, few approaches integrate formal verification to UML MARTE
models. In this study, we use model-checking verification techniques [4, 5] to enable
formal analysis of requirements on UML MARTE models. These techniques have
become highly popular due to their ability to automatically confirm software model
properties . A range of model-checking tools have been developed for this purpose
[6, 7, 8, 9, 10]. However, these techniques are difficult to exploit for both expressing
and verifying the functional properties and the time properties of a software model
under development.

This paper is an extension of a former publication [11] which studies the associ-
ation of CCSL constraint specification and a model-checking tool named Observer-
Based Prover (OBP)1 [12]. The verifications carried out by OBP are based on the
exploration of programs expressed in a high-level language dedicated to the specifi-
cation of distributed systems called FIACRE [13] 2.

We have defined a transformation process to verify that UML MARTE mod-

1 http://www.obpcdl.org
2 For a detailed description the reader can refer to the FIACRE documentationhttp

://projects.laas.fr/fiacre/papers.php

Transformation of Timed UML MARTE for Verification 1003

els extended with CCSL specifications guarantee functional and time properties on
their behavior. These properties are expressed as invariants and observer automata
in a language called Context Description Language (CDL). The automatic transfor-
mation of UML MARTE models to FIACRE code is described in an other paper [14]
and not detailed here. Only the transformation of CCSL properties is described in
this article. Our contributions are as follow:

• We provide a verification methodology and tool-chain to facilitate the verification
of distributed system models.

• We define a transformation approach to generate a FIACRE model from a CCSL
specification integrated in UML MARTE models.

• We show how to specify time properties in the form of CDL observer automata,
given as input of the OBP tool together with a specification of MARTE models.

• We provide a full description of a case study and we show a quantitative exper-
iment of our verification process on this case study.

In this article, we integrate our transformation process into a general verification
methodology that verifies not only CCSL constraints implementations, but also
properties on the complete model including all the functional components. We
provide a detailed description of a case study defined in MARTE.

This paper is organized as follows: Section 2 presents related work in formal
verification of CCSL constraints. We present the context of our approach and the
CCSL language in Section 3. An illustrative case study is presented in Section 4 and
the principles of transformation of CCSL constraints into FIACRE are introduced in
Section 5. Section 6 describes the CDL specification of properties based on observers
and invariants (scenarios). In Section 7, we introduce and discuss some results of
property proofs. We conclude in Section 8.

2 RELATED WORK

This section is conceptually divided into three parts. We have separated each part
according to two criteria, which are : (1) the input specifications of the trans-
formation process for formal verification, (2) taking into consideration the time
specifications in the transformation process. The first part 2.1 concerns transforma-
tion approaches that deal with transforming a general specifications (UML, UML
MARTE.etc) into an input language for formal verification purpose. The second
part 2.2 deals with approaches dedicated to extending a formal language with logi-
cal time for verification. Finally, the last part 2.3 concerns approaches which concern
only the transformation of CCSL specifications into a formal representation to be
verified by a model checker tool.

1004 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

2.1 Transforming a specification language into the input language for
model checking tool

A number of model checking based techniques have been proposed for specifying
and analyzing temporal constraints in several behavioral models, such as activity
diagrams and state machines (e.g., [15, 16, 17, 18, 19, 20, 21]). In order to apply
such techniques, the semi-formal specification models must be transformed to the
tool-specific input languages. Many approaches to transform a specification lan-
guage into an input language of adequate model-checking tool have been proposed.
For example, Ge et al. present a verification-driven approach in [15] consisting in
translating UML MARTE Activity Diagrams into Time Transition System (TTS)
in order to guarantee the correctness of time properties. The authors use a formal
semantics of Time Petri Nets (TPN) to avoid the state space explosion on the TIme
petri Net Analyzer (TINA) model-checking tool. This approach is limited as it only
verifies a particular type of properties (i.e., synchronization and schedulability).

In [16], Ge et al. present a framework dedicated to time property verification
for UML MARTE. This work relies on a property-driven transformation from both
UML architecture and behavior models to executable and verifiable TPN models,
by translating time properties into a set of property patterns corresponding to TPN
observers. Another approach to formalizing and validating temporal requirements
is proposed by Cimatti et al. in [22]. A formalism for representing and analyzing
requirements using the NuSMV [10] model checker is proposed, where temporal
constraints are expressed by means of temporal operators, resulting in a fragment
of first order temporal logic. The formalism builds on class diagrams, and combines
fragments of first order logic with temporal operators to describe the evolution of
scenarios. The drawback of the approach is that only a part of the scenario is
considered to be controllable.

2.2 Extending a formal language with discrete time

Bosnacki et al. proposed a discrete time extension of Promela for concurrent systems
in [23]. A variable named ”timer” is defined and corresponds to the discrete time
countdown timer. However, the proposed extension would be difficult to use in order
to express the coincidence clock tickings. Bosnacki et al. also proposed another
work, which can can be found in [24], which models time specifications from Algebra
of Communicating Processes, (ACP) by macro definitions on the level of Promela.
This work presents an extension of Promela and the SPIN model checker [6] with
discrete time that provides an opportunity to model systems the correct functioning
of which crucially depends on timing parameters.

2.3 CCSL language transformation for verification

Several approaches based on model transformation have been published to enable
the formal verification of CCSL time requirements. This includes work by Mail-

Transformation of Timed UML MARTE for Verification 1005

let [25], who presented a technique for standard VHDL based design environment
and synchronous languages (Esterel). This work addressed VHDL generating observers to
check the compliance of a CCSL specification. The paper defines a state-based semantics
for some CCSL operators based on labeled transition systems.

Peters et al. presented a work in [26] in which they propose to translate CCSL into
SystemC which allows the simulation of the specified clocks in SystemC. The approach
adds a TimeController, which corresponds to one further module for handling the clock
behavior. The disadvantage of this approach is that the user has to implement the policy
interface manually, which is not desired during the process of specification.

Yu et al. [27] propose a framework for translating CCSL specifications into dynamic
systems, which are handled using the Sigali [28] model-checker to verify specified con-
straint relations. This approach only focuses on the implementation of CCSL constraints
with Signal programs. Additionally, the handling of the non-deterministic parts cannot
be chosen in this work, as polychrony can only be generated after eliminating the non-
determinism. The approach is too restrictive, as it does not take into account mixed clock
expressions, that deal with multiple future scheduled ticks. So the approach does not
resolve all existing CCSL constraints. Moreover, the generated executable controller only
enforces the satisfaction of the specified timing constraints without considering functional
properties.

André [29] proposed an approach for implementing observers [30] for the formal veri-
fication of CCSL specifications. Observers, encoding CCSL constraints are translated into
Esterel code. Mallet et al. [25] describe a technique to generate observers from a CCSL
specification. In this approach, a reachability analysis allows the determination of whether
or not an observer has reached an error state. The Times Square Environment [31], dedi-
cated to solving CCSL constraints and computing solutions, implements a code generator
in Esterel. The tool allows the detection of inconsistencies in CCSL specifications such
as deadlocks. It provides the user with chronograms showing the different temporal evo-
lutions of executions to facilitate the development of those specifications. However, the
environment is a simulator that allows the analysis of execution traces but it does not
verify the most general properties on execution graphs as do model-checkers.

Gascon et al. [32] contribute to the comparison of CCSL and Property Specification
Language, PSL [33] expressiveness. They identify CCSL constructs that cannot be ex-
pressed in PSL temporal logic. The article also designates the class of PSL formulas that
can be encoded in CCSL. It defines a translation between fragments of CCSL and PSL
using the automata formalism as an intermediate representation. However, this approach
does not take into account the CCSL constructs that cannot be expressed in PSL.

In [34], Yin et al. propose a translation of CCSL specifications into a Promela model
to formally verify the CCSL constraints by the SPIN model checker. We have been in-
spired by this work to design the automatic translation of CCSL constraints into FIACRE
automata. Also, in this approach the properties to be checked are expressed in Linear
Temporal Logic (LTL) logic. The vUML [35] tool automatically converts UML state ma-
chines to Promela specifications and then invokes the SPIN model checker to verify the
desired properties. Although the system is modeled as UML state machines, the temporal
properties are specified in LTL. UML and OCL analysis tools, such as OCLE [36] and
USE [37] provide support for validating structural properties. However, it is difficult to
express specific time constraints with OCLE and USE, so these latters are limited when

1006 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

analyzing temporal properties. We propose to express properties with the CDL language
with observer automata which allow a better expressiveness. For example, in our paper,
we show a property (illustrated in Fig. 12) that would be tedious to express in LTL.

Another work by Romenska et al. [38] deals with CCSL unbounded operators. More
precisely, it defines a state-based representation of CCSL operators. In this approach, a
lazy evaluation is used to represent intentionally infinite transition systems, by providing
an algorithm to make the synchronized product of such transition systems with studying
its complexity.

Recent work has been proposed by Suryadevara et al. in [39], that presents a technique
for transforming MARTE CCSL mode behavior into Timed automata for model-checking
using the UPPAAL tool, which enables verification of both logical and chronometric
properties of the system. This work only considers time specification and analysis. In
contrast, we have proposed a more general translation approach that verifies not only
CCSL constraints, but also functional properties. Furthermore, in our approach, these
properties are separated from the application model thanks to a high level language (CDL)
which facilitates the separation of the concerns. These properties, whether time-related
or functional, are expressed in the CDL language [40]. In addition, we use the notion of
contexts, also expressed in CDL , which in some cases allows to reduce the combinatorial
explosion during the exploration of models.

3 PRINCIPLES OF THE APPROACH

The goal of our work is to integrate formal verification techniques with real-time systems
described with semi-formal modeling languages such as UML, with respect to behavior
and time requirements that must be guaranteed by such systems. To do so, we define
an approach that is based on a tool-chain (Fig. 1) that bridges the gap between UML
MARTE and formal specifications. In this Section, we first present our approach. We
then provide a definition of time constraints specified by the CCSL language.

3.1 A tool-chain for the verification of models

The entry point of our tool-chain (Fig. 1) is a semi-formal specification model of a real-
time system architecture (the structural model) and its behavioral model using the UML
MARTE profile, a language that is dedicated to the specification of real-time systems.
The UML MARTE models can be enriched with time constraints that describe causality
(i.e., relations between the input/output states of a system), chronological and timing
properties on the models. These constraints are described in a dedicated language called
CCSL, which has been defined as an annex of the UML MARTE profile.

An UML MARTE model aims to describe the requirements that are written by the
user for whom the real-time system model is designed. These requirements informally
describe behavioral properties that should be guaranteed by the real-time system model.

Tooling of our approach

To be verified, the UML MARTE models need to be transformed into a formalism for
which verification tools exist. To do so, our approach consists of a tool-chain (Fig. 1) that

Transformation of Timed UML MARTE for Verification 1007

Fig. 1. Overview of the proposed model transformation.

leverages three elements: (1) CDL, a language to formally express requirements of the
system, (2) FIACRE, a tool to model the system as a set of automata and (3) OBP, a
tool to explore a system with respect to CDL properties.

• CDL (Context Description Language) is a language to formally specify properties
on the behavior of a system. CDL defines high-level syntactic constructs that ease
the expression of properties in terms of input/output states, representing scenarios
of execution that must be verified by a FIACRE specification. In so doing, CDL
contributes to bridging the gap between the user requirements and the formal model
of a system.

• FIACRE is a language for defining state-machine based representations of real-time
systems, aimed at being used as inputs for formal verification and simulation purposes.
The choice of FIACRE for our approach is driven by (1) the need to formally describe
real-time systems with a formal semantics, (2) the need to make models (in the sense
of model-driven engineering) of systems amenable to verification.

• The OBP tool3 is based on model-checking techniques and is aimed at the exploration
of the execution states of a model. It takes CDL and FIACRE specifications as its
inputs. OBP generates an exploration graph representing all the possible behaviors of
a system, given some input data representing the environment with which the system
should interact, and returns an error report (e.g., by means of counter-examples) when
CDL properties are violated.

The UML MARTE specification is automatically translated into FIACRE together
with the CCSL constraints with which it is associated. The translation from UML MARTE
(without CCSL) to FIACRE is described in [14, 41] and is not the subject of this paper.
The requirements are formalized into CDL properties. These properties are either func-
tional (i.e., they express a functionality that the system must achieve), or time-related (i.e.,
they express timing constraints that the system should take into account when achieving
a functionality).

3 http://www.obpcdl.org

1008 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

Finally both the generated FIACRE specification and the CDL properties are given as
inputs to the OBP tool, which verifies the FIACRE specifications against the CDL proper-
ties. We use the OBP tool to conduct our experiments and verify that a system (initially
described in MARTE) containing time constraints (expressed in CCSL) guarantees the
expected requirements (expressed in CDL).

3.2 Time constraints and the CCSL Language

CCSL [1], introduced as an annex of MARTE, is a declarative language used to specify time
constraints by means of binary relations between events based on logical clock concepts.
CCSL is based on a mathematical model giving a formal semantics to time. In a MARTE
model, any event (for example a communication, transmission or reception action, as
computing start) may be used to define a time base, by means of logical clocks (clock).
A clock represents a set of occurrences of discrete events, called instants .These instants
are strictly ordered and provide a temporal reference.

For modeling distributed applications (distributed systems or digital circuits) it is
necessary to identify a set of temporal or clock repositories and causal relations between
events. Logical clocks can be referenced in the expression of temporal constraints to express
causal relations such as synchronous or precedence constraints. These clocks can also be
used to provide sampled clocks (sub-clocks) or filtering (see [29] for the specification of a
set of relations). This vision of time allows the manipulation of the simultaneity notion
in a succession of discrete instants [42]. In a given instant, events can be executed; these
events are causally inter-dependent and considered to be simultaneous just like the instant
reaction concept, an abstraction exploited in synchronous languages [43]. We recall briefly
the formal bases of CCSL language in the remainder of this Section.

3.2.1 Formal foundations of CCSL language

Taking the formalization described in [42], a clock is considered to be a quintuplet 〈I,�
,D, λ, µ〉 where I is a set of instants, � is a binary, transitive ordered relation on I, D is
a set of labels, λ : I → D is a labeling function, µ is a symbol, standing for a unit unit.

A Time Structure is a quadruplet 〈C,R,D, λ〉 where C is a set of clocks, R is a relation
in

⋃
a,b∈C,a 6=b (Ia × Ib), with I an instant. D is a set of labels, λ : IC → D is a labeling

function. IC a set of instants of the time structure, quotient of this set by the coincidence
relation induced by the relation R.

Relations between clocks are based on the precedence relation � which derives new
relations from instants: Coincidence (≡ def

= �
⋂
�−1), Strict precedence (≺ def

= �
\ ≡), Independence (|| def

= �
⋃
�−1), and Exclusion (# def

= ≺
⋃
≺−1).

A CCSL specification consists of both a declaration of a set of clocks and a set of
relations between clocks. These relations are applied to both clocks and the expressions
referencing clocks. Each execution phase represents a possible evolution of clocks, accord-
ing to the expressed relations. At each execution step (step), a set of clocks (or events)
occurs (clock tic). At each execution step, the operational semantics of CCSL allows the
evaluation of the conditions for which a clock can tic.

A relation between clocks is the generalization of relations between every instant of
these clocks. The set of instants I is indexed by natural numbers in order to respect the

Transformation of Timed UML MARTE for Verification 1009

order on I. Let N∗ = N − {0}. idx : I → N∗. ∀i ∈ I, idx(i) = k if and only if i is the
kth instant in I. For any discrete time clock c = 〈Ic,≺c,Dc, λc, µc〉, c[k] denotes the kth

instant in Ic i.e k = idxc(c[k]).

4 AN ILLUSTRATING CASE STUDY

We consider a data acquisition circuit (C), with two channels, consisting of acquisition
components (Sensori and Acqi) (i ∈ {1, 2}), an acquired data processing component
(Comput) and a filter (Filter) sampling the calculated values. Each acquisition channel
i is associated with a pair of components Sensori and Acqi. We assume that, for each
channel i, the component Sensori receives data from the environment (from a device Devi
outside the circuit) and transmits the value to Acqi through a shared memory Mi. Each
Devi sends N data dataik, k ∈ [0 . . . N−1]. Acqi provides Comput with each datum dataik
via a synchronous communication 4 port portAcqi.

Comput applies the addition of data1k and data2k respectively received from Dev1 and
Dev2 and provides the Filter with the sum via a fifo. Filter provides the sampled data
(one in every three values) to Devout, external to the circuit.

Fig. 2. Circuit architecture C.

The temporal requirements associated with this circuit are:

• Req1a: Each acquired datum data1 is written in the memory M1 before being read by
Acq1.

• Req1b: Each acquired datum data2 is written in the memory M2 before being read by
Acq2.

• Req2: Comput starts the calculation of a sum after two receptions of dataik from each
Acqi (with i ∈ {1, 2}).

• Req3: Filter provides the environment with a sampled value from a sequence of one
in every three values calculated by Comput.

In summary, all the timing requirements for our case study, are specified using the
CCSL language as follows:

4 Synchronous communication uses passive port, it needs synchronization with other
ports to initiate an interaction.

1010 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

write1 alternatesWith read1 (Req1a)
write2 alternatesWith read2 (Req1b)
read1 strictPrec comput (Req2a)
read2 strictPrec comput (Req2b)
filterOut = comput filteredBy (001)w (Req3)

In addition to the above time constraints, we express the requirements that are specif-
ically associated with the expected behavior of the circuit. For example, we can express
the following requirement:

• Req4 : the data resultj , j ∈ [0 . . . (N − 1)/3] provided to the environment after the
sampling operation (one value in 3) must have the values data1k + data2k with k =
(3 ∗ j) + 2.

4.1 The MARTE model

Fig. 3 illustrates the model of this circuit using the concepts of the MARTE profile. A
package named CircuitApplication contains the description of the application circuit. We
consider Sensor1, Sensor2, Acq1, Acq2. Comput, Filter, Dev1, Dev2 and DevOut as active
objects (stereotyped with RtUnit). Each of these units has a possibility to invoke other
real-time actions, such as sending and receiving data.

Fig. 3. Circuit architecture

Transformation of Timed UML MARTE for Verification 1011

The CircuitApplication package also introduces two shared resources called M1 and
M2, stereotyped by SharedDataComResource. We define two read and write services that
read/write the shared data as the objects Op Read1 and Op Write1. Comput and Acq1
(resp. Acq2) exchange data with synchronous communication. To specify this communi-
cation, we associate Comput with two ports ReceivedFrom Acq1 and ReceivedFrom Acq2,
and we associate Acq1 (resp. Acq2) with the portAcq1 (resp. portAcq2) port. We then
connect portAcq1 and portAcq2 to ReceivedFrom Acq1 and ReceivedFrom Acq2), respec-
tively. When a computation is completed, the Comput object generates a datum that is
transmitted to the Filter object through a dedicated port which is connected to a dat-
aPool (contained in Filter) named FifoFrom Comput. This dataPool is characterized by
the attribute ordering which is set to FIFO value to specify the kind of the asynchronous
communication.

Fig. 4. Timed Domain and CCSL specifications.

All the active objects provide real-time actions through their interface which carry
operations stereotyped by rtAction5 or rtService6 (not shown in Fig. 3). These operations
are defined in the Op Write1, Op Write2, Op Read1, Op Read2, Op Comput and Op Filter
interfaces, bounded to dedicated ports. These ports also carry a clock stereotype (typed
by clock specifications), indicating that the actions/services of the provided interface op-
erations are considered as events which are invoked by those clocks. For instance, Acq1
accesses the shared resource object (M1) by a reader service, invoking the reading real-
time action. A boundary port can be connected to a port owning an interface so as to

5 A real-time action is an action that specifies real-time characteristics. It defines a
synchronization kind related to the execution of the action

6 A real-time service is a service specialized with the additional pre-defined attributes
of real-time constraints, which are applied for all the invocations of the rtService.

1012 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

relay an action/service invocation or a data flow to a real-time unit. In that case, port
directions are relayed as well.

4.2 The CCSL constraints

Once the application model has been described, we need to define a set of clock relations
between the the different events of the system involved. These relations describe the
desired access policies, e.g., preventing readers and writers to concurrently access the
same resource. To do so and as illustrated in Fig. 4, a package named TimedDomain
specifies a clock for each operation. Specifically, each clock is an instance of the L Clock
class, expressing a logical clock, which we defined with the MARTE ClockType stereotype.
In this example, only one time domain is considered.

CCSL constraints are defined within the specific ClockConstraint MARTE stereotype.
Each constraint defines a relation between the clocks as defined in the TimeDomain pack-
age. For example, an alternance between read and write operations is required in our
application model. Such dependency between the read and write operations of Sensor1
(resp. Sensor2) and Acq1 (resp. Acq2), is specified by the AlternatesWith constraint. An-
other constraint (FilteredBy) indicates that filter is derived from Comput, with a pattern
value equal to 001.

5 TRANSLATION OF MARTE-CCSL MODELS INTO FIACRE PRO-
GRAMS

This Section presents the FIACRE language and the principles of the translation of
MARTE models enriched with CCSL constraints into FIACRE programs.

5.1 Overview of the translation process

We present here the principles of the translation of MARTE models enriched with CCSL
constraints (Fig. 5.a) into FIACRE code (Fig. 5.b). We illustrate these principles on the
circuit architecture introduced in Section 4. Specifically, we detail how the CCSL con-
straints (Req1a, Req1b, Req2a, Req2b and Req3) are transformed into FIACRE processes.

The translation consists in generating the following FIACRE elements (Fig. 5.b):
(1) a set of processes corresponding to the active objects of the MARTE model, (2)
processes corresponding to the CCSL constraints, (3) a Scheduler process for synchronizing
the execution of the generated processes and (4) a FIACRE component describing the
architecture containing all the generated processes.

The translation method of CCSL constraints into FIACRE processes and the gener-
ation of the Scheduler process are inspired by the work described in [34]. In the next
Sections, we detail how FIACRE code is generated.

5.2 Mapping a MARTE model into FIACRE

The transformation of the UML MARTE concepts into FIACRE constructs is summarized
in Table 1. Note that we do not explain the complete transformation principle, which has

Transformation of Timed UML MARTE for Verification 1013

Fig. 5. Global view of the translation principles.

been the subject of another work (see [14, 41]). The active objects of the UML MARTE
model (i.e., the RtUnit elements) correspond to the functional parts of the model. They
are generated into FIACRE processes that we call functional processes. In our case study,
the translation is applied to the following RtUnit elements: Sensor1, Sensor2, Acq1, Acq2,
Comput, Filter.

The CCSL constraints that are attached to the MARTE model are also translated
into FIACRE processes, named constraint processes. The DataPool elements (for the
asynchronous communication) are translated into the FIACRE predefined queue data
structure, and the Shared resource becomes a shared variable associated to the FIACRE
processes corresponding to the involved RtUnit elements. The two ports used for the
synchronous communication of two RtUnit elements are translated into the FIACRE pre-
defined port constructs. Finally, the ports associated with an interface are translated into
a FIACRE conditional statement that we detail in Section 5.4.

Table 1. Mapping from MARTE to FIACRE concepts.

MARTE FIACRE

RtUnit functional process

Clock Constraint constraint process

DataPool queue structure

SharedDataComResource Shared variable

Synchronous port �−→� Synchronous communication port

Port with interface O)−→� Triggering port

1014 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

In our case study, the objects Dev1, Dev2 and Devout represent actors executed in
the environment of the circuit. Their behavior is expressed in the CDL language, as we
will see in Section 6.2.

5.3 Mapping a CCSL Time Constraint into FIACRE

We translate each CCSL constraint into a FIACRE process that implements the corre-
sponding automaton. We call this process a constraint process.

These constraint processes are synchronized by a generated specific process, the Sched-
uler, which is described in Section 5.4. The Scheduler synchronizes the constraint processes
via three ports, start, update and end, for the activation of the transitions in the con-
straint automaton. For example, in our case study, the transitions of AlternatesWith
process are synchronized with the Scheduler via the ports startA, updateA and endA.
AlternatesWith automaton updates the values of clock state that allow the triggering
of process Sensor1 and Acq1 (respectively Sensor2 and Acq2) by ports sync pw1 and
sync pr1 (respectively sync pw2 and sync pr2) (cf Section 5.4.1).

The automaton corresponding to AlternatesWith constraint is shown in Fig. 6. The
encoding principle for the two other constraints, strict precedence and filtering is similar.

Fig. 6. Automaton for the constraint writei alternatesWith readi.

5.4 Interpreting Time Constraints with Scheduler

The role of the Scheduler process is to determine the order of execution of functional
processes based on the constraint process state. The interpretation of time constraints is
done through a Scheduler. It is in charge of triggering the functional processes according
to the constraint states.

5.4.1 The scheduler and connection with processes

Fig. 7 is an excerpt of the FIACRE program generated for two functional processes (Sen-
sor1 and Acq1) and a constraint process (alternatesWith). Dash lines represent syn-
chronization links. For example, Sensor1 is synchronized with the Scheduler via the port
sync pw1 to execute a writing operation of a given datum data in memory M1 shared
between Sensor1 and Acq1 processes.

Transformation of Timed UML MARTE for Verification 1015

Fig. 7. Illustration of a part of the generated FIACRE program.

Acq1 and Comput communicate through the portAcq1 port with an integer value.
Comput and Filter communicate through a shared variable fifoFromComput of the fifo
type. Filter is synchronized with the Scheduler via sync filter for filtering operation and
sync filter carries a boolean value required by the Filter behavior. The Scheduler process
and constraint processes share logical clocks (Table tab Clocks structure, cf Section 5.4.2
) that correspond to events occurring in the circuit computation (write1, write2, read1,
read2, comput, filterOut).

5.4.2 The scheduler behavior

The Scheduler process consists in an infinite loop. For each iteration of the loop, it executes
four steps as shown in Fig. 8.(a): (1) the Start step for the declared clocks initialization
and the activation of constraint processes. (2) the End step for the synchronization at
the end of the constraint processes. (3) An active phase during which the Scheduler
synchronizes with each functional process so that each process runs. (4) An intermediate
phase Update is interposed between the Start steps and End steps to synchronize some
constraints if required. An iteration is called an execution period and corresponds to
the time between two Start steps. The algorithm executed by the Scheduler is repeated
to simulate the coincident moment sequence (an instant). Interleaving or simultaneous
execution of functional processes is simulated by synchronization between the Scheduler
and the functional processes involved, at every temporally bounded instants. For example,
Fig. 8.b shows two clocks ck1 and ck2 that are activated in each case at the same time.
ck3 alternates with ck1 or ck2.

1016 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

Fig. 8. Scheduler process automaton.

Each event in the model gives rise to a clock which is located by a FIACRE structure
tab Clocks. This structure is declared as follows (Listing 3):

type T_CLOCK is record clock_state:nat, enable_tick, dead: bool end

type T_ARRAY_CLOCK is array 7 of T_CLOCK

tab_Clocks: T_ARRAY_CLOCK

Listing 3. FIACRE declaration of structure T CLOCK.

In each iteration of the Scheduler, each constraint process updates its variable clock state
which takes the integer values 0, 1 or 2, in accordance with the execution of the automaton
it encodes. Once the process has executed a constraint, the Scheduler evaluates this
variable and sets another variable enable tic to either true or false. If enable tic is
evaluated as true, the functional process associated with the event is synchronized with
the Scheduler, which triggers an execution step in the functional process (for example
with sync pw1 for triggering Sensor1 as shown in Fig. 7). The assessment of the value
enable tic is set to true only if the clock state value is equal to 2. In other cases, enable tic
are set to false. The value dead is set at true when the associated clock should not be
active in the rest of the execution.

The Scheduler process that is generated thus includes the following code (Listing 4)
which is executed during the Active step:

... if (tab_Clocks [0].enable_tick) then sync_pw1

elsif (tab_Clocks [1].enable_tick) then sync_pr1

elsif (tab_Clocks [2].enable_tick) then sync_pw2

elsif (tab_Clocks [3].enable_tick) then sync_pr2

elsif (tab_Clocks [4].enable_tick) then sync_comput

elsif (tab_Clocks [5].enable_tick) then sync_filter (true)

elsif (tab_Clocks [6].enable_tick) then sync_filter (false)

end ...

Transformation of Timed UML MARTE for Verification 1017

Listing 4. Excerpt of FIACRE code of the Scheduler for functional process synchro-
nization.

5.5 Generated FIACRE architecture

Fig. 9 illustrates the FIACRE architecture of our case study, resulting from the translation
of the MARTE /CCSL source model.

In our case study, the code generator produces 12 processes: the Scheduler, 5 con-
straint processes (2 for alternatesWith, 2 for strictPrec, 1 for filterBy) and 6 functional
processes (Sensor1, Sensor2, Acq1, Acq2, Comput and Filter). Fig. 9 shows that the
Scheduler process is connected to each functional process via synchronous communica-
tion ports called triggering communications. The Scheduler controls the execution of the
connected functional processes and gives an explicit rhythm of execution of the different
processes. The functional processes Sensor1, Sensor2, Acq1, Acq2, Comput and Filter are
respectively synchronized with the Scheduler via sync pw1, sync pr1, sync pw2, sync pr2,
sync comput and sync filter ports. For example, Sensor1 and Acq1 are respectively syn-
chronized by the Scheduler for writing and reading operations in M1. Likewise, Filter is
synchronized with the Scheduler via sync filter for the filtering operation, where sync filter
carries a boolean value.

In addition, the Scheduler is connected to all the declared constraint processes via
the shared Table tab clock, in order to update the clock state values according to the
constraints states to make a decision if such clock can tic or not in each specific instant.

Fig. 9. Structure of the generated FIACRE code.

1018 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

Generation of top level program

The processes representing MARTE elements, the CCSL constraints, and the interpre-
tation of these constraints are finally instantiated in a FIACRE component called C,
and specified as independent running entities through the || operator. The scheduler,
the constraint processes and the functional processes are all synchronized through their
communication ports.

As a result of our generation algorithm, the codes of functional processes, constraint
processes and the Scheduler are built within C.

To enable automatic code generation, we must explicitly declare clock numbers (cloc-
kNo) and links between clocks and synchronization triggers provided by the Scheduler.
For example, the read1 clock is associated with the sync pr1 synchronization port to syn-
chronize the first instance (Acq:1) of the Acq process. The filter clock is associated with
sync filter synchronization port which carries a boolean value. For this last clock, two
clock numbers are declared, one for each boolean value. These attributes are specified as
follows (Listing 5) 7.:

Synchronization

write1: clockNo: 0, synchro: sync_pw1 none to: Sensor:1;

read1: clockNo: 1, synchro: sync_pr1 none to: Acq:1;

write2: clockNo: 2, synchro: sync_pw2 none to: Sensor:2;

read2: clockNo: 3, synchro: sync_pr2 none to: Acq:2;

comput: clockNo: 4, synchro: sync_comput none to: Comput:1;

filterOut: clockNo: 5, synchro: sync_filter bool:true,

clockNo: 6, synchro: sync_filter bool:false to: Filter:1;

Listing 5. Explicit declaration of clock numbers and links between clocks and synchro-
nization triggers.

6 SPECIFICATION OF PROPERTIES AND CONTEXTS USING CDL

In order to check the requirements expressed for a real-time system model, it is necessary
to specify them as formal properties that can be interpreted by the targeted model checker.
Additionally, to validate the requirements, the environment in which the system is aimed
to evolve may need to be described. In our approach, we use the CDL language (1) to
express the properties of the system model as observer automata, and (2) to specify the
interaction between the environment and the system model. In doing so, we are able to
achieve two complementary objectives: one to verify that the implementation of CCSL
constraints is correct, the other to ensure that the functional parts of the circuit (Sensor1,
Sensor2, Acq1, Acq2, Comput, Filter) are properly implemented.

In this Section, we show how CDL properties are expressed for CCSL, and how to
specify the interaction between the system model and its environment using contexts.

7 The complete code of the case study can be found on the site http://www.obpcdl.org.

Transformation of Timed UML MARTE for Verification 1019

6.1 Properties associated with CCSL constraints

Here we illustrate the specifications of some properties associated with CCSL constraints
included in our system model. The goal is to prove the correct FIACRE implementation
of the Scheduler and constraint automata.

Alternance properties:

To verify the alternation requirements Req1a and Req1b described in Section 4, we declare
the CDL events evt write1, evt read1, evt write2 and evt read2 (Fig. 10).

event evt_write1 is {sync sync_pw1 from {Scheduler}1 to {Sensor}1}

event evt_write2 is {sync sync_pw2 from {Scheduler}1 to {Sensor}2}

event evt_read1 is {sync sync_pr1 from {Scheduler}1 to {Acq}1}

event evt_read2 is {sync sync_pr2 from {Scheduler}1 to {Acq}2}

Listing 7. Declaration of CDL events.

With these events, we specify two properties P1a and P1b: P1a (resp. P1b) satisfies the
alternating synchronization write1 and read1 (resp. write2 and read2). The CDL code
of properties P1a and P1b is as follows (Listing 8):

property P1a is {

start -- / / evt_write1 / -> Sw; // writing into M1

Sw -- / / evt_read1 / -> start; // reading

//----- errors ------

start -- / / evt_read1 / -> reject;

Sw -- / / evt_write1 / -> reject

}

property P1b is {

start -- / / evt_write2 / -> Sw; // writing into M2

Sw -- / / evt_read2 / -> start; // reading

//----- errors ------

start -- / / evt_read2 / -> reject;

Sw -- / / evt_write2 / -> reject

}

Listing 8. Declaration of CDL properties P1a and P1b.

Both properties correspond to observers, as illustrated in Fig. 10. The initial state of
the observer P1a (resp. P1b) is the Start state and has an error state (Reject). Each
transition of the observer is triggered by the occurrence of an event evt write1 or evt read1
(resp. evt write2 or evt read2).

The CDL language also allows the specification of predicates that can be verified
during the exploration of the model. For example, if we want to check that clocks, in an
instant, write1 and read1 (resp. write2 and read2) do not ”tick” at the same instant, we
first define the following predicates:

1020 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

Fig. 10. Observer automata corresponding to properties P1a and P1b.

predicate enable_tick_pw1_true is

{{C}1:tab_Clocks [0].enable_tick = true}

predicate enable_tick_pr1_true is

{{C}1:tab_Clocks [1].enable_tick = true}

predicate enable_tick_rw1_together is

{enable_tick_pw1_true and enable_tick_pr1_true}

predicate enable_tick_pw2_true is

{{C}1:tab_Clocks [2].enable_tick = true}

predicate enable_tick_pr2_true is

{{C}1:tab_Clocks [3].enable_tick = true}

predicate enable_tick_rw2_together is

{enable_tick_pw2_true and enable_tick_pr2_true}

Listing 9. Declaration of CDL predicates.

We then declare the following invariants, using the assert operator8:

assert not act_tick_rw1_together

assert not act_tick_rw2_together

Listing 10. Declaration of CDL invariants.

During the exploration of the model, the OBP tool checks that the invariants are not
violated.

Precedence properties:

In a similar way, we can specify observers to verify properties of the requirements Req2a
and Req2b by declaring the event evt comput:

event evt_comput is {sync sync_comput from {Scheduler}1 to {Comput}1}

The CDL code of their corresponding properties P2a and P2b is as follows (Listing
11):

8 See detailed syntax of the CDL language available at http://www.obpcdl.org.

Transformation of Timed UML MARTE for Verification 1021

property P2a is {

start -- / / evt_read1 / -> Sr;

Sr -- / / evt_comput / -> start;

//------- error --------

start -- / / evt_comput / -> reject;

Sr -- / / evt_read1 / -> reject

}

property P2b is {

start -- / / evt_read2 / -> Sr;

Sr -- / / evt_comput / -> start;

//------- error --------

start -- / / evt_comput / -> reject;

Sr -- / / evt_read2 / -> reject

}

Listing 11. Declaration of CDL properties P2a and P2b.

Fig. 11. Observer automata corresponding to properties P2a and P2b.

Filtering property:

The CDL predicates can also facilitate the writing of more complex observers when they
refer to a large number of events. For example, the requirement Req3 associated with
the generation of data by Comput and the filtering constraint is expressed by the CCSL
term: filterOut = comput filteredBy (001)w. During the exploration, we need to verify
that the sequence of data generated from Filter is the sequence generated by Comput
with a sampling of every third value. In the current version of the model, the filter word
(001) is stored in an array variable tabF ilter of the constraint process FilteredBy. The
(i modulo 3)th datum of the sequence generated by Comput will be copied in the sequence
derived from Filter if the value tabF ilter[i modulo 3] is equal to 1. Otherwise, it is not
copied into the sequence of data supplied to the environment. To verify this constraint,
we therefore declare the following predicates (for x ∈ {0, 1, 2}):

predicate bitx_true is {{FilteredBy}1:tabFilter[x] = 1}

predicate bitx_false is {{FilteredBy}1:tabFilter[x] = 0}

1022 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

The transitions of an observer can be decorated with one of the predicates together
with the events evt comput, evt filterTrue and evt filterFalse which trigger the transi-
tions; they are declared as follows:

event evt_filterTrue is

{sync filter (true) from {Scheduler}1 to {Filter}1}

event evt_filterFalse is

{sync filter (false) from {Scheduler}1 to {Filter}1}

Fig. 12 illustrates the observer encoding property P3 for requirement Req3 and refer-
encing the above predicates and events.

Fig. 12. Observer automaton corresponding to property P3 for requirement Req3.

A range of properties can be further specified on the behavior of our model. For example,
the Req4 requirement, expressed in Section 4, can be expressed by an observer automaton
using predicates and appropriate events.

6.2 CDL Context specification for case study

The core of the CDL language is based on the concept of context, which has an acyclic
behavior communicating asynchronously with the system. The environment is specified
through a number of such contexts. To illustrate CDL scenarios, we suppose that two
devices Dev1, Dev2 each emit 3 values. Then we describe these interactions with CDL by
(event) as follows:

event evt_send_data1_sensor1 is {send DATA1 to {Sensor}1};

event evt_send_data2_sensor1 is {send DATA2 to {Sensor}1};

event evt_send_data3_sensor1 is {send DATA3 to {Sensor}1};

event evt_send_data1_sensor2 is {send DATA1 to {Sensor}2};

Transformation of Timed UML MARTE for Verification 1023

event evt_send_data2_sensor2 is {send DATA2 to {Sensor}2};

event evt_send_data3_sensor2 is {send DATA3 to {Sensor}2};

Listing 13. Declaration of CDL events for scenarios.

These events allow the behavior of devices Dev1, Dev2 to be specified with activities as
follows:

activity Dev1 is

{

event evt_send_data1_sensor1;

event evt_send_data2_sensor1;

event evt_send_data3_sensor1

}

activity Dev2 is

{

event evt_send_data1_sensor2;

event evt_send_data2_sensor2;

event evt_send_data3_sensor2

}

Listing 14. Declaration of CDL activities Dev1 and Dev2.

The behavior of DevOut that receives three values of the Filter process is specified as
follows:

event evt_recv_dataOut is {receive ANY from {Filter}1 to {env}1}

activity DevOut is { loop 3 {event evt_recv_dataOut} }

Listing 15. Declaration of CDL activity DevOut.

The context is finally described as follows:

cdl cdl_2dev is

{

properties P1a, P1b, P2a, P2b, pty_FilteredBy

assert not act_tick_rw1_together;

assert not act_tick_rw2_together

main is { Dev1 || Dev2 || DevOut }

}

Listing 16. Declaration of CDL context cdl 2dev.

cdl 2dev specifies that the environment is composed of 3 devices Dev1, Dev2 and DevOut.
During the exploration by OBP , the properties P1a, P1b, P2a, P2b, pty FilteredBy,
not act tick rw1 together and not act tick rw2 together will be checked.

1024 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

7 EXPERIMENTS AND DISCUSSION

To conduct the experiments for verifying properties of our case study, we use the OBP tool
which has been developed in our group. The system model and the CDL specifications
that we defined in the previous Section are fed to the OBP tool that generates a Labeled
Transition System (LTS). It is a state-transition graph that represents all the behaviors of
the model, given input data representing the environment in which the model is intended
to evolve. On this LTS, the verification of the properties is carried out by applying a
reachability analysis of the reject/success states of the observers.

OBP is structured in three modules. The front end OBP imports FIACRE models
corresponding to a translation of UML MARTE models including CCSL specifications. In
addition, it imports CDL programs which describe the properties and context scenarios if
required. OBP Explorer explores the model, and after each transition model run, it hands
over to the Observation Engine. It captures the occurrences of events and evaluates the
value of predicates and the status of all involved observers, at each step of the running
model. A verification of all invariants and reachability analysis of error state observers is
thus conducted.

At the end of exploration, a report is generated by OBP, revealing the list of properties
evaluated to true or false. In addition, OBP provides counter examples when reaching a
state of reject or when the invariant has been violated.

These indications may refer the user to the scenario having the defeated properties.

7.1 Result verification using the OBP tool

With CDL, we specified observers and invariants to express and verify a range of properties
corresponding to requirements (Req1a to Req4) as expressed in Section 4. In addition,
we specified CDL scenario diagrams as shown in Section 6.2. From these diagrams, OBP
generates a acyclic graph (called context graph) that represents all the possible interactions
between the model and the environment. To verify properties, OBP composes the Circuit
model with the context graph. Each property referenced in the CDL is checked on the
result of this composition.

Table 2 shows the result of the OBP explorations. For example, we show the results
if we consider three devices and 16 values issued by each device. It shows the number
of LTS configurations and transitions that are generated during exploration by OBP.
For this execution, we vary the fifo size shared between the environment and the Sensor
components9. For example, for the case where the size of fifo is equal to 1, the number of
explored configurations is then 744 592 and the number of transitions is 3 295 261.

With 16 values and a fifo size of 3, we notice a state explosion because of the explored
configurations number and the limited memory of our computer. In other experiments,
if we increase the number of devices (> 3), we notice an explosion in the number of
configurations and transitions. In this case, the analysis of the properties cannot be
brought to completion.

9 All tests are run with a machine such as Windows 32-bit - 10 GB RAM with OBP
vers.1.4.5.

Transformation of Timed UML MARTE for Verification 1025

Table 2. Complexity with 3 devices and 16 values received from the environment.

Fifo Number of Number of
size configurations transitions

1 744 592 3 295 261
2 3 328 269 17 797 040
3 Explosion Explosion

7.2 Handling the complexity with automatic splitting

The principal challenges regarding software verification of real-time systems deal with
devising solutions that scale up to the increasing complexity of these systems. Actually,
resources to verify these systems are limited, both in terms of time and memory size. We
treat in this section how our approach attempts to take into account the larger models
corresponding to the sizes of industrial models.

The context-aware Verification (CaV) has been proposed [44, 45, 46] and offers a solu-
tion for addressing some of these issues. With CaV, independent contexts are exploited by
the verification tools by using new algorithms for fighting the state space explosion prob-
lem. In this section, we present a context driven reachability algorithm for automatically
partitioning contexts [44, 45].

OBP integrates a powerful context-guided state-space reduction technique which relies
on the automated recursive partitioning (splitting) of a given context in independent sub-
contexts [12]. This technique is systematically applied by OBP when a given reachability
analysis fails due to lack of memory resources to store the state-space.

The idea is to automatically split each identified context into a set of k smaller sub-
contexts contexti. After splitting, each sub-contexts contexti, is composed with the model
for exploration and the properties associated with contexti are checked on the resulting
global system. If the exploration fails with a contexti, it is automatically and recursively
partitioned into a set of sub-contexts. Actually, we transform the global verification prob-
lem into k smaller verification sub problems. In our approach, the complete context model
can be split into pieces that have to be composed separately with the system model (see
the details in [12]). This technique allows models with a greater number of ranged states
to be explored.

For example, Table 3 shows results in the case of three channels with a transmission
of 16 different values. Without context splitting, the exploration does not end. Then
applying the partitioning of contexts, we obtain the following results: The behavior of the
environment is partitioned into four sub-contexts. The number of explored configurations
(cumulative) is then 27 564 280 and 159 993 196 transitions.

These results show us that we can contain the combinatorial explosion with this spe-
cific technique of model exploration with splitting. OBP tool can provide an assessment
of the validity of the property, even with a machine having a limited memory size (10
GB). If the model has a number of behaviors compatible with an exhaustive search, the
verification results can be obtained without using the partitioning technique implemented
in OBP. If the circuit is connected with an interacting environment, partitioning may be

1026 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

Table 3. Complexity with 3 devices and 16 values received from the environment with
Splitting.

Splitting Fifo number of number of number of
size configurations transitions sub-contexts

yes 3 27 564 280 159 993 196 4

used. However, this is not always the case if the circuit has a large number of behaviors
that do not interact with an environment. In this case, the method cannot be applied.
Therefore it is necessary to have a machine with a larger memory, or to focus on parts of
the model.

Table 4 shows exploration results in another case: 6 devices, fifo size equal to 3 and 3
values received from the devices. Without splitting, there is a state explosion because of
the limited memory of our computer. With splitting and 7 sub-contexts, the checking is
possible.

Table 4. Complexity with 6 devices, fifo size equal to 3, and 3 values received from the
environment.

Splitting LTS configurations LTS transitions sub-contexts

no Explosion - -

yes 77 225 206 607 639 474 7

We will not go into more detail here as this has already been published [12] [46].
The necessity of clear methodologies (e.g., the splitting process) has also to be identified,
since the context partitioning is still not trivial, i.e., it requires the formalization of the
context of the subset of functions under study (out of scope of this paper). Therefore, an
associated methodology must be defined to help users for modeling contexts.

7.3 Discussion

Now, the question is: Is the proof still relevant (applicable) to a number greater than
16 values ? In the above part we argue that the correctness of the properties is always
verified for all natural numbers sent from the given devices. To demonstrate the correctness
of the generated FIACRE model, we take the following reasoning: The behavior of the
FIACRE processes does not depend on the acquired input values by Sensor processes. To
achieve this goal, we introduce a stand alone code version in order to point out that the
behavior of the circuit model involved is not exchangeable whatever the values sent from
the environment. We transform our model by integrating two actors Dev1 and Dev2 in
the model as FIACRE processes. Both processes iterate on the sending of the same value.
The complexity of the exploration of the model is then 45 328 configuration and 168 664
transitions. So, we can check properties with observers and invariants described above.

Transformation of Timed UML MARTE for Verification 1027

If we increase the number of values to over 16, the complexity increases but the same
configurations will result. We show here that if the sent values are constants, and in infinite
time, the configuration of the exploration graph still finite. Moreover, the behavior of the
circuit is independent from the input data values. This proves that we can verify all the
expressed properties in this graph independently from the data values.

8 CONCLUSION

In this work, we have defined an automatic translation approach to generate FIACRE
programs from UML MARTE models enriched with CCSL constraints. This approach
allows the formal verification of the implementation of CCSL constraints and functional
requirements.

We carried out a verification technique of properties by model-checking using the
CDL language and the OBP tool. Functional as well as temporal properties can be easily
expressed in CDL as predicates and observers which are checked during the exhaustive
model exploration by OBP. We have shown that this language facilitates the expression of
properties. They can be expressed with a very fine granularity, referencing variables and
process states.

Our CDL language can be compared with the Property Specification Language (PSL) [32].
In future work, we aim to compare CDL expressiveness with PSL and the discussion in
[32] is very interesting on this topic. Additionally, we are currently working to facilitate
the interpretation of data provided by OBP and to display understandable data in the
user’s models, allowing ease of diagnosis.

We can take advantage of the CCSL automata encoding. These automata are reusable
inputs to apply the verification. Our translation approach can be an important step to-
wards the formal verification process of both MARTE models and CCSL specifications.
Once the translation of CCSL constraints into FIACRE is completed, the operation re-
quires only a single verification as it does not depend on the modeled application. Even
though the model may change, the FIACRE code is reusable as this translation principle
is independent of the application. We think that our approach contributes to clarifying its
role when addressing this domain by expressing temporal properties dedicated to CCSL
relation constraints.

REFERENCES

[1] C. André, “Syntax and semantics of the Clock Constraint Specification Language
CCSL,” Tech. Rep. 6925, INRIA, 2009.

[2] F. Mallet, C. André, and R. D. Simone, “CCSL: Specifying clock constraints
with UML/MARTE,” in ISSE, vol. 4, pp. 309–314, 2008.

[3] OMG, “Uml profile for marte, v1.1,” in Object Managment Group, (Docu-
ment number: PTC/10-08-32), August 2010.

[4] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent systems in
cesar,” in Proceedings of the 5th Colloquium on International Symposium on Pro-
gramming, (London, UK), pp. 337–351, Springer-Verlag, 1982.

1028 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

[5] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of finite-state concur-
rent systems using temporal logic specifications,” ACM Trans. Program. Lang. Syst.,
vol. 8, no. 2, pp. 244–263, 1986.

[6] G. Holzmann, “The model checker SPIN,” Software Engineering, vol. 23, no. 5,
pp. 279–295, 1997.

[7] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” International
Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152,
1997.

[8] B. Berthomieu, P.-O. Ribet, and F. Verdanat, “The tool TINA - Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets,” International Journal of
Production Research, vol. 42, pp. 2741–2756, July 2004.

[9] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu, “Cadp: A protocol validation and verification toolbox,” in CAV
’96: Proceedings of the 8th International Conference on Computer Aided Verification,
(London, UK), pp. 437–440, Springer-Verlag, 1996.

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model checker,” Int. J. on Software Tools for Technology Transfer, vol. 2,
no. 4, pp. 410–425, 2000.

[11] N. Menad and P. Dhaussy, “A transformation approach for multiform time require-
ments,” in 11th International Conference on Software Engineering and Formal Meth-
ods (SEFM’13), Madrid, Spain, vol. 8137, pp. 16–30, Lecture Notes in Computer
Science, September 2013.

[12] P. Dhaussy, F. Boniol, J.-C. Roger, and L. Leroux, “Improving model checking with
context modelling,” Advances in Software Engineering, vol. ID 547157, p. 13 pages,
2012.

[13] P. Farail, P. Gaufillet, F. Peres, J.-P. Bodeveix, M. Filali, B. Berthomieu, S. Rodrigo,
F. Vernadat, H. Garavel, and F. Lang, “FIACRE: an intermediate language for model
verification in the TOPCASED environment,” in European Congress on Embedded
Real-Time Software (ERTS), (Toulouse), SEE, january 2008.

[14] F. Jouault, C. Teodorov, J. Delatour, L. L. Roux, and P. Dhaussy, “Transformation
de modeles UML vers FIACRE, via les langages intermediaires tUML et ABCD,” in
Revue Genie Logiciel, no. 109, June 2014.

[15] M. P. Ning Ge and X. Crégut, “Time properties dedicated transforma-
tion from UML-MARTE activity to time transition system.,” pp. 37(4):1–
8, 2012.

[16] N. G. Marc Pantel and X. Cregut, “A framework dedicated to time properties verifi-
cation for UML-MARTE specifications.,” 2012.

[17] L. Ribeiro, O. M. dos Santos, F. L. Dotti, and L. Foss, “Correct trans-
formation: From object-based graph grammars to PROMELA,” Sci. Comput. Pro-
gram., vol. 77, no. 3, pp. 214–246, 2012.

[18] R. K. Poddar and P. Bhaduri, “Verification of giotto based embedded control sys-
tems,” Nord. J. Comput., vol. 13, no. 4, pp. 266–293, 2006.

[19] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine,
“Taxys = esterel + kronos – a tool for verifying real-time properties of embedded

Transformation of Timed UML MARTE for Verification 1029

systems, proceedings of the 40th ieee conference on decision and control,” 2001.

[20] A. G. R. Mauricio Gonçalves, Vieira Ferreira, “An approach to model-driven archi-
tecture applied to space real-time software.,” 2012.

[21] P.-F. Yves Sorel, Marie-Agnes, “From high-level modelling of time in MARTE to
real-time scheduling analysis.,” pp. 129–144, 2008.

[22] A. S. Alessandro Ciçmatti, Marco Roveri and S. Tonetta., “Formal-
izing requirements with object models and temporal constraints,”
pp. 10(2):147–160, 2011.

[23] D. Bosnacki and D. Dams, “Integrating real time into spin: A proto-
type implementation.,” in Formal Description Techniques and Protocol Specification,
Testing and Verification, FORTE XI / PSTV XVIII’98, IFIP TC6 WG6.1 Joint
International Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE XI) and Protocol Specification, Testing and
Verification (PSTV XVIII), pp. 3–6 November, 423–438. 1998, Paris, France.

[24] D. Bosnacki and D. Dams, “Discrete-time Promela and Spin,” in Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, 5th International Symposium,
FTRTFT’98, Lyngby, Denmark, September 14-18, 1998, Proceedings, pp. 307–310,
1998.

[25] F. Mallet, “Automatic generation of observers from MARTE/CCSL,” in RSP 2012 -
International Symposium on Rapid System Prototyping, (Tampere, Finlande), pp. 86–
92, IEEE, october 2012.

[26] J. Peters, R. Wille, and R. Drechsler, “Generating SystemC implementations for clock
constraints specified in UML/MARTE CCSL,” in 2014 19th International Conference
on Engineering of Complex Computer Systems, Tianjin, China, August 4-7, 2014,
pp. 116–125, 2014.

[27] H. Yu, J.-P. Talpin, L. Besnard, T. Gautier, H. Marchand, and P. L. Guernic, “Poly-
chronous controller synthesis from MARTE CCSL timing specifications,” in Mem-
ocode, 2011.

[28] B. Dutertre, Specification et preuves de systemes dynamiques. PhD thesis, 1992.

[29] C. André, “Verification of clock constraints: CCSL observers in Esterel,”
Tech. Rep. 7211, INRIA, 2010.

[30] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous observers and the verifica-
tion of reactive systems,” in Third Int. Conf. on Algebraic Methodology and Software
Technology, AMAST’93 (M. Nivat, C. Rattray, T. Rus, and G. Scollo, eds.), (Twente),
pp. 83–96, Workshops in Computing, Springer Verlag, June 1993.

[31] J. DeAntoni, F. Mallet, and C. André, “Timesquare: on the formal execution
of UML and DSL models,” in Tool session of the 4th Model driven development for
distributed real time systems, 2008.

[32] R. Gascon, F. Mallet, and J. Deantoni, “Logical time and temporal
logics: Comparing UML MARTE/CCSL and PSL,” Tech. Rep. ISBN: 978-0-7695-
4508-0, INRIA, 2012.

[33] IEEE, “IEEE Standard for property Specification Language (PSL),” Tech. Rep. 1850,
2005.

1030 N. Menad, P. Dhaussy, R. Mekki, Z. Drey

[34] L. Yin and F. Mallet, “Correct transformation from CCSL to PROMELA for verifi-
cation,” Tech. Rep. 7491, INRIA, 2011.

[35] J. Lilius and I. Paltor, “vuml: A tool for verifying UML models,” in ASE,
pp. 255–258, 1999.

[36] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, and S. Moldovan, “Ensuring UML
models consistency using the OCL environment,” Electr. Notes Theor. Comput. Sci.,
vol. 102, pp. 99–110, 2004.

[37] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based specification envi-
ronment for validating UML and OCL,” Sci. Comput. Program., vol. 69, no. 1-3,
pp. 27–34, 2007.

[38] Y. Romenska and F. Mallet, “Lazy parallel synchronous composition of infinite tran-
sition systems,” in ICTERI, pp. 130–145, 2013.

[39] J. Suryadevara, C. C. Seceleanu, F. Mallet, and P. Pettersson, “Verifying
MARTE/CCSL mode behaviors using UPPAAL,” in SEFM, pp. 1–15, 2013.

[40] P. Dhaussy and J.-C. Roger, “Cdl (context description language) : Syn-
tax and semantics,” tech. rep., ENSTA-Bretagne, 2011.

[41] F. Jouault and J. Delatour, “tUML : syntax and semantic,” tech. rep., ESEO,
2014.

[42] C. André, “Le temps dans le profil UML MARTE,” Tech. Rep. ISRN I3S/RR-2007-
19-FR, Laboratoire I3S, 2007.

[43] A. Benveniste and G. Berry, “The sysnchronous approach to reactive and real-time
systems,” Tech. Rep. RR-1445, INRIA, 1991.

[44] P. Dhaussy, P.-Y. Pillain, S. Creff, A. Raji, Y. L. Traon, and B. Baudry, “Evaluating
context descriptions and property definition patterns for software formal validation,”
in 12th IEEE/ACM conf. Model Driven Engineering Languages and Systems, Models
(B. S. Andy Schuerr, ed.), vol. 5795, pp. 438–452, Springer-Verlag, LNCS, 2009.

[45] P. Dhaussy, F. Boniol, and J.-C. Roger, “Reducing state explosion with context
modeling for model-checking,” in 13th IEEE International High Assurance Systems
Engineering Symposium, Hase, (Boca Raton, USA), 2011.

[46] L. L. Teodorov Ciprian and D. Philippe, “Context-aware verification of a cruise-
control system,” in h International Conference on Model and Data Engineering
(MEDI), (Larnaca, Cyprus), September 2014.

