Reducing State Explosion with Context Modeling for Model-Checking

Philippe Dhaussy, Jean-Charles Roger
LISyC ENSTA Bretagne
Brest France
Email: name.firstname @ ensta-bretagne.fr

Abstract—This paper deals with the problem of the usage
of formal techniques, based on model checking, where models
are large and formal verification techniques face the combina-
torial explosion issue. The goal of the approach is to express
and verify requirements relative to certain context situations.
The idea is to unroll the context into several scenarios and
successively compose each scenario with the system and verify
the resulting composition. We propose to specify the context
in which the behavior occurs using a language called CDL
(Context Description Language), based on activity and message
sequence diagrams. The properties to be verified are specified
with textual patterns and attached to specific regions in the
context. This article shows how this combinatorial explosion
could be reduced by specifying the environment of the system
to be validated. Our contribution is illustrated on an industrial
embedded system.

Keywords-model-checking; use cases; context;

I. INTRODUCTION

Reactive systems are becoming extremely complex with
the huge increase in high technologies. Despite technical
improvements, the increasing size of the systems makes
the introduction of a wide range of potential errors easier.
Among reactive systems, the asynchronous systems com-
municating by exchanging messages via buffer queues are
often characterized by a vast number of possible behaviors.
To cope with this difficulty, manufacturers of industrial
systems make significant efforts in testing and simulation
to successfully pass the certification process. Nevertheless
revealing errors and bugs in this huge number of behaviors
remains a very difficult activity. An alternative method is to
adopt formal methods, and to use exhaustive and automatic
verification tools such as model-checkers.

Model-checking algorithms can be used to verify require-
ments of a model formally and automatically. Several model
checkers as [Hol97], [LPY97], [BRVO04], have been devel-
oped to help the verification of concurrent asynchronous
systems. It is well known that an important issue that limits
the application of model checking techniques in industrial
software projects is the combinatorial explosion problem
[CES86], [HP94], [PKO06]. Because of the internal complex-
ity of developed software, model checking of requirements
over the system behavioral models could lead to an unman-
ageable state space.

Frédéric Boniol
ONERA/DTIM
Toulouse France
Email: boniol@onera.fr

The approach described in this article presents an ex-
ploratory work to provide solutions to the problems men-
tioned above. It is based on two joint ideas: first, to reduce
behaviors system to be validated during model-checking and
secondly, help the user to specify the formal properties to
check. For this, we propose to specify the behavior of the
entities that compose the system environment These entities
interact with the system. These behaviors are described by
use cases (scenarios) called here contexts. They describe
how the environment interacts with the system. Each context
corresponds to an operational phase identified as system
initialization, reconfiguration, graceful degradation, etc.. In
addition, each context is associated with a set of properties
to check. The aim is to guide the model-checker to focus
instead on exploring the global automaton but a restriction
of the latter relevant for verification of specific properties.

In this paper, we describe the formalism, such as DSL!
called CDL (Context Description Language). This language
serves to support our approach to reduce the state space.
We report a feedback on several case studies industrial field
of aeronautics, which was conducted in close collaboration
with engineers in the field.

This paper is organized as follows: Section II presents the
techniques to improve model checking by state reduction.
Section III presents the principles of our approach for
context aware formal verification. Section IV describes the
CDL language for contexts specification. Section V presents
our tool used for the experiments. In Section VI we give
the selected results of an industrial case study. Section VII
discusses our approach and presents future work.

II. RELATED WORKS

Several model checkers such as SPIN [Hol97], Uppaal
[LPY97], TINA [BRVO04], have been developed to help
the verification of concurrent asynchronous systems. For
example, the SPIN model-checker based on the formal lan-
guage PROMELA allows the verification of LTL properties
encoded in “never claim” formalism and further converted
into Buchi automata. Several techniques have been inves-
tigated in order to improve the performance of SPIN. For

Domain Specific Language

instance the state compression method or partial-order reduc-
tion contributed to the further alleviation of combinatorial
explosion [God95]. In [BHOS] the partial-order algorithm
based on a depth-first search (DFS) has been adapted to the
breadth first search (BFS) algorithm in the SPIN model-
checker to exploit interesting properties inherent to the
BES. Partial-order methods [Pel94] [Val91] [God95] aim at
eliminating equivalent sequences of transitions in the global
state space without modifying the falsity of the property
under verification. These methods, exploiting the symmetries
of the systems, seemed to be interesting and were integrated
into many verification tools (for instance SPIN).

Compositional (modular) specification and analysis tech-
niques have been researched for a long time and resulted
in, e.g., assume/guarantee reasoning or design-by-contract
techniques. A lot of work exists in applying these tech-
niques to model checking including, e.g. [CLM99], [FQO03],
[TDO3], [AHO1] These works deal with model checking/ana-
lyzing individual components (rather than whole systems) by
specifying, considering or even automatically determining
the interactions that a component has or could have with
its environment so that the analysis can be restricted to
these interactions. Design by contract proposes to verify a
system by verifying all its components one by one. Using a
specific composition operator preserving properties, it allows
assuming that the system is verified.

Our approach is different from compositional or modular
analysis. Context aware verification is not about verify-
ing component by component, With the “traditional model
checking”, contexts are often included in the system model.
We choose to explicit contexts separately from the model. It
is about using the knowledge of the environment of a whole
system (or model) to conduct a verification to the end. We
propose to formally specify the context behavior in a way
that allows a fully automatic divide-and-conquer algorithm.
However, our approach can used in conjunction with design
by contract process.

III. CONTEXT AWARE VERIFICATION

To illustrate the explosion problem, let us consider the ex-
ample in Figure 1. We are trying to verify some requirements
by model checking using the TINA-SELT model checker
[BRV04]. We present the results for a part of the S_CP
model. Then, we introduce our approach based on context
specifications.

A. An illustration

We present one part of an industrial case study: the soft-
ware part of an anti-aircraft system (S_C'P). This controller
controls the internal modes, the system physical devices
(sensors, actuators) and their actions in response to incoming
signals from the environment. The S_CP system interacts
with devices (Dev) that are considered to be actors included
in the S_C'P environment called here context.

PN

Dev ;

1
\ golnitDev |
NG S_CP —
/ ! login ; !
| S .
Dev , Initialization, : :] maxD_log

1 ackLog (id) Ly
" i

1 operate (op) |

>t

! ! maxD_oper
/ ! ackOper (role) !

e— 1y .

1

Dev, logout :

1 [
Figure 1. S_CP system: partial description during the initialization phase

The sequence diagrams of Figure 2 illustrate interactions
between context actors and the S_C'P system during an
initialization phase. This context describes the environment
we want to consider for the verification of the S_CP
controller. This context is composed of several actors Dev
running in parallel or in sequence. All these actors inter-
leave their behavior. After the initializing phase, all actors
Dev; (i € [1...n]) wait for orders goInitDev from the
system. Then, actors Dewv; send login; and receive either
ackLog(id) (Figure 2.a and 2.c) or nackLog(err) (Figure
2.b) as responses from the system. The logged devices can
send operate(op) (Figure 2.a and 2.c) and receive either
ackOper(role) (Figure 2.a) or nackOper(err) (Figure 2.c).
The messages goInitDev can be received in parallel in any
order. However, the delay between messages login; and
ackLog(id) (Figure 1) is constrained by maxD_log. The
delay between messages operate(op) and ackOper(role)
(Figure 1) is constrained by maxzD_oper. And finally all
Dev; send logout; to end the interaction with the S_CP
controller.

Dev, | [s_cP]| [Dev, | [s_cp| [pev,] [s-cp]|

1 golnitDev 1 golnitDev golnitDev
K

1 login , 1 login , login 3
>

I ackLog(id) 1 nackLog (err)
&

| 1

r ~

1 !

T T

I I ackLog (id)
k €

1 !

1
1
1
1
1
1
1
| logout , 1
1
1
1
1
1
1

| operate (op) | operate (op)

—_—l _i
! ackOper(role) ! : ! nackOper (err) !
e e 1
1 1 1 1 1
1 logout , 1 1 1 logout 5 1
1 1 1 T |
1 1 1 1 1

(a) (b) (c)
Figure 2. An example of S_C'P context scenario with 3 devices.

B. Model-checking results

To verify requirements on the system model?, we used
the TINA-SELT model checker [BRV04]. To do so, the
system model is translated into FIACRE format [FGPT08]
to explore all the S_CP model behaviors by simulation,
S_CP interacting with its environment (devices). Model
exploration generates a labeled transition system (LTS)
which represents all the behaviors of the controller in its
environment. Table I shows® the exploration time and the
amount of configurations and transitions in the LTS for
different complexities (n indicates the number of considered
actors). Over four devices, we see a state explosion because
of the limited memory of our computer.

Table T
TABLE HIGHLIGHTING THE VERIFICATION COMPLEXITY FOR AN
INDUSTRIAL CASE STUDY.

N.of Exploration time N.of LTS N.of LTS
devices (sec) configurations | transitions
1 10 16 766 82 541
2 25 66 137 320 388
3 91 269 977 1297 987
4 118 939 689 4 506 637

5 Explosion - -

C. Combinatorial explosion reduction

When checking the properties of a model, a model-
checker explores all the model behaviors and checks whether
the properties are true or not. Most of the time, as shown
by previous results, the number of reachable configurations
is too large to be contained in memory (Figure 3.a). We
propose to restrict model behavior by composing it with an
environment that interacts with the model. The environment
enables a subset of the behavior of the model. This technics
can reduce the complexity of the exploration by limiting the
scope of the verification to precise system behaviors related
to some specific environmental conditions.

This reduction is computed in two stages: Contexts are
first identified by the user (context;, i € [l..n] in Figure
3.b). They correspond to patterns of use of the component
being modeled. The aim is to circumvent the combinatorial
explosion by restricting the behavior system with an environ-
ment describing different configurations in which one wishes
check the requirements. Then each context is automatically
partitioned into a set of sub-contexts. Here we precisely
define these two aspects implemented in our approach.

The context identification focuses on a subset of behavior
and a subset of properties. In the context of reactive embed-
ded systems, the environment of each component of a system
is often well known. It is therefore more effective to identify
this environment than trying reduce the configuration space
of the model system to explore.

2Here by system or system model, we refer to the model to be validated.
3Tests were executed on Linux 32 bits - 3 Go RAM computer, with
TINA vers.2.9.8 and Frac parser vers.1.4.2.

Properties
Syst ﬁ j_‘ Model ,,

(a)| Model Checker
(+ context)

State space

....... > State space,

G,
e ey
oo,]—)
—....
(b) X < Meodel

model Context , DL—’ Checker =

(

Properlles 1

(oo, J—

> - s (o)
| [eomtextn |=— -

Figure 3. Traditional model checking (a) vs. context-aware model checking

(b)

In this approach, we suppose that the designer is able
to identify all possible interactions between the system
and its environment. We also consider that each context
expressed initially is finite, (i.e., there is a non infinite loop
in the context). We justify this strong hypothesis, particularly
in the field of embedded systems, by the fact that the
designer of a software component needs to know precisely
and completely the perimeter (constraints, conditions) of its
system for properly developing it. It would be necessary to
study formally the validity of this working hypothesis based
on the targeted applications. In this paper, we do not address
this aspect that gives rise to a methodological work to be
undertaken.

Moreover, properties are often related to specific use cases
(such as initialization, reconfiguration, degraded modes).
Therefore, it is not necessary for a given property to take
into account all possible behaviors of the environment, but
only the subpart concerned by the verification. The context
description thus allows a first limitation of the explored
space search, and hence a first reduction in the combinatorial
explosion.

The second idea is to automatically split each identified
context into a set of smaller sub-contexts (Figure 4). The
following verification process is then equivalent: (i) compose
the context and the system, and then verify the resulting
global system, (ii) partition the environment into k sub-
contexts (scenarios), and successively deal each scenario
with the model and check the properties on the outcome
of each composition. Actually, we transform the global ver-
ification problem into k smaller verification sub problems. In
our approach, the complete context model can be split into
pieces that have to be composed separately with the system
model. To reach that goal, we implemented a recursive
splitting algorithm in our OBP tool. Figure 4) illustrates the
function explore_me() for exploration of a model, with
a context and model-checking of a set of properties pty.
The context is represented by acyclic graph. This graph

is composed with the model for exploration. In case of
explosion, this context is automatically split into several
parts (taking into account a parameter d for the depth in
the graph for splitting) until the exploration succeeds.

Unfolding,
Interleaving Splitting ; :JE
Context ;

Global context ;

explore_mc (model, context ;, pty, d) Set of K sub-contexts
{ 1l exploration ----
Its = explore (model, context ;); l l l 1
Hemen modiel-checking -—-- ';":dbzl
if Its 1= error modei_check (lts, pty); Validated
else : K explorations
{ set_c = split (context, d); / splitting (Flacre) and verifications
for k : 0 to sizeof set_c =
explore_mc (model, set_c,, pty, d); L %
} e

}

Figure 4. Context splitting and verification for each partition (sub-context).

In summary, the context aware method provides three
reduction axes: the context behavior is constrained, the
properties are focused and the state space is split into
pieces. The reduction in the model behavior is particularly
interesting while dealing with complex embedded systems,
such as in avionic systems, since it is relevant to check
properties over specific system modes (or use cases) which
is less complex because we are dealing with a subset of
the system automata. Unfortunately, only few existing ap-
proaches propose operational ways to precisely capture these
contexts in order to reduce formal verification complexity
and thus improve the scalability of existing model checking
approaches. The necessity of a clear methodology has also
to be identified, since the context partitioning is not trivial,
i.e., it requires the formalization of the context of the subset
of functions under study. An associated methodology must
be defined to help users for modeling contexts (out of scope
of this paper).

IV. CDL LANGUAGE FOR CONTEXT AND PROPERTY
SPECIFICATION

We propose a formal tool-supported framework that com-
bines context description and model transformations to assist
in the definition of requirements and of the environmental
conditions in which they should be satisfied. Thus, we
proposed [DPCT09] a context-aware verification process
that makes use of the CDL language. CDL was proposed to
fill the gap between user models and formal models required
to perform formal verifications. CDL is a Domain Specific
Language presented either in the form of UML like graphical
diagrams (a subset of activity and sequence diagrams) or in
a textual form to capture environment interactions.

A. Context hierarchical description

CDL is based on Use Case Charts of [Whi06] using
activity and sequence diagrams. We extended this language
to allow several entities (actors) to be described in a context

(Figure 5). These entities run in parallel. A CDL* model
describes, on the one hand, the context using activity and
sequence diagrams and, on the other hand, the properties
to be checked using property patterns. Figure 5 illustrates
a CDL model for the partial use cases of Figures 1 and 2.
Initial use cases and sequence diagrams are transformed and
completed to create the context model. All context scenar-
ios are represented, combined with parallel and alternative
operators, in terms of CDL.

A diagrammatical and textual concrete syntax is created
for the context description and a textual syntax for the prop-
erty expression. CDL is hierarchically constructed in three
levels: Level-1 is a set of use case diagrams which describes
hierarchical activity diagrams. Either alternative between
several executions (alternative/merge) or a parallelization of
several executions (fork/join) is available. Level-2 is a set of
scenario diagrams organized in alternatives. Each scenario
is fully described at Level-3 by sequence diagrams. These
diagrams are composed of lifelines, some for the context
actors and others for processes composing the system model.
Counters limit the iterations of diagram executions. This
ensures the generation of finite context automata.

From a semantic point of view, we can consider that
the model is structured in a set of sequence diagrams
(MSCs) connected together with three operators: sequence
(seq), parallel (par) and alternative (alt). The interleaving of
context actors described by a set of MSCs generates a graph
representing all executions of the actors of the environment.
This graph is then partitioned in such a way as to generate
a set of subgraphs corresponding to the sub-contexts as
mentioned in III-C.

Levei 2

golnitDev

Level 1

Dev, S_CP
‘ nackLog (err) ‘

{ESCope> <<scope>>’

Dev, S_CP

pP3 operate (op) ‘ 1
1

Dev S _CP
S_CP :
kO
ackOper (role) nackOper (err)
1

Figure 5. S_CP case study: partial representation of the context

=

The originality of CDL is its ability to link each expressed
property to a context diagram, i.e. a limited scope of the sys-

4For the detailed syntax, see [DR11] available (currently in french) on
www.obpcdl.org.

tem behavior. The properties can be specified with property
pattern definitions that we do not describe here but can be
found in [DPCT09] and [DR11]. Properties can be linked
to the context description at Level 1 or Level 2 (such as P1
and P3 in Figure 5) by the stereotyped links property/scope.
A property can have several scopes and several properties
can refer to a single diagram. CDL is designed so that
formal artifacts required by existing model checkers could be
automatically generated from it. This generation is currently
implemented in our prototype tool called OBP (Observer
Based Prover) described briefly in Section V. We will now
present the CDL formal syntax and semantics.

B. Formal Syntax

A CDL model (also called “context”) is a finite general-
ized MSC C, following the formal grammar:

c =
M =

M | Cy;Cy | Cr+Cy | Ch]|Co
0|asM |a?s M

In other words, a context is either (1) a single MSC M
composed as a sequence of event emissions a! and event
receptions a? terminated by the empty MSC (0) which does
nothing, or (2) a sequential composition (seq denoted ;) of
two contexts (C1; Cs), or (3) a non deterministic choice (alt
denoted +) between two contexts (Cy 4 C), or (4) a parallel
composition (par denoted ||) between two contexts (C1]|C2).

For instance, let us consider the context Figure 5 graphi-
cally described. This context describes the environment we
want to consider for the validation of the system model.
We consider that the environment is composed of 3 actors
Devy, Devs and Devs. All these actors run in parallel and
interleave their behavior. The model can be formalized, with
the above textual grammar as follows>.

C = Dev; || Devs || Devs

Dev; = Log;; (Oper + (nackLog (err)?;0))

Log; = (goInitDev ? ; login; !)

Oper = (ackLog (id) ? ; operate (op) ! (Ack;
+ (nackOper (err) 7; ... ;0)))

Ack; = (ackOper (role) 7 ; logout; ! ; ...; 0)

Devy, Devy, Devs = Dev; withi = 1, 2, 3

C. Semantics

The semantics is based on the semantics of the scenarios
and expressed by construction rules of sets of traces built
using seq, alt and par operators. A scenario trace is an
ordered events sequence which describes a history of the
interactions between the context and the model.

To describe the formal semantics, let us define a function
wait(C') associating the context C' with the set of events
awaited in its initial state:

51n this paper, as an illustration, we consider that the behavior of actors
extends, noted by the ”...”

S
Q
S
[lo
3
=
0
S
o

Wait (C1]|Cs) < Wait (C1) U Wait (Cs)

We consider that a context is a process communicating in
an asynchronous way with the system, memorizing its input
events (from the system) in a buffer. The semantics of CDL

is defined by the relation (C,B) % (C’,B’) to express

that the context C' with the buffer B “produces” a (which
can be a sending or a receiving signal, or the null, signal
if C does not evolve) and then becomes the new context
C’ with the new buffer B’. This relation is defined by the 8
rules in Figure 6 (In these rules, a represents an event which
is different from null,):

o The prefl rule (without any preconditions) specifies that
an MSC beginning with a sending event a! emits this
event and continues with the remaining MSC.

o The pref2 rule expresses that if an MSC begins by a
reception a? and faces an input buffer containing this
event at the head of the buffer, the MSC consumes this
event and continues with the remaining MSC.

o The seql rule establishes that a sequence of contexts
C1; C5 behaves as C7 until it has terminated. The seg2
rule says that if the first context C; terminates (i.e.,
becomes 0), then the sequence becomes Cs.

e The parl and par2 rules say that the semantics of
the parallel operation is based on an asynchronous
interleaving semantics.

o The alt rule expresses that the alternative context C +
(5 behaves either as Cp or as Cs.

o Finally, the discard rule says that if an event a at the
head of the input buffer is not expected, then this event
is lost (removed from the head of the buffer).

D. Context and system composition

We can now formally define the “closure” composition
< (C,B1) | (s,8,B2) > of a system S in a state s € ¥
(X is the set of system states), with its input buffer Bs,
with its context C, with its input buffer B; (note that each
component, system and context, has its own buffer). The
evolution of S closed by C' is given by two relations: the
relation (1):

<(CB|(5,8.B) > B < (C'.BYI(s 8, By) > (1)

to express that S in the state s evolves to state s’ receiving
event a, potentially empty (null.), (sent by the context)
and producing the sequence of events o, potentially empty
(null,) (to the context). and the relation (2):

[prefl]

(al;M,B) 4 (M, B)

[pref2]
(a?; M,a.B) 4L (M,B)
Cl 40
(CL.B) & (CLB)
(C1.C, B) B (C}.Cs, B')
(C1,B) % (0,B) [seq2]
(C1.Cs, B) & (Cu, B')
Cl#0
(C1,B) & (C1,B) [parl]
(C1l|C2, B) & (C1]|C2, B')
(C2||C1, B) 4 (C2||C1, B')

(C1,B) & (0,B) [par2]
(C1]|C2, B) & (C2,B')
(C2lCy,B) & (C2,B')

(C1,B) % (C1,B) [alt]
(Ci +C2,B) % (C1,B)
(C2+C1,B) % (C1,B)

a & wait(C) [discard¢]

(C,a.B) sy (C, B)

Figure 6. Context semantics

<(C,B))|(5,8,B2) > L < (C,B)|(s,8,B}) > (2)

to express that S in state s evolves to the state s’ by
progressing time ¢, and producing the sequence of events
o potentially empty (null,) (to the context). Note that in the
case of timed evolution, only the system evolves, the context
is not timed. The semantics of this composition is defined
by the four following rules (Figure 7):

e rule ¢pl: If S can produce o, then S evolves and o is
put at the end of the buffer of C.

o rule cp2: If C' can emit a, C' evolves and a is queued
in the buffer of S.

e rule ¢p3: If C' can consume a, then it evolves whereas
S remains the same.

o rule cp4:If the time can progress in S, then the time
progress in the composition S and C.

Note that the “closure” composition between a system and
its context can be compared with an asynchronous parallel
composition: the behavior of C' and of S are interleaved,
and they communicate through asynchronous buffers. We

will denote < (C, B)|(s,S,B’) > /~

system and its context cannot evolve (the system is blocked

to express that the

[cpl]
(5,8,B2) & (5,S,B3)
< (C,B)|(s,8,Bz) > llley < (C,By.0)|(s,S,Bb) >
[cp2]

(C,B1) 4 (C',B))
e < (C,

< (C, Bl)‘(S,S,Bz) > Bi)|(s,S,B2.a) >

[cp3]
(€, B1) 45 (¢, Bl>

- e <

< (C,Bl) S, S Bz S S B2)

[cp4]
(s,8,B2) & (5,8, B3)
<(C,B1)|(5,8,B2) > & < (C,By)l(s

CDL context and system composition semantics

'S, B3) >

Figure 7.

or the context terminated). We then define the set of traces
(called runs) of the system closed by its context from a state

s, by:
[C] S)] o {a1-01- . Q- Oy - ende |
a1

(s,
< (C,nully) | (s,nully) > %
(

1

< Cl,Bl)l(Sl,S,Bi)> Z_—z) Z_-:)

<(Cn,Bn) | (s0,8,B,) > /> }

[C|(s,8)] is the set runs of S closed by C' from the state
s. Note that a context is built as sequential or parallel
compositions of finite loop-free MSCs. Consequently the
runs of a system model closed by a CDL context are
necessarily finite. We then extend each run of [C|(s,S)]
by a specific terminal event endc allowing the observer to
catch the ending of a scenario and liveness properties to be
checked.

V. OBP TOOLSET

To carry out our experiments, we used our OBP® tool
(Figure 8). OBP is an implementation of a CDL language
translation in terms of formal languages, i.e. currently FI-
ACRE [FGP108]. As depicted in Figure 8, OBP leverages
existing academic model checkers such as TINA [BRV04]
or simulators such as our explorer called OBP Explorer.
From CDL context diagrams, the OBP tool generates a set of
context graphs which represent the sets of the environment
runs. Currently, each generated graph is transformed into a
FIACRE automaton. Each graph represents a set of possible
interactions between model and context. To validate the
model under study, it is necessary to compose each graph
with the model. Each property on each graph must be veri-
fied. To do so, OBP generates either an observer automaton

%0BP; (OBP for TINA) is available on www.obpcdl.org

[HLRO3] from each property for OBP Explorer, or SELT
logic formula [BRV04] for the TINA model checker. With
OBP Explorer, the accessibility analysis is carried out on the
result of the composition between a graph, a set of observers
and the system model as described in [DPCT09]. If for
a given context, we face state explosion, the accessibility
analysis or model-checking is not possible. In this case, the
context is split into a subset of contexts and the composition
is executed again as mentioned in III-C.

To import models with standard format such as UML,
SysML, AADL, SDL, we necessarily need to implement
adequate translators such as those studied in TopCased’ or
Omega® projects to generate FIACRE programs.

\ Model to be
N validated
(SysML,
AADL, SDL)
_m A
TINA
model
checker
or
OBP
Explorer

“Context &
| requirements
[(informal)

Figure 8. CDL model transformation with OBP

VI. EXPERIMENTS AND RESULTS

Our approach was applied to several embedded systems
applications in the avionic or electronic industrial domain.
These experiments were carried out with our French in-
dustrial partners. In [DPCT09], we reported the results of
these experiments. For the S_C'P case study, we constructed
several CDL models with different complexities depending
on the number of devices. The tests are performed on each
CDL model composed with S_CP system.

Table 1T
EXPLORATION WITH TINA EXPLORER WITH CONTEXT SPLITTING
USING OBP;
N.of Exploration N.of N.of LTS N.of LTS
devices time (sec) sub-contexts config. trans.
1 11 3 16 884 82 855
2 26 3 66 255 320 802
3 92 3 270 095 1 298 401
4 121 3 939 807 4507 051
5 240 3 2 616 502 12 698 620
6 2161 40 32 064 058 | 157 361 783
7 4518 55 64 746 500 | 322 838 592

Table II shows the amount of TINA exploration® for

7
8

www.topcased.org
www-Omega.imag.fr

9Tests with same computer as for Table I

CDL examples with the use of context splitting. The first
column depicts the number n of Dev asking for login to the
S_C'P. The other columns depict the exploration time and
the cumulative amount of configurations and transitions of
all LTS generated during exploration by TINA with context
splitting. Table II also shows the number of contexts split
by OBP. For example, with 7 devices, we needed to split the
CDL context in 55 parts for successful exploration. Without
splitting, the exploration is limited to 4 devices by state
explosion as shown Table I. It is clear that device number
limit depends on the memory size of used computer.

VII. DISCUSSION AND FUTURE WORK

CDL is a prototype language to formalize contexts and
properties. However, CDL concepts can be implemented in
another language. For example, context diagrams are easily
described using full UML2. CDL permits us to study our
methodology. In future work, CDL can be viewed as an
intermediate language. Today, the results obtained using the
currently implemented CDL language and OBP are very
encouraging. For each case study, it was possible to build
CDL models and to generate sets of context graphs with
OBP.

During experiments, we noted that some contexts and
requirements were often described in the available docu-
mentation in an incomplete way. During the collaboration
with us, these engineers responsible for developing this
documentation were motivated to consider a more formal
approach to express their requirements, which is certainly a
positive improvement.

In case studies, context diagrams were built, on the one
hand, from scenarios described in the design documents
and, on the other hand, from the sentences of requirement
documents. Two major difficulties have arisen. The first is
the lack of complete and coherent description of the environ-
ment behavior. Use cases describing interactions between the
system (S_C'P for instance) and its environment are often
incomplete. For instance, data concerning interaction modes
may be implicit. CDL diagram development thus requires
discussions with experts who have designed the models
under study in order to explicate all context assumptions.
The problem comes from the difficulty in formalizing system
requirements into formal properties. These requirements
are expressed in several documents of different (possibly
low) levels. Furthermore, they are written in a textual form
and many of them can have several interpretations. Others
implicitly refer to an applicable configuration, operational
phase or history without defining it. Such information,
necessary for verification, can only be deduced by manu-
ally analyzing design and requirement documents and by
interviewing expert engineers.

The use of CDL as a framework for formal and explicit
context and requirement definition can overcome these two
difficulties: it uses a specification style very close to UML

and thus readable by engineers. In all case studies, the
feedback from industrial collaborators indicates that CDL
models enhance communication between developers with
different levels of experience and backgrounds. Addition-
ally, CDL models enable developers, guided by behavior
CDL diagrams, to structure and formalize the environment
description of their systems and their requirements.

One element highlighted when working on embedded
software case studies with industrial partners, is the need for
formal verification expertise capitalization. Given our expe-
rience in formal checking for validation activities, it seems
important to structure the approach and the data handled dur-
ing the verifications. That can lead to a better methodological
framework, and afterwards a better integration of validation
techniques in model development processes. Consequently,
the development process must include a step of environment
specification making it possible to identify sets of bounded
behaviors in a complete way.

Although the CDL approach has been shown scalable in
several industrial case studies, the approach suffers from a
lack of methodology. The handling of contexts, and then the
formalization of CDL diagrams, must be done carefully in
order to avoid combinatorial explosion when generating con-
text graphs to be composed with the model to be validated.
The definition of such a methodology will be addressed by
the next step of this work.

REFERENCES

[AHO1] Luca De Alfaro and Thomas A. Henzinger. Interface
automata. In Proceedings of the Ninth Annual Sympo-
sium on Foundations of Software Engineering (FSE),
ACM, pages 109-120. Press, 2001.

[BHOS5] Dragan Bosnacki and Gerard J. Holzmann. Improving
spin’s partial-order reduction for breadth-first search.
In SPIN, pages 91-105, 2005.

[BRVO4] B. Berthomieu, P.-O. Ribet, and F. Verdanat. The tool
TINA - Construction of Abstract State Spaces for Petri
Nets and Time Petri Nets. International Journal of
Production Research, 42, 2004.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic
verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244-263, 1986.

[CLM99] E. M. Clarke, D. E. Long, and K. L. Mcmillan.
Compositional model checking. MIT Press, 1999.
[DPC*09] Philippe Dhaussy, Pierre-Yves Pillain, Stephen Creff,
Amine Raji, Yves Le Traon, and Benoit Baudry.
Evaluating context descriptions and property definition
patterns for software formal validation. In Bran Selic
Andy Schuerr, editor, /12th IEEE/ACM conf. Model
Driven Engineering Languages and Systems (Mod-
els’09), volume LNCS 5795, pages 438—452. Springer-
Verlag, 2009.

[DR11]

[FGP'08]

[FQO3]

[God95]

[HLR93]

[Hol97]

[HP94]

[LPY97]

[Pel94]

[PKO06]

[TDO3]

[Val91]

[Whi06]

Philippe Dhaussy and Jean-Charles Roger. Cdl (context
description language) : Syntax and semantics. Techni-
cal report, ENSTA-Bretagne, 2011.

Patrick Farail, Pierre Gaufillet, Florent Peres, Jean-
Paul Bodeveix, Mamoun Filali, Bernard Berthomieu,
Saad Rodrigo, Francois Vernadat, Hubert Garavel, and
Frédéric Lang. FIACRE: an intermediate language for
model verification in the TOPCASED environment. In
European Congress on Embedded Real-Time Software
(ERTS), Toulouse, 29/01/2008-01/02/2008. SEE, jan-
vier 2008.

Cormac Flanagan and Shaz Qadeer. Thread-modular
model checking. In SPIN’03, 2003.

P. Godefroid. The Ulg partial-order package for SPIN.
SPIN Workshop, 1995.

N. Halbwachs, F. Lagnier, and P. Raymond. Syn-
chronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo,
editors, Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST’ 93, Twente, June 1993.
Workshops in Computing, Springer Verlag.

G.J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279-295, 1997.

G.J. Holzmann and Doron Peled. An improvement in
formal verification. In Proc. Formal Description Tech-
niques, FORTE94, pages 197-211, Berne, Switzerland,
October 1994. Chapman & Hall.

Kim Guldstrand Larsen, Paul Pettersson, and Wang
Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1-2):134—
152, 1997.

D. Peled. Combining Partial-Order Reductions with
On-the-fly Model-Checking. In CAV ’94: Proceed-
ings of the 6th International Conference on Computer
Aided Verification, pages 377-390, London, UK, 1994.
Springer-Verlag.

S. Park and G. Kwon. Avoidance of state explosion
using dependency analysis in model checking control
flow model. LNCS, 2006.

Oksana Tkachuk and Matthew B. Dwyer. Automated
environment generation for software model checking.
In In Proceedings of the 18th International Conference
on Automated Software Engineering, pages 116-129,
2003.

Antti Valmari. Stubborn sets for reduced state space
generation. In Proceedings of the 10th International
Conference on Applications and Theory of Petri Nets,
pages 491-515, London, UK, 1991. Springer-Verlag.

Jon Whittle. Specifying precise use cases with use
case charts. In MoDELS’06, Satellite Events, pages
290-301, 2006.

