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1 Context and challenges 

Model checking is a technique used to verify that a certain system's design satisfies 

its requirements. Given some models of the design and system's requirements 

formulated as formal properties, the system model can be checked [1], and if 

properties are violated, the model checker provides the user with counter examples 

that represent execution sequences (traces) leading to an unexpected situation. Then 

the engineer analyzes the cause of the problem, i.e. diagnosis activity, correct models 

or properties and carry out another verification endeavors. A verification process may 

include many verification endeavors gathering models and properties successively 

refined, which might be recorded in a dedicated form; stated deservedly by Ruys [2] 

to be a challenge. Diagnosing the cause of faulty properties is also a challenging task. 

Under the assumption formal properties are valid, and without neglecting the difficult 

problem to judge whether the formalized problem statement (model, properties) is an 

adequate description of the actual verification problem [3], we reduce here the scope 

to modeling errors. Model-based diagnosis (MBD) is a promising approach to 

diagnose modeling errors and consists in the interaction of observation and prediction 

[4] where observation indicates what the device is actually doing, and prediction 

indicates what it is supposed to do. “The interesting event is any difference between 

these two, a difference termed a discrepancy [5].” MBD presumes that “if the model 

is correct, all the discrepancies between observation and prediction arise from defects 

of the device [5].” Thereby diagnosis consists in identifying the faulty components 

responsible of the observed failure. When we apply this approach to model checking, 

the design is the system-under-study, and we need a correct model of the design to 

apply model-based reasoning. The diagnostician can be assisted by methods like 

Case-Based Reasoning (CBR) to dispose of a correct model. CBR consists in “solving 

a new problem by remembering a similar situation and by reusing information and 

knowledge of that situation [6]." Unfortunately these diagnostic methods/techniques 

are only possible if significant features about cases are identified and formalized. In 

conclusion, dealing with multiple data or diagnosing faults are challenges which 

require the verification's information to be well-defined and managed through time; to 

this intent we propose to define patterns facilitating information's formalization and 

sharing among engineers. We illustrate the idea through a verification scenario on a 

sample case, with a focus on diagnosis artifacts. 
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2 Diagnoses using patterns 

2.1 Using patterns in model checking 

The seminal book on design patterns defines design patterns as "descriptions of 

communicating objects and classes that are customized to solve a general design 

problem in a particular context" [7]. Issued from C. Alexander’s work [8], design 

patterns describe object-oriented designs but one could be easily generalized in the 

context of model checking, as illustrated by Dwyer et al. [9] who provides form of 

pattern to specify formal properties. Verification process tools heavily depend on the 

structure and content of their case for searching, versioning, diagnosing, or adapting 

models, their description share goals of patterns as they must address a consensus 

about a topic, shared by a community. Relationships between cases such as uses or 

extends have also to be expressed in the patterns. In the model-checking community, 

benchmarks, i.e. collections including models, are used to assess tools performances. 

Benchmark repositories organize models, properties, verification runs and results. We 

used the structure of the BEEM benchmark [10] as a basis for describing cases. In the 

rest of the article the names of potential pattern's constituents are formatted in italics. 

2.2 Bob and Alice share a yard 

Lets us take a case borrowed from Lamport [11], with a viewpoint related to model 

checking. Alice and Bob are sharing a yard in an exclusive manner because their pets 

cannot be together in the yard. Lamport's solution uses two threads sharing only two 

Boolean variables (flags), each of which can be written by one thread and read by the 

other. For verification purposes, the system based on the mutual exclusion algorithm 

should be translated into a model describing how the system behaves, with clearly 

defined components and functions (required to a good diagnosis, i.e. finding the 

component/function source of the fault). Lamport’s algorithm and a corresponding 

model in a concurrent automata-like language are given in Fig.1.  
 

Alice: 

 while (true) { 

 flagAlice = up; 

  while (flagBob == up)skip; 

 catInYard; 

 flagAlice = down; 

 } 

Bob: 

 while (true) { 

 flagBob = up; 

  while (flagAlice == up) { 

  flagBob = down; 

   while (flagAlice == up)skip; 

  flagBob = up; 

  } 

 dogInYard; 

 flagBob = down; 

 } 

 

Fig. 1. Lamport's mutual exclusion algorithm 

 



To prove the model is correct, a verification by model checking is conducted 

according properties: - Mutual Exclusion (P1), Bob and Alice must not be together in 

critical section (CS); - Deadlock Freedom (P2), it never happens that Alice or Bob are 

trying to enter their CS, but never succeeds; - Lockout Freedom (P3), from a fair path 

Alice or Bob try to access the CS, it will terminate; - Fairness (P4), it is always 

possible for Alice or Bob to access the CS. We reach a valid model through several 

verification endeavors until all properties are satisfied. A verification endeavor is 

composed of different versions of behavioral models coupled with properties and run 

results. Models are expressed with different implementations (such as in Fig.2) and 

properties are checked on these implementation during verification runs. 
bool flagAlice,flagBob;  

#define csa alice@CS; #define csb bob@CS; #define mtx !(csa && csb) 

#define ecsa alice@E_CS; #define ecsb bob@E_CS;  

#define lcsa alice@L_CS; #define lcsb bob@L_CS; 

active proctype alice(){ 

E_CS: printf("Entering CS\n"); 

do::flagAlice=true; 

 do::!flagBob-> break 

 ::else->skip; 

 od; 

CS: printf("CS\n"); 

L_CS:  

  atomic{ 

  flagAlice=false; 

     printf("Leaving CS \n"); 

 } 

od; 

} 

active proctype bob(){ 

E_CS: printf("Entering CS\n"); 

do::flagBob=true; 

 do:: flagAlice->flagBob=false; 

  do::!flagAlice 

        ->atomic{flagBob=true;break;} 

  ::else->skip; 

  od 

 :: !flagAlice->break 

 od   

CS: printf("CS\n");  

L_CS: atomic{ 

  flagBob=false; printf("Leaving CS\n");} 

od;} 

Fig. 2. A Promela implementation of the concurrent automata of Fig. 1.  

Verification runs are performed in a model checker with a configuration, give results 

about the status of properties (see Fig. 3), and traces are produced raising diagnosis, 

corrections and new verification cycles. The SPIN model-checker is used here [1]. 

Property Implementation Run result 

P1 never  {// ![]mtx 

T0_init: 

  do:: atomic { (! ((mtx))) -> assert(!(! ((mtx)))) } 

    :: (1) -> goto T0_init 

  od; 

accept_all: skip} 

errors: 0 

P2 Automatically checked by SPIN errors: 0 

P3 (for Alice, the 
results are the same 

for Bob) 

never  {// !([]<>csa->[](ecsa-><>csa)) 

T0_init: 

    do:: (! ((csa)) && (ecsa)) -> goto T0_S69 

      :: (1) -> goto T0_init 

    od; 

T0_S69: 

    do:: (! ((csa))) -> goto T0_S69 

    od;} 

errors: 0 

P4 

(for bob, no errors 

found for Alice) 

never  {  //   !([]<>csb) 

T0_init: 

    do:: (! ((csb))) -> goto accept_S4 

      :: (1) -> goto T0_init 

    od; 

accept_S4: 

    do:: (! ((csb))) -> goto accept_S4 

    od;} 

Acceptance 

cycle  

errors: 1 

Fig. 3. Properties implementation and verification in SPIN 



Each property is expressed as a never claim and checked successively by SPIN, 

almost all properties are verified (errors:0), excepted P4 for Bob, the fairness property 

which is falsified meaning that it doesn't give to Bob a “fair” chance to try to enter its 

CS, and thus we are faced with an unexpected situation, and one have to find the 

origin of the fault. Following a MBD approach, a model that predicts how the system 

behaves can be used to find the component or function that causes the problem. Even 

though in model checking this model is not available, CBR approach can luckily be 

applied to retrieve a similar case. A CBR system gathers previous cases (that we call 

Problem Cases), as a basis to reason on a new case (called Sample Case), and helps to 

isolate the faulty element that leads to the discrepancies between observation (Sample 

case) and prediction (Problem case). CBR process is conducted in four steps [5], 

retrieve the most similar cases from the case base, reuse these cases to solve the new 

problem, revise the proposed solution, and retain the new problem and solution in the 

case base for later use. 

2.3 Reuse the problem case and solution.  

Once the sample case has been assessed, the most 

similar problem case is searched in the case base. 

Our case addresses the classical problem case of 

Mutual Exclusion as it supports almost the same 

properties. A problem case is a sample case that has 

been reified in the case base. It provides a 

specification in a form of a structure and a set of 

abstract properties that prescribes the system's 

behavior. A specification addresses the problem space (not the solution space) and is 

by definition independent from any implementation language, which is rather given 

by solution implementations. A problem case provides a structure, for Mutual 

Exclusion we state that each process’s program may be written as follows (see Fig. 4): 

The entry statement represents all the operation executions between a noncritical 

section (NCS) and the subsequent critical section (CS); The exit statement represents 

all the operation between a CS and the subsequent NCS; The initial declaration 

describes the initial values of the variables. Abstract properties might be expressed in 

temporal logic like LTL (see Fig.5) which is based upon the propositional calculus, 

where formulas are composed of atomic propositions and operators [1], by contrast to 

assertions that impose control point in the system and cannot express all properties 

(deadlock, starvation). Abstract properties are inspired by Lamport's work: -Mutual 

Exclusion (P1), For any pair of distinct processes i and j, no pair of operation 

executions CSi and CSj are concurrent i.e. □¬(CSi˄CSj); -Deadlock Freedom 

(P2), deadlock appends if it is impossible to reach a state in which some processes are 

trying to enter their CS, but no process is successful; -Lockout Freedom (P3), if a 

process in a fair path tries to execute its CS then eventually it succeed, i.e. for i 

□◊CSi→□(E_CSi→◊CSi). -Fairness (P4), it should be possible for each process to 

access the CS , i.e. (□◊CSi)˄(□◊CSj). 

 

Fig. 4. Mutual Exclusion Structure 

initial declaration; 

repeat forever 

noncritical section; 

entry ; 

critical section; 

exit ; 

end repeat 



Operator not and implies always eventually 

LTL ¬ ˄ → □ ◊ 

SPIN ! && -> [] <> 

 

The structure and properties of problem cases have to be bound to the sample case 

including the difficult task to identify and bind parts of the model to equivalent parts 

of the problem case structure. Parts of the implementation model might be annotated 

(E_CS, CS, L_CS) in order to apply the properties given the problem structure. The 

problem case is used to predict the expected behavior, and thus fairness by comparing 

the observed model of Alice and Bob and deducted which component is not fair. To 

this intent, a problem case should provide a set of potential causes and solutions to a 

failed property, for instance fairness property P4 is violated by Bob, it results the 

cause "Bob is too kind with Alice", and a solution have to be found to this cause that 

will update processes accordingly.  

Thus a problem case may propose a set of solutions, for mutual exclusion many 

solutions exist with different properties, in our example a possible solution might be 

the Peterson’s algorithm [12] given in Fig.6. Then the engineer applies the adequate 

solution to its wrong model, to do that he/she must understand precisely how to bind 

the solution to his sample case either by copying or adaptation [6] techniques. 

Copying is the trivial type of reuse where the solution is directly transferred to the 

case as its solution while adaptation is relevant if differences are taken into account, it 

consists in either reuse the past case solution (transformational reuse), or reuse the 

past method that constructed the solution (derivational reuse). When a solution is 

applied to the sample case, a new verification must be performed. If the properties are 

still not satisfied, the diagnostic of the cause become clearer, and revised solutions 

can be brought again. Finally the new solution is retained in the case base, together 

with sample case reified as a problem case. The most relevant features of the new 

problem case have to be revealed to facilitate further identification. 

 
bool flag[2]; flag[0] = false; flag[1] = false; int turn; 

P0: flag[0] = true; turn = 1; 

    while (flag[1] && turn == 1){ 

        // entry 

    } 

    // critical section 

    // exit 

    flag[0] = false; 

P1: flag[1] = true; turn = 0; 

    while (flag[0] && turn == 0){ 

        // entry 

    } 

    // critical section 

    // exit 

    flag[1] = false; 

Fig. 6. Peterson's algorithm 

3 Conclusion 

Model checking relies on a large collection of heterogeneous artifacts and diagnosing 

faults is generally a tedious task which should benefit from a knowledge base system 

to collect and provide access to well-formalized verification artifacts. In the formal 

method community, patterns are mostly understood in reference to the work by 

Fig. 5. Correspondences between notations  



Dwyer et al. [9], and actually there is no common agreement on a formalization or 

organization for the whole verification process artefacts, such as models, traces or 

sessions of verifications.  Hence this paper asks the question about unmet needs for 

such patterns and their possible relationships, with a particular focus on patterns 

required for diagnosis techniques such as problem case or solution in CBR. 
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