
Model-based Diagnosis Patterns for Model Checking

Vincent LEILDE
1
, Vincent RIBAUD

2
, Philippe DHAUSSY

1

1
Lab-STICC, team MOCS, ENSTA Bretagne,rue François Verny,Brest

e-mail: firstname.lastname@ensta-bretagne.fr
2
Lab-STICC, team MOCS, UBO,avenue Le Gorgeu,Brest

e-mail: ribaud@univ-brest.fr

1 Context and challenges

Model checking is a technique used to verify that a certain system's design satisfies

its requirements. Given some models of the design and system's requirements

formulated as formal properties, the system model can be checked [1], and if

properties are violated, the model checker provides the user with counter examples

that represent execution sequences (traces) leading to an unexpected situation. Then

the engineer analyzes the cause of the problem, i.e. diagnosis activity, correct models

or properties and carry out another verification endeavors. A verification process may

include many verification endeavors gathering models and properties successively

refined, which might be recorded in a dedicated form; stated deservedly by Ruys [2]

to be a challenge. Diagnosing the cause of faulty properties is also a challenging task.

Under the assumption formal properties are valid, and without neglecting the difficult

problem to judge whether the formalized problem statement (model, properties) is an

adequate description of the actual verification problem [3], we reduce here the scope

to modeling errors. Model-based diagnosis (MBD) is a promising approach to

diagnose modeling errors and consists in the interaction of observation and prediction

[4] where observation indicates what the device is actually doing, and prediction

indicates what it is supposed to do. “The interesting event is any difference between

these two, a difference termed a discrepancy [5].” MBD presumes that “if the model

is correct, all the discrepancies between observation and prediction arise from defects

of the device [5].” Thereby diagnosis consists in identifying the faulty components

responsible of the observed failure. When we apply this approach to model checking,

the design is the system-under-study, and we need a correct model of the design to

apply model-based reasoning. The diagnostician can be assisted by methods like

Case-Based Reasoning (CBR) to dispose of a correct model. CBR consists in “solving

a new problem by remembering a similar situation and by reusing information and

knowledge of that situation [6]." Unfortunately these diagnostic methods/techniques

are only possible if significant features about cases are identified and formalized. In

conclusion, dealing with multiple data or diagnosing faults are challenges which

require the verification's information to be well-defined and managed through time; to

this intent we propose to define patterns facilitating information's formalization and

sharing among engineers. We illustrate the idea through a verification scenario on a

sample case, with a focus on diagnosis artifacts.

mailto:firstname.lastname@ensta-bretagne.fr
mailto:ribaud@univ-brest.fr

2 Diagnoses using patterns

2.1 Using patterns in model checking

The seminal book on design patterns defines design patterns as "descriptions of

communicating objects and classes that are customized to solve a general design

problem in a particular context" [7]. Issued from C. Alexander’s work [8], design

patterns describe object-oriented designs but one could be easily generalized in the

context of model checking, as illustrated by Dwyer et al. [9] who provides form of

pattern to specify formal properties. Verification process tools heavily depend on the

structure and content of their case for searching, versioning, diagnosing, or adapting

models, their description share goals of patterns as they must address a consensus

about a topic, shared by a community. Relationships between cases such as uses or

extends have also to be expressed in the patterns. In the model-checking community,

benchmarks, i.e. collections including models, are used to assess tools performances.

Benchmark repositories organize models, properties, verification runs and results. We

used the structure of the BEEM benchmark [10] as a basis for describing cases. In the

rest of the article the names of potential pattern's constituents are formatted in italics.

2.2 Bob and Alice share a yard

Lets us take a case borrowed from Lamport [11], with a viewpoint related to model

checking. Alice and Bob are sharing a yard in an exclusive manner because their pets

cannot be together in the yard. Lamport's solution uses two threads sharing only two

Boolean variables (flags), each of which can be written by one thread and read by the

other. For verification purposes, the system based on the mutual exclusion algorithm

should be translated into a model describing how the system behaves, with clearly

defined components and functions (required to a good diagnosis, i.e. finding the

component/function source of the fault). Lamport’s algorithm and a corresponding

model in a concurrent automata-like language are given in Fig.1.

Alice:

 while (true) {

 flagAlice = up;

 while (flagBob == up)skip;

 catInYard;

 flagAlice = down;

 }

Bob:

 while (true) {

 flagBob = up;

 while (flagAlice == up) {

 flagBob = down;

 while (flagAlice == up)skip;

 flagBob = up;

 }

 dogInYard;

 flagBob = down;

 }

Fig. 1. Lamport's mutual exclusion algorithm

To prove the model is correct, a verification by model checking is conducted

according properties: - Mutual Exclusion (P1), Bob and Alice must not be together in

critical section (CS); - Deadlock Freedom (P2), it never happens that Alice or Bob are

trying to enter their CS, but never succeeds; - Lockout Freedom (P3), from a fair path

Alice or Bob try to access the CS, it will terminate; - Fairness (P4), it is always

possible for Alice or Bob to access the CS. We reach a valid model through several

verification endeavors until all properties are satisfied. A verification endeavor is

composed of different versions of behavioral models coupled with properties and run

results. Models are expressed with different implementations (such as in Fig.2) and

properties are checked on these implementation during verification runs.
bool flagAlice,flagBob;

#define csa alice@CS; #define csb bob@CS; #define mtx !(csa && csb)

#define ecsa alice@E_CS; #define ecsb bob@E_CS;

#define lcsa alice@L_CS; #define lcsb bob@L_CS;

active proctype alice(){

E_CS: printf("Entering CS\n");

do::flagAlice=true;

 do::!flagBob-> break

 ::else->skip;

 od;

CS: printf("CS\n");

L_CS:

 atomic{

 flagAlice=false;

 printf("Leaving CS \n");

 }

od;

}

active proctype bob(){

E_CS: printf("Entering CS\n");

do::flagBob=true;

 do:: flagAlice->flagBob=false;

 do::!flagAlice

 ->atomic{flagBob=true;break;}

 ::else->skip;

 od

 :: !flagAlice->break

 od

CS: printf("CS\n");

L_CS: atomic{

 flagBob=false; printf("Leaving CS\n");}

od;}

Fig. 2. A Promela implementation of the concurrent automata of Fig. 1.

Verification runs are performed in a model checker with a configuration, give results

about the status of properties (see Fig. 3), and traces are produced raising diagnosis,

corrections and new verification cycles. The SPIN model-checker is used here [1].

Property Implementation Run result

P1 never {// ![]mtx

T0_init:

 do:: atomic { (! ((mtx))) -> assert(!(! ((mtx)))) }

 :: (1) -> goto T0_init

 od;

accept_all: skip}

errors: 0

P2 Automatically checked by SPIN errors: 0

P3 (for Alice, the
results are the same

for Bob)

never {// !([]<>csa->[](ecsa-><>csa))

T0_init:

 do:: (! ((csa)) && (ecsa)) -> goto T0_S69

 :: (1) -> goto T0_init

 od;

T0_S69:

 do:: (! ((csa))) -> goto T0_S69

 od;}

errors: 0

P4

(for bob, no errors

found for Alice)

never { // !([]<>csb)

T0_init:

 do:: (! ((csb))) -> goto accept_S4

 :: (1) -> goto T0_init

 od;

accept_S4:

 do:: (! ((csb))) -> goto accept_S4

 od;}

Acceptance

cycle

errors: 1

Fig. 3. Properties implementation and verification in SPIN

Each property is expressed as a never claim and checked successively by SPIN,

almost all properties are verified (errors:0), excepted P4 for Bob, the fairness property

which is falsified meaning that it doesn't give to Bob a “fair” chance to try to enter its

CS, and thus we are faced with an unexpected situation, and one have to find the

origin of the fault. Following a MBD approach, a model that predicts how the system

behaves can be used to find the component or function that causes the problem. Even

though in model checking this model is not available, CBR approach can luckily be

applied to retrieve a similar case. A CBR system gathers previous cases (that we call

Problem Cases), as a basis to reason on a new case (called Sample Case), and helps to

isolate the faulty element that leads to the discrepancies between observation (Sample

case) and prediction (Problem case). CBR process is conducted in four steps [5],

retrieve the most similar cases from the case base, reuse these cases to solve the new

problem, revise the proposed solution, and retain the new problem and solution in the

case base for later use.

2.3 Reuse the problem case and solution.

Once the sample case has been assessed, the most

similar problem case is searched in the case base.

Our case addresses the classical problem case of

Mutual Exclusion as it supports almost the same

properties. A problem case is a sample case that has

been reified in the case base. It provides a

specification in a form of a structure and a set of

abstract properties that prescribes the system's

behavior. A specification addresses the problem space (not the solution space) and is

by definition independent from any implementation language, which is rather given

by solution implementations. A problem case provides a structure, for Mutual

Exclusion we state that each process’s program may be written as follows (see Fig. 4):

The entry statement represents all the operation executions between a noncritical

section (NCS) and the subsequent critical section (CS); The exit statement represents

all the operation between a CS and the subsequent NCS; The initial declaration

describes the initial values of the variables. Abstract properties might be expressed in

temporal logic like LTL (see Fig.5) which is based upon the propositional calculus,

where formulas are composed of atomic propositions and operators [1], by contrast to

assertions that impose control point in the system and cannot express all properties

(deadlock, starvation). Abstract properties are inspired by Lamport's work: -Mutual

Exclusion (P1), For any pair of distinct processes i and j, no pair of operation

executions CSi and CSj are concurrent i.e. □¬(CSi˄CSj); -Deadlock Freedom

(P2), deadlock appends if it is impossible to reach a state in which some processes are

trying to enter their CS, but no process is successful; -Lockout Freedom (P3), if a

process in a fair path tries to execute its CS then eventually it succeed, i.e. for i

□◊CSi→□(E_CSi→◊CSi). -Fairness (P4), it should be possible for each process to

access the CS , i.e. (□◊CSi)˄(□◊CSj).

Fig. 4. Mutual Exclusion Structure

initial declaration;

repeat forever

noncritical section;

entry ;

critical section;

exit ;

end repeat

Operator not and implies always eventually

LTL ¬ ˄ → □ ◊

SPIN ! && -> [] <>

The structure and properties of problem cases have to be bound to the sample case

including the difficult task to identify and bind parts of the model to equivalent parts

of the problem case structure. Parts of the implementation model might be annotated

(E_CS, CS, L_CS) in order to apply the properties given the problem structure. The

problem case is used to predict the expected behavior, and thus fairness by comparing

the observed model of Alice and Bob and deducted which component is not fair. To

this intent, a problem case should provide a set of potential causes and solutions to a

failed property, for instance fairness property P4 is violated by Bob, it results the

cause "Bob is too kind with Alice", and a solution have to be found to this cause that

will update processes accordingly.

Thus a problem case may propose a set of solutions, for mutual exclusion many

solutions exist with different properties, in our example a possible solution might be

the Peterson’s algorithm [12] given in Fig.6. Then the engineer applies the adequate

solution to its wrong model, to do that he/she must understand precisely how to bind

the solution to his sample case either by copying or adaptation [6] techniques.

Copying is the trivial type of reuse where the solution is directly transferred to the

case as its solution while adaptation is relevant if differences are taken into account, it

consists in either reuse the past case solution (transformational reuse), or reuse the

past method that constructed the solution (derivational reuse). When a solution is

applied to the sample case, a new verification must be performed. If the properties are

still not satisfied, the diagnostic of the cause become clearer, and revised solutions

can be brought again. Finally the new solution is retained in the case base, together

with sample case reified as a problem case. The most relevant features of the new

problem case have to be revealed to facilitate further identification.

bool flag[2]; flag[0] = false; flag[1] = false; int turn;

P0: flag[0] = true; turn = 1;

 while (flag[1] && turn == 1){

 // entry

 }

 // critical section

 // exit

 flag[0] = false;

P1: flag[1] = true; turn = 0;

 while (flag[0] && turn == 0){

 // entry

 }

 // critical section

 // exit

 flag[1] = false;

Fig. 6. Peterson's algorithm

3 Conclusion

Model checking relies on a large collection of heterogeneous artifacts and diagnosing

faults is generally a tedious task which should benefit from a knowledge base system

to collect and provide access to well-formalized verification artifacts. In the formal

method community, patterns are mostly understood in reference to the work by

Fig. 5. Correspondences between notations

Dwyer et al. [9], and actually there is no common agreement on a formalization or

organization for the whole verification process artefacts, such as models, traces or

sessions of verifications. Hence this paper asks the question about unmet needs for

such patterns and their possible relationships, with a particular focus on patterns

required for diagnosis techniques such as problem case or solution in CBR.

4 References

1. Ben-Ari, M. (2008) Principles of the Spin Model Checker. London: Springer.

2. Ruys, T. C., & Brinksma, E. (2003). Managing the verification trajectory. Inter-

national journal on software tools for technology transfer, 4(2), 246-259.

3. Baier, C., & Katoen, J. P. (2008). Principles of model checking (Vol. 26202649,

pp. 19-82). Cambridge: MIT press.

4. Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Artificial

intelligence, 24(1), 347-410.

5. Davis, R., & Hamscher, W. (1988). Model-based reasoning: Troubleshooting. In

Exploring Artificial Intelligence: Survey Talks from the National Conferences in

Artificial Intelligence (pp. 297-346). Morgan-Kaufmann.

6. Agnar Aamodt and Enric Plaza (1994). Case-based reasoning: foundational

issues, methodological variations, and system approaches. AI Commun. 7, 1

(March 1994), 39-59.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (1995). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

8. Alexander, Christopher, Sara Ishikawa, and Murray Silverstein (1977). A Pattern

Language: Towns, Buildings, Construction. New York: Oxford University Press.

9. Dwyer, Matthew B., George S. Avrunin, and James C. Corbett (1999). Patterns in

property specifications for finite-state verification. In Proceedings of the 1999

International Conference on Software Engineering. IEE.

10. Pelánek, R. (2007). BEEM: Benchmarks for explicit model checkers. In Model

Checking Software (pp. 263-267). Springer Berlin Heidelberg.

11. Lamport, L. (1985). Solved problems, unsolved problems and non-problems in

concurrency. ACM SIGOPS Operating Systems Review, 19(4), 34-44.

12. Peterson, G. L. (1981). Myths about the mutual exclusion problem. Information

Processing Letters, 12(3), 115-116.

