
Unified LTL Verification and

Embedded Execution of UML Models

Valentin Besnard
ERIS, ESEO-TECH
Angers, France

valentin.besnard@eseo.fr

Matthias Brun
ERIS, ESEO-TECH
Angers, France

matthias.brun@eseo.fr

Frédéric Jouault
ERIS, ESEO-TECH
Angers, France

frederic.jouault@eseo.fr

Ciprian Teodorov
Lab-STICC UMR CNRS 6285,

ENSTA Bretagne
Brest, France

ciprian.teodorov@ensta-bretagne.fr

Philippe Dhaussy
Lab-STICC UMR CNRS 6285,

ENSTA Bretagne
Brest, France

philippe.dhaussy@ensta-bretagne.fr

ABSTRACT

The increasing complexity of embedded systems leads to uncertain
behaviors, security flaws, and design mistakes. With model-based
engineering, early diagnosis of such issues is made possible by ver-
ification tools working on design models. However, three severe
drawbacks remain to be fixed. First, transforming design models
into executable code creates a semantic gap between models and
code. Furthermore, for formal verification, a second transformation
(towards a formal language) is generally required, which compli-
cates the diagnosis process. Finally, an equivalence relation between
verified formal models and deployed code should be built, proven,
and maintained. To tackle these issues, we introduce a UML inter-
preter that fulfills multiple purposes: simulation, formal verification,
and execution on both desktop computer and bare-metal embedded
target. Using a single interpreter for all these activities ensures
operational semantics consistency. We illustrate our approach on
a level crossing example, showing verification of LTL properties
on a desktop computer, as well as execution on a stm32 embedded
target.

CCS CONCEPTS

· Software and its engineering → Formal software verification;
· Computer systems organization→ Embedded software;

KEYWORDS

UML Execution, Model Interpretation, LTL Model-Checking, Em-
bedded Systems

ACM Reference Format:

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov,
and Philippe Dhaussy. 2018. Unified LTL Verification and Embedded Ex-
ecution of UML Models. In ACM/IEEE 21th International Conference on

Model Driven Engineering Languages and Systems (MODELS ’18), October

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14ś19,2018, Copenhagen, Denmark

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239395

14ś19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3239372.3239395

1 INTRODUCTION

Embedded systems and cyber-physical systems tend to become
more and more complex due to the emergence of new needs and
applications (e.g., Internet of Things, robotics, smart cities). Not
only are these devices more difficult to make safe and secure, but
these software intensive systems are also more exposed to both
design and programming mistakes. Therefore, the implementation
of embedded applications becomes a tedious and error-prone task.
With model-based engineering, dedicated design methods have
appeared to simulate, explore, and validate models at early design
stages. Nowadays, the industry standard for using models in em-
bedded systems is code generation that involves the use of two
transformations. The first one provides a formal model required
for verification at early design stages. The second one produces
actual application code, and may be automatic, semi-automatic, or
entirely manual.

While this classical approach enables users to both verify the
models and execute the systems resulting from these models, three
severe drawbacks remain. The first one is the semantic gap created
by code generation, between models and their corresponding code.
This gap makes it more difficult to link code fragments to concepts
of the design model. The second issue is caused by transforma-
tions into formal models. These transformations complicate the
understanding of diagnosis results because these results are not
directly expressed in terms of design concepts. The last problem is
the use of multiple separate definitions (i.e., at design model level,
in formal model generator, and in executable code generator) of
the modeling language semantics that are generally not proven to
be equivalent. In fact, all of these issues are directly linked to the
existence of multiple implementations of the language semantics.
This is a result of using transformations into different languages.

To tackle these problems, we avoid having multiple definitions
of the modeling language semantics. Instead, we rely on a single
semantics definition that we specifically build to support all three
activities: simulation, formal verification, and execution. In prac-
tice, this single definition takes the form of a model interpreter for
UML (or a subset of UML). This interpreter can be remotely con-
trolled by diagnosis tools to verify and validate the design model.

https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1145/3239372.3239395

MODELS ’18, October 14–19,2018, Copenhagen, Denmark V. Besnard et al.

Therewith, it provides an execution platform running either with
OS support on desktop computers or without OS (bare-metal) on
resource constrained embedded targets. This approach improves di-
agnosis understandability and verification reliability because what
is executed is really what has been checked.

To show the versatility of our approach, we have connected our
interpreter to an extension of the OBPmodel-checker [36, 37] (https:
//plug-obp.github.io/) to enable formal property verification. Using
this setup on a level crossing controller model, we have successfully
verified a set of properties expressed with Linear Temporal Logic
(LTL).

The remainder of this paper is structured as follows. Section 2
introduces our illustrating example. Section 3 shows an overview of
the project before we describe the design of the model interpreter
in Section 4. Then, we discuss the communication architecture
used to control model execution, as well as its extension to support
formal verification in Section 5. In Section 6, we present the results
of applying the approach to our example. Section 7 reviews some
related work, and we conclude in Section 8.

Figure 1: Overview of the level crossing system.

Figure 2: Composite structure diagram of the level crossing

model.

2 ILLUSTRATING EXAMPLE

To illustrate our approach, we use a model of a level crossing con-
troller as example (Figure 1). Level crossing protection systems are
used at intersections of railways and roads to warn and protect
road users from train traffic. These systems are typically equipped
with sensors, that we will call EntranceTC and ExitTC (TC means
Track Circuit), to detect trains, as well as actuators such as a Gate
or flashing lights, that we will call RoadSign and RailwaySign.

A UML model of a level crossing controller has been designed
using active objects with state machine behaviors [29] (Figure 2

Figure 3: State machines of the level crossing model.

and Figure 3). Guards and effects of the state machine transitions
are expressed using an action language allowing arithmetical and
logical operations, as well as sending and receiving events to other
active objects.

The Controller coordinates the movement of the Gate as well
as the activation of both RoadSign and RailwaySign according to
signals received from EntranceTC and ExitTC. The entrance sensors
warn the system of train arrivals by sending the entrance signal to
the controller. In a same way, the exit sensor notifies the controller
when the train leaves the level crossing by sending the exit signal.
To process these signals, the Controller state machine has two loops.
The first one is dedicated to closing the Gate and switching on the
RoadSign before the train passage. The authorization is given to the
train to pass by switching off the railwaySign. The second one is
responsible for opening the Gate and switching off the RoadSign
when no more trains are engaged.

https://plug-obp.github.io/
https://plug-obp.github.io/

Unified LTL Verification and Embedded Execution of UML Models MODELS ’18, October 14–19,2018, Copenhagen, Denmark

In addition to simulation and state-space exploration on this
model (as depicted in [5]), our goal in this paper is to illustrate that
we can formally verify properties through model-checking. For this
example, we have selected four properties to check the reliability
of the system:

(1) The Gate is closed when the Train is on the level crossing.
(2) The light of the RoadSign is active when the Train is on the

level crossing.
(3) The Gate finally opens after being closed.
(4) The light of the RoadSign finally shuts down after being

activated.

3 OVERVIEW

To better understand the scope of this work, Figure 4 gives an
overview of the UML interpreter project.

First, an executable UML Model (XMI) of the system under study
must be designed and saved under a dedicated formalism (here
XMI). This model is typically produced during the design phase
of the system development. It can then be serialized into C pro-
gramming language for being loaded at compile-time in the model
interpreter. The serialization generates only data needed for model
interpretation (UML Model (C)) and data types used to access in-
stances of the UML model in our action language (Data Types for
Action Language). Contrary to code generation, no functions are
generated by this serializer for model execution (except for transi-
tions guards and effects). In fact, the execution semantics is given
explicitly by the Interpreter Source Code. The UML model and data
types (data) as well as source code of the interpreter (program) are
compiled and linked together to give the executable code of the
Interpreter.

Figure 4: Overview of the UML interpreter project.

This executable code is composed of four important modules.
The Runtime Model is the model used for execution. It consists
of the static part of the model produced by the serializer and of
its associated dynamic part used to store values of dynamic data
(e.g., values of attributes, values of current state of state machines).
The Interpreter module is in charge of the model interpretation of
the Runtime Model. It must execute the system in conformance to
the behavior described in this model with the execution semantics
provided by this Interpreter. It is also possible to connect a Diag-
nosis Tool to this model interpreter using the Pilot module and the
Converter software that converts TCP into the appropriate proto-
col used by the target. In case of model-checking, the Pilot uses
services of the Checker to evaluate some boolean expressions of
formal properties. This approach ensures that the same semantics
definition is used for formal verification of the system and for its
execution on the real embedded target.

The executed system can also interact with its Environment

through inputs and outputs of the target, which can be a desk-
top computer or an embedded bare-metal target. To sum up, this
project offers a solution for model execution and model diagnosis
of UML models using a single semantics definition for various ac-
tivities (e.g., simulation, model-checking, execution) typical of the
embedded systems development process.

4 INTERPRETER DESIGN AND

IMPLEMENTATION DETAILS

The design of the UML Interpreter is guided by the trade-off be-
tween the embedded system memory and performance constraints,
and the need to provide powerful diagnosis facilities. To reach this
goal, we present the process employed to generate the model used
at runtime, the action language used to express the system behavior,
as well as the implemented execution mechanism.

4.1 Generation of the Runtime Model

To deal with embedded constraints, a key point of our approach is
the generation process of the UML model, used by the interpreter
at runtime (Figure 6). First, a model of the system under study
must be designed. This design model can be defined using either a

Figure 5: Serialization of a UML class into C language.

MODELS ’18, October 14–19,2018, Copenhagen, Denmark V. Besnard et al.

Figure 6: Process used for runtime model generation.

textual editor (Figure 5.A) [20], or a graphical editor (Figure 5.B)
[21], and is generally saved under the XML metadata interchange
(XMI) format. However, this format is cumbersome and not suitable
for being loaded on an embedded microcontroller. To reduce the
memory footprint and ease model execution, the UML model in
XMI is serialized into C language, the implementation language
of our interpreter. This serialization can be seen as the way to
load the model into the interpreter. In practice, any element of
the model is converted into a struct initializer in C language. For
example, the instance of the Controller class of the level crossing
system is serialized as depicted in Figure 5.C. Unlike code generation
approaches that generate both data and program required to execute
the system, here only data representing the static part of the model
are generated. The whole program required to execute the system
is provided by the interpreter source code (Figure 6).

Moreover, this UML to C serializer also generates model-specific
data types used by the action language to access UML instances
at runtime. At this point, all the source code is available and can
be compiled with a C compiler to produce the executable code
of the system (Figure 6). This executable artifact contains both
the executable code of the interpreter and the runtime model that
will be the reference for model execution and diagnosis. Hence, the
UMLmodel in XMI format may be considered a view of the runtime
model.

4.2 Interpreter Design

To better understand the design of the model interpreter, Figure 7
introduces a simplified class diagram of its internal architecture.
The different Cmodules of the interpreter are represented by classes

Figure 7: Class diagram of the interpreter design.

in the class diagram. TheMetamodel package provides the UML
metamodel supplying class, composite structure, and state machine
concepts. In practice, each class of the metamodel is defined into C
language as a structured type and each attribute is represented as a
field of that structure. The Model package contains the model and
data types generated by the UML to C serializer. The UML model
is encapsulated in the Model class and represents the static part of
this model. Data type classes are used by the action language to
access data of the model in a straightforward way. The Store class
represents the dynamic part of the model composed of current state
of state machines, event pools, and values of attributes. The Peers
class provides links between active objects for model interpretation.

To interpret a model according to its execution semantics, an
execution core is required. This is the purpose of the Interpreter
package. The Interpreter class is the root class for model interpre-
tation with the interpret() method as entry point. Its goal is to

Unified LTL Verification and Embedded Execution of UML Models MODELS ’18, October 14–19,2018, Copenhagen, Denmark

coordinate the execution of the active objects. An active object is
defined for each part of the composite structure diagram with a
UML state machine that describes its behavior (e.g., Figure 2 and
Figure 3 in our example). An active object also makes the link be-
tween the static and the dynamic part of the model (e.g., to link an
attribute with a memory area where its value can be stored).

The active object state machine is executed according to the
events received by its event pool, events that trigger the state ma-
chine transitions. An event pool is composed of a dynamic part that
stores received events, and the meta information that contains its
characteristics (e.g., size, priority management). Events are added
in and consumed by the event pool during model execution.

We can notice that the order of event dispatching and the in-
terpretation of the reception of an event occurrence that does not
match a valid trigger are left undefined by the UML standard. For
these semantic variation points, we have implemented two algo-
rithms that both dispatch events following their arrival order. The
first one provides a first-in-first-out (FIFO) algorithm and ignores
events that do not match a valid trigger (from a current state). The
second one defers these kinds of events for being processed later.
In practice, the abstract EventPool is provided by a C header file.
The choice of the concrete event pool (FifoEventPool or OrderedList-
DeferredEventPool C module) used by the interpreter is done at
compilation time.

The execution of the state machine also needs to evaluate guards
and to execute effects associated to the state machine transitions.
The classes GuardEvaluator and EffectInterpreter provide required
mechanisms for these evaluations and executions through opaque
expressions and opaque behaviors, using an action language.

4.3 Action Language

Modeling languages often require action languages to ease the de-
scription of model behaviors (e.g., for UML: Alf [27], OAL [18],
ASL [16], UAL [26]). As mentioned previously, in our design model,
an action language is employed to specify guards through UML
opaque expressions and to describe effects of state machine transi-
tions through UML opaque behaviors (Figure 3). To execute these
action language expressions, several solutions may be considered:
AST interpretation, bytecode interpretation, or native code exe-
cution. For a performance purpose, we have chosen to base our
approach on C native code execution, the native language of our
interpreter. We have then defined an action language that reuses the
syntax of the C programming language for arithmetic and logical
operations as well as conditions and loops expressions.

However, using C code, it remains difficult for users to express
domain-specific behaviors that are related to implementation-specific
concepts of the interpreter. To address this issue, our action lan-
guage based on C has been enhanced with a syntactic sugar for
sending events, for manipulating the event pools, and for accessing
the model elements such as attributes, states, and event identifiers.
All these expressions used in the UML design model are syntacti-
cally transformed into C functions during the model serialization.
These C functions are used at runtime to evaluate guards and exe-
cute effects (using GuardEvaluator and EffectInterpreter previously
introduced, Figure 7). Figure 8 shows an example of an opaque be-
havior expressed in the design model, and its equivalent C function

Figure 8: Serialization of action language expressions.

generated during the model serialization. This opaque behavior,
extracted from the illustrating example, performs the sending of a
close event to the gate active object.

4.4 Interpreter Execution

Once the UML model has been set up on the embedded target, its
execution can be launched through an initialization step followed
by a sequence of interpretation steps.

At startup, all active objects are initialized to fire the initial
transition of their state machine from the initial pseudo-state to the
first state. When this initialization has been performed, the model
execution is divided into interpretation steps in charge of firing the
state machine transitions.

Each interpretation step begins by computing the set of fireable
transitions (i.e., transitions that have their trigger and their guard
satisfied). The step ends by firing the first fireable transition of each
active object. Note that if the model is deterministic at most one
transition is fireable at each execution point.

As a result, for each fired transition, the event matching the
trigger is consumed, the current state of the corresponding state
machine is updated, and the effect associated to the transition is
carried out.

5 CONTROL MODEL EXECUTION FOR

DIAGNOSIS PURPOSE

In order to ease the integration with diagnosis tools, our UML
interpreter provides a dedicated interface to connect them and to
control model execution. This section describes this interface, the
technique used to verify a set of propositions using the interpreter,

MODELS ’18, October 14–19,2018, Copenhagen, Denmark V. Besnard et al.

Figure 9: Class diagram of components allowing the control

of model execution.

and explains how a model-checker can take advantage of these
mechanisms to verify LTL properties on the runtime model.

5.1 Design of the Diagnosis Part

To performmodel diagnosis (e.g., simulation or verification) directly
on the executable code, our interpreter must be controlled remotely
by diagnosis tools. The class diagram in Figure 9 focuses on the
components needed for the diagnosis interface.

The Pilot class is the central element of this architecture. It coor-
dinates the Interpreter execution with requests sent by the diagnosis
tools through the communication stream. The target-specific Con-
nection is responsible for connecting the model interpreter to the
chosen diagnosis tool and the Communication class offers facilities
to the Pilot for reading and writing on data streams. Furthermore,
the Pilot can also use services provided by the Checker to evaluate
arbitrary boolean-valued expressions on the runtime execution.

Using this architecture, every diagnosis may be performed on
both desktop computer and embedded target. For instance, for a
hardware-in-the-loop simulation the diagnosis tools can be con-
nected to the embedded target, while for model-checking the desk-
top computer is usually more suitable.

5.2 Connecting the Diagnosis Tools

To facilitate the connection of diagnosis tools to multiple kinds
of embedded targets or desktop computers, we have introduced a

Figure 10: Architecture used to connect diagnosis tools.

converter (Figure 10). The role of the converter is to translate TCP
frames into the appropriate protocol available on the target (i.e.,
serial on embedded targets or TCP on desktop computers).

To connect to our model interpreter, diagnosis tools need to
implement a TCP client and the application layer protocol used to
exchange communication messages with the Pilot.

This protocol defines five requests for controlling model inter-
pretation:

Get configuration collects the current memory state of the
interpreter (i.e., the store) which is the dynamic part of the
model. The configuration is typically composed of the cur-
rent state of all active objects, values of their attributes, and
the content of their event pools.

Set configuration loads a configuration as the current mem-
ory state of the interpreter. This request enables to set each
active object in a desired state, to set values of their attributes,
and to inject events in their event pools.

Get fireable transitions collects transitions that have their
trigger and their guard satisfied in the current configuration.
These transitions could be fired on the next interpretation
step.

Fire transition fires a single transition of a given state ma-
chine active object. Only fireable transitions of the current
configuration can be fired using this request. Events that
may trigger the fired transition are consumed and the effect
associated to this transition is executed.

Reset interpreter restarts the interpreter from the initial state
of the model. This resets all active objects in their initial
states, resets attributes to their default values, and empties
event pools.

This protocol is sufficient to control any step-by-step model exe-
cution with backward navigation facilities (as omniscient debug-
ging [6]). It has been successfully used to perform state-space ex-
ploration of models on desktop computers and embedded targets
[5]. In this study, state-space exploration has been enhanced with
properties verification for model-checking.

5.3 Verification of Formal Properties

During state-space explorations, model-checking tools aim at ver-
ifying formal properties. A formal property consists of multiple
expressions, called atomic propositions, linked together with logical
operators.

These propositions are expressed in terms of the model concepts.
However, the knowledge of the configuration is not sufficient for
their evaluation that also depends on the model semantics, which
is implemented into the interpreter. Therefore, the model-checker
must involve the interpreter in the verification process for the
evaluation of these propositions.

Unified LTL Verification and Embedded Execution of UML Models MODELS ’18, October 14–19,2018, Copenhagen, Denmark

For this purpose, the communication protocol has been extended
with one request to submit atomic propositions to the interpreter:

Evaluate atomic propositions sends a set of atomic proposi-
tions and returns results of their evaluations. The interpreter
performs these evaluations on the runtime model using ser-
vices provided by the Checker (Figure 9).

:DiagnosisTool :Converter :Interpreter

evaluatePropositions(
stringProps)

loop [for each stringProp in stringProps]

retNew = isNew(stringProp)

alt [retNew == TRUE]

binProp = compile(stringProp)

loop [for each stringProp in stringProps]

retLoaded = isLoaded(stringProp)

alt [retLoaded == TRUE]

loadIndex = getLoadIndex(stringProp)

loadIndex = getNewLoadIndex(stringProp)

loadProposition(binProp, loadIndex)

evaluatePropositions(loadIndexes)

results

results

Figure 11: Sequence diagram for the evaluation of a set of

atomic propositions.

The atomic propositions are expressed in the same action lan-
guage as the design model (cf. Section 4.3). These expressions are
side-effect free and are evaluated directly on the target platform
in the same way as the guards of the model. However, contrary
to guards that are compiled at the same time as the model, atomic
propositions are not known at compilation time. They require to be
compiled and loaded on the interpreter afterwards. To achieve this,
the converter (Figure 10) is involved in the process: (i) to generate
the C code corresponding to atomic propositions, (ii) to compile it,
and (iii) to transmit the executable code to the checker of the inter-
preter. Figure 11 details this process for the evaluation of atomic
propositions with the interpreter.

Firstly, the diagnosis tool sends the set of atomic propositions,
as strings (stringProp), to the converter. For each proposition en-
countered, the converter generates and compiles the C function in
charge of its evaluation on the runtime model.

For a desktop computer usage, the resulting executable code
(binProp) is a dynamic library, that can be loaded dynamically by the
host operating system. For performance purpose, generation and
compilation steps are ignored if the atomic proposition has already
been compiled. Then, the converter requests the interpreter to load
the executable code of atomic propositions if it is not currently
available in its memory space. This operation uses a loadIndex

to identify each proposition on the interpreter. The interpreter
performs propositions loading using the services of the Checker.
When the checker receives the atomic propositions, it opens the
corresponding C libraries, loads the appropriate C functions, and
computes the function pointers needed to call the respective func-
tions. Finally, these function calls will be performed by the checker
when the converter requests to evaluate these propositions at the
end of the process.

For the bare-metal targets, the dynamic libraries cannot be
used for loading dynamically executable code due to the absence
of operating system. However, through the same process, the exe-
cutable code of atomic propositions can be compiled into binary
code and transmitted by the converter to the interpreter. When
received by the interpreter, this binary code is stored into volatile
memory (RAM) and the function calls proceed, in the same way,
using function pointers.

5.4 Application to Model-Checking

To show the versatility of our diagnosis module, we present in this
section how our interpreter can be coupled with a model-checking
engine, which provides native formal property verification. In our
experiments, we have used an extension of the OBPmodel-checking
engine [36, 37] but the integration process is general and can be
used with other model-checking tools.

Figure 12 describes the architecture used for this purpose. Fol-
lowing the principle presented in Section 5.2 and Section 5.3, a
dedicated execution runtime (ProxyRuntime) implements a TCP
client to connect to the interpreter and the application layer pro-
tocol to remotely control model execution and evaluate atomic
propositions.

The properties to be verified are expressed using the linear tem-
poral logic (LTL) language, which binds the atomic propositions,
expressed using our action language, to boolean valued functions.

Figure 12: Architecture used for formal verification with a

model-checker.

MODELS ’18, October 14–19,2018, Copenhagen, Denmark V. Besnard et al.

This decouples the temporal logic operators from the atomic propo-
sitions, enabling the use of standard model-checking algorithms
for the verification. In practice the LTL property is converted to
a Büchi automaton using the LTL3BA library [2]. The semantics
of the Büchi automaton is obtained dynamically through the dedi-
cated BA Runtime. The resulting Büchi automaton is synchronously
composed with the Büchi interpretation of the model semantics.
The verification algorithm, used in our prototype, is based on the
"nested DFS" Büchi emptiness checking algorithm proposed by
Gaiser and Schwoon in [14]. During the verification, the synchro-
nization between the Büchi automaton representing the property
and the Büchi interpretation of the model semantics is based on
the valuation of the atomic propositions. This valuation is obtained
by evaluating the propositional atoms with the Checker module in
the configurations exposed by our interpreter. The coupling with
the model-checking algorithm is realized through a ProxyRuntime,
which acts as a wrapper translating the requests of the model-
checking algorithm to network API calls on our UML interpreter.

The model-checker sets the current configuration of the inter-
preter using a Set configuration request. From this configuration,
the model-checking algorithm requests the list of all fireable transi-
tions from the runtime model using aGet fireable transitions request.
Each fireable transition is then fired, using a Fire transition request,
and the resulting configuration is collected, using a Get configura-
tion request. All atomic propositions are evaluated in this target
configuration, using the Evaluate atomic propositions request. Based
on the resulting valuation the model-checker computes the syn-
chronized transitions allowed by the Büchi property automaton.
These synchronized transitions are fired, and the resulting compos-
ite configurations (consisting of the target model configuration and
the target Büchi automaton configuration) are matched with the
known set of configurations. If the new configuration is not already
present in the know set, the configuration is added. This process
continues until either a fix point on the known set is reached or a
Büchi acceptance cycle, representing a counter-example, is detected.
The interested reader should refer to the "nested DFS" algorithm,
in [14], for a detailed presentation of this verification algorithm.

6 EXPERIMENTS AND RESULTS

Our approach has been applied to the level crossing example intro-
duced in Section 2. To check the system reliability, we verify formal
LTL properties on the runtime model through model-checking, as
described in the previous section.

Our validation strategy involves an abstraction of the environ-
ment as shown in Figure 13. For this purpose, we integrate into
the design model a Train active object that models the behavior of
a train looping on the level crossing. We also introduce an autho-
rization signal to synchronize the Train with the RailwaySign. The
train takes into account the railway sign through the reception of
this signal before passing on the level crossing.

The four properties that we want to verify on the system (intro-
duced in Section 2) have been expressed into LTL formalism, using
operators not (!), or (||), and (&&), globally ([]), eventually (<>),
and implies (->) :

(1) "[] !(trainIsPassing && gateIsOpen)"

(2) "[] !(trainIsPassing && roadSignIsOff)"

(3) "[] (gateIsClosed -> <> gateIsOpen)"

(4) "[] (roadSignIsOn -> <> roadSignIsOff)"

These expressions involve the following atomic propositions
written in our action language :

• trainIsPassing = |train.state == PASSING|

• gateIsClosed = |gate.state == CLOSED|

• gateIsOpen = |gate.state == OPEN|

• roadSignIsOn = |roadSign.state == ACTIVE|

• roadSignIsOff = |roadSign.state == INACTIVE|

Model-checking of these four properties have been performed
on both variants of the event pool: FifoEventPool and OrderedList-

DeferredEventPool, introduced in Section 4.2.
The FifoEventPool implementation ignores events that do not

match a valid trigger from a current state. With that event pool,
verification of the fourth property results in failure: road sign can
stay on without switching off.

The message sequence chart (MSC) in Figure 14 helps us to
understand the problem. This MSC has been generated using an
execution trace facility of our interpreter, based on the PlantUML
formalism (http://plantuml.com/). The diagram reveals that the
execution stops suddenly just before the second passage of the
train on the level crossing. During that second loop, the train sends
activation signals to tcFar and tcClose that are then transmitted to
the controller as entranceDetection signals. We can notice that these

Figure 13: Environment used for model-checking.

http://plantuml.com/

Unified LTL Verification and Embedded Execution of UML Models MODELS ’18, October 14–19,2018, Copenhagen, Denmark

train:Train

train:Train

tcFar:EntranceTC

tcFar:EntranceTC

tcClose:EntranceTC

tcClose:EntranceTC

tcExit:ExitTC

tcExit:ExitTC

controller:Controller

controller:Controller

railwaySign:RailwaySign

railwaySign:RailwaySign

roadSign:RoadSign

roadSign:RoadSign

gate:eate

gate:eate

Passing Detection Detection Detection Idle Inactive Active Closed

activation

Idle

exitDetection

Detection

switchOn

WaitRailwaySignOn

railwaySignOn

Active

activation

Far

entranceDetection

Detection

open

WaiteateOpen

gateOpen

Open

activation

Close

entranceDetection

Detection

switchOff

WaitRoadSignOff

roadSignOff

InactiveIdle

Figure 14: Message sequence chart of an execution trace of the level crossing system using FifoEventPool.

two signals are received by the controller while it has not finished
processing all events of the first train passage. In accordance with
our event pool semantics, these two signals are ignored by the
controller that is currently opening the gate and switching off the
roadSign. This results in a deadlock when the controller finally
reached its Idle state (its event pool is empty and no other active
object can evolve). This observation has been confirmed by the
model-checker that detects 2 deadlocks on the model.

The second event pool implementation (OrderedListDeferredE-
ventPool) does not ignore events, but may defer them for being pro-
cessed later. With that event pool, the verification of the four LTL
properties is successful. With this event pool semantics, even if en-
tranceDetection signals are received too early by the controller, these
events are deferred to be processed when the controller reaches
its Idle state. This execution semantics avoids previously observed
deadlocks and enables to satisfy the expected properties.

The state-space explored by the model-checker contains 173 con-
figurations and 276 transitions with the first event pool implemen-
tation (FifoEventPool), and 122 configurations and 209 transitions
with the second one (OrderedListDeferredEventPool). In terms of per-
formance, the formal verification of the four properties on a desktop
computer (Intel® Core™ i7-8550U CPU at 1.80GHz with 4 cores, 8
threads at 4GHz maximum frequency, 16GB DDR4 2400MHz RAM)
takes, on average, 1.71 seconds for the first trial and 0.96 seconds
for consecutive ones. The first trial is less efficient because the
executable code associated to each atomic proposition has to be
generated and compiled whereas consecutive trials ignore this step
(as mentioned in Section 5.3).

Following the verification of the level crossing system, the in-
terpreter and the runtime model have been deployed on an stm32
bare-metal embedded target (1 CPU core at 168MHz, 192kB RAM).
The resource overhead of the interpreter has not been evaluated
yet. A complete study needs to be carried out to determine how

MODELS ’18, October 14–19,2018, Copenhagen, Denmark V. Besnard et al.

much extra memory and execution resources are required by the
interpreter infrastructure compared to other approaches.

7 RELATED WORK

The work presented in this paper focuses on model verification and
execution in the context of embedded systems.

Several other works aim at verifying and executing models such
as the modeling tools Rational Software Architect [22] and Rhap-
sody [15], the model compilers GUML [9] and UniComp [11], the
language and modeling workbench GEMOC Studio [7], as well
as the model interpreters Moliz [24] and Moka [33] usable with
Papyrus [21]. A more complete review of tools based on execution
of UML models can be found in [12].

Rational Software Architect and Rhapsody modeling tools enable
UML model execution, simulation, and debugging through code
generation capabilities, but provide neither model interpretation
nor model-checking facilities.

GUML and UniComp are two model compilers that can directly
compile UML models, into efficient executable code without trans-
lation into intermediate programming languages. UniComp is also
part of an automated round-trip approach [10, 11] using back-
propagation facilities to inject monitoring results in the design
model. If both compilers enhance predictability of generated exe-
cutables, they are not designed to apply model-checking on design
models using the semantics they implement.

GEMOC Studio enables the design of a generic environment
with execution engines [13, 25, 38] and domain-specific tools (e.g.,
graphical animator, trace execution manager, omniscient debug-
ger). Moka and Moliz provides standalone UML model interpreters
conformant to the fUML [28] standard, that may be integrated with
modeling tools (e.g., Papyrus) for execution, simulation, debugging,
and testing purposes. However, model interpreters of these tools do
not fit embedded requirements for model execution and may result
in a lack of performance on such systems. Moreover, these tools
do not currently address model-checking based on the operational
semantics implemented in their interpreters.

Using an approach more suited for embedded systems, some
works suggest to transform UML design models into an interme-
diate formalism based on state machines (e.g., EHA [30, 31], ESM
[34]). Even if the resulting models can be used for diagnosis and
verification, they are not able to execute them on embedded targets.
Instead, these works involve code generation from these models.
Another similar work for designing embedded systems is mbeddr
[39]. The design model of the system is transformed into a formal
model for being analyzed by the SMV model-checker, and into C
code for being executed on an embedded target. However, all these
approaches rely on separate transformations for verification and
execution without proving the equivalence between the verified
model and the executable code. Furthermore, the model designer
may be exposed to the semantic gap introduced by these transfor-
mations, which implies the use of low-level tools (e.g., GDB).

Other tools provide support to analyze execution of embedded
systems at model-level. The debugger introduced in [19] uses an
embedded monitor to produce back annotated traces and build UML
sequence and timing diagrams in real-time for visualizing the target
behavior. MDebugger [3] uses a model-to-model transformation to

instrument the design model before code generation. A debugging
interface is then used to remotely control and analyze model exe-
cution. Hence, both tools tackle the semantic gap between design
models and code for debugging real-time embedded systems but
do not deal with verification through model-checking.

Focused on the issue related to embedded system execution,
Squawk [35] and HaLVM [17] offer embedded virtual machines for
Java or Haskell languages respectively. Squawk provides a compact
and position independent bytecode for efficient execution on wire-
less sensor devices. HaLVM enables quickly prototyping operating
system components on top of the Xen hypervisor. Other execution
engines dedicated to sensor networks (e.g., Mote Runner [8], Maté
[23]) or real-time virtual machines (e.g., Ovm [4], the IBM Java vir-
tual machine [1], and the Esterel virtual machine [32]) face similar
issues like our UML interpreter to optimize execution performance
and communication speed. However, our execution engine operates
on the model level whereas all these execution engines act on the
code level without links with the design model of the system.

8 CONCLUSION

Model-based engineering facilitates the development of complex
embedded systems through model verification and model execution
techniques. This paper has presented an approach that unified
model verification and model execution using a single operational
semantics implemented in a UML model interpreter.

This UML model interpreter is designed for being executed on
both desktop computers and embedded bare-metal targets. It can be
remotely controlled through an application layer protocol (on top
of TCP) to perform simulation and model-checking. The approach
has been experimented on a level crossing controller, which has
been verified by LTL model-checking before its deployment on the
embedded target executing the same interpretation semantics.

That approach improves the continuum from design to runtime
by applying simulation, model-checking, and execution on a single
design model either on desktop computers or embedded micro-
controllers. Using a single model and a single operational semantics
implemented in a single interpreter avoids potential semantics gaps
introduced by model transformations. Moreover, this approach
avoids the equivalence problem between formal models used for
verification and executable code: what is checked is what is executed.
Diagnosis results are also expressed in terms of design concepts,
which eases their understanding during the development process.

To improve this execution engine, we further plan to improve
UML coverage by supporting more UML concepts, and to study
the impact of UML semantics variation points on model execution
through model-checking. To better align with industrial practices,
we also consider improving our action language support, notably
by making it possible to plug several action languages. Moreover, a
dedicated study also needs to be performed to evaluate the resource
overhead of this model interpreter in comparison with other related
execution engines.

ACKNOWLEDGMENTS

This work is partially funded by Davidson Consulting. The au-
thors especially thank David Olivier for his advice and industrial
feedback.

Unified LTL Verification and Embedded Execution of UML Models MODELS ’18, October 14–19,2018, Copenhagen, Denmark

REFERENCES
[1] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael Dawson,

Mike Fulton, David Grove, Darren Hart, and Mark Stoodley. 2007. Design and Im-
plementation of a Comprehensive Real-time Java Virtual Machine. In Proceedings
of the 7th ACM & IEEE International Conference on Embedded Software (EMSOFT
’07). ACM, New York, NY, USA, 249ś258. https://doi.org/10.1145/1289927.1289967

[2] Tomáš Babiak, Mojmír Křetínský, Vojtěch Řehák, and Jan Strejček. 2012. LTL to
Büchi Automata Translation: Fast andMoreDeterministic. In Tools andAlgorithms
for the Construction and Analysis of Systems, Cormac Flanagan and Barbara König
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 95ś109.

[3] Mojtaba Bagherzadeh, Nicolas Hili, and Juergen Dingel. 2017. Model-level,
Platform-independent Debugging in the Context of the Model-driven Devel-
opment of Real-time Systems. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
419ś430. https://doi.org/10.1145/3106237.3106278

[4] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka, Jan
Vitek, Austin Armbruster, Edward Pla, and David Holmes. 2006. A Real-time
Java Virtual Machine for Avionics - An Experience Report. In Proceedings of
the 12th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS ’06). IEEE Computer Society, Washington, DC, USA, 384ś396. https:
//doi.org/10.1109/RTAS.2006.7

[5] Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric Jouault, David
Olivier, and Ciprian Teodorov. 2017. Towards one Model Interpreter for Both
Design and Deployment. In 3rd International Workshop on Executable Modeling
(EXE 2017). Austin, United States.

[6] Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and Benoit Baudry.
2015. Supporting Efficient and Advanced Omniscient Debugging for xDSMLs.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering (SLE 2015). ACM, New York, NY, USA, 137ś148. https:
//doi.org/10.1145/2814251.2814262

[7] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Dean-
toni, and Benoit Combemale. 2016. Execution Framework of the GEMOC Studio
(Tool Demo). In Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering (SLE 2016). ACM, New York, NY, USA, 84ś89.
https://doi.org/10.1145/2997364.2997384

[8] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and I. Romanov. 2009.
Mote Runner: A Multi-language Virtual Machine for Small Embedded Devices.
In Proceedings of the 2009 Third International Conference on Sensor Technologies
and Applications (SENSORCOMM ’09). IEEE Computer Society, Washington, DC,
USA, 117ś125. https://doi.org/10.1109/SENSORCOMM.2009.27

[9] Asma Charfi Smaoui, Chokri Mraidha, and Pierre Boulet. 2012. An Optimized
Compilation of UML State Machines. In ISORC - 15th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing.
Shenzhen, China.

[10] Federico Ciccozzi. 2014. FromModels to Code and Back : A Round-trip Approach for
Model-driven Engineering of Embedded Systems. Ph.D. Dissertation. Mälardalen
University, Embedded Systems.

[11] Federico Ciccozzi. 2018. Unicomp: A Semantics-aware Model Compiler for
Optimised Predictable Software. In Proceedings of the 40th International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER ’18). ACM,
New York, NY, USA, 41ś44. https://doi.org/10.1145/3183399.3183406

[12] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. 2018. Execution of UML
models: a systematic review of research and practice. Software & SystemsModeling
(10 Apr 2018). https://doi.org/10.1007/s10270-018-0675-4

[13] Julien Deantoni, Papa Issa Diallo, Joël Champeau, Benoit Combemale, and Ciprian
Teodorov. 2014. Operational Semantics of the Model of Concurrency and Commu-
nication Language. Research Report RR-8584. INRIA. 23 pages.

[14] Andreas Gaiser and Stefan Schwoon. 2009. Comparison of Algorithms for Check-
ing Emptiness on Büchi Automata. In Annual Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS’09) (OpenAccess Series
in Informatics (OASIcs)), Petr Hlinený, Václav Matyáš, and Tomáš Vojnar (Eds.),
Vol. 13. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
18ś26. https://doi.org/10.4230/DROPS.MEMICS.2009.2349

[15] Eran Gery, David Harel, and Eldad Palachi. 2002. Rhapsody: A Complete Life-
Cycle Model-Based Development System. In Integrated Formal Methods, Michael
Butler, Luigia Petre, and Kaisa Sere (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1ś10.

[16] Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver, Chris Raistrick, and Paul
Francis. 2003. UML ASL Reference Guide. http://www.ooatool.com/docs/ASL03.
pdf Kennedy Carter.

[17] Galois Inc. [n. d.]. The Haskell Lightweight Virtual Machine (HaLVM): GHC
running on Xen. https://github.com/GaloisInc/HaLVM

[18] Project Technology Inc. 2008. Object Action Language Reference Manual. http:
//www.ooatool.com/docs/OAL08.pdf

[19] Padma Iyenghar, Elke Pulvermueller, Clemens Westerkamp, Juergen Wuebbel-
mann, and Michael Uelschen. 2017. Model-Based Debugging of Embedded Software
Systems. Springer New York, New York, NY, 107ś132. https://doi.org/10.1007/

978-1-4614-2266-2_5
[20] Frédéric Jouault, Ciprian Teodorov, Jérôme Delatour, Luka Le Roux, and Philippe

Dhaussy. 2014. Transformation de modèles UML vers Fiacre, via les langages
intermédiaires tUML et ABCD. Génie logiciel 109 (June 2014).

[21] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien
Gerard, Patrick Tessier, Remi Schnekenburger, Hubert Dubois, and François
Terrier. 2009. Papyrus UML: an open source toolset for MDA. In Proceedings
of the Fifth European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA-FA 2009). 1ś4.

[22] Daniel Leroux, Martin Nally, and Kenneth Hussey. 2006. Rational Software
Architect: A tool for domain-specific modeling. IBM systems journal 45, 3 (2006),
555ś568.

[23] Philip Levis and David Culler. 2002. Maté: A Tiny Virtual Machine for Sensor
Networks. SIGPLAN Not. 37, 10 (Oct. 2002), 85ś95. https://doi.org/10.1145/
605432.605407

[24] Tanja Mayerhofer and Philip Langer. 2012. Moliz: A Model Execution Framework
for UML Models. In Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards (MW ’12). ACM, New York, NY, USA,
Article 3, 2 pages. https://doi.org/10.1145/2448076.2448079

[25] Tanja Mayerhofer, Philip Langer, ManuelWimmer, and Gerti Kappel. 2013. xMOF:
Executable DSMLs Based on fUML. In Software Language Engineering, Martin Er-
wig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer International Publishing,
Cham, 56ś75.

[26] MMohlin. 2011. Using the UML Action Language in Rational Software Architect.
[27] OMG. 2017. Action Language for Foundational UML (Alf). www.omg.org/spec/

ALF/1.1/PDF
[28] OMG. 2017. Semantics of a Foundational Subset for Executable UML Models.

https://www.omg.org/spec/FUML/1.3/PDF
[29] OMG. 2017. Unified Modeling Language. https://www.omg.org/spec/UML/2.5.

1/PDF
[30] Gergely Pintér and István Majzik. 2003. Automatic Code Generation Based on

Formally Analyzed UML Statechart Models. In Formal Methods for Railway Oper-
ation and Control Systems (Proceedings of the FORMS-2003 Conference), G. Tarnai
and E. Schnieder (Eds.). L’Harmattan, Budapest, Hungary, 45ś52.

[31] Gergely Pintér and István Majzik. 2003. Program Code Generation based on UML
Statechart Models. Periodica Polytechnica 47, 3ś4 (2003), 187ś204.

[32] Becky Plummer, Mukul Khajanchi, and Stephen A. Edwards. 2006. An Esterel
Virtual Machine for Embedded Systems. In Proceedings of Synchronous Languages,
Applications, and Programming (SLAP), International Workshop on Synchronous
Languages, Applications, and Programming (SLAP’06) (Ed.), Vol. 126. Vienna,
Austria, 912ś917.

[33] Sebastien Revol, Géry Delog, Arnaud Cuccurru, and Jérémie Tatibouët. 2018.
Papyrus: Moka Overview. https://wiki.eclipse.org/Papyrus/UserGuide/
ModelExecution

[34] Tim Schattkowsky and Wolfgang Muller. 2005. Transformation of UML State
Machines for Direct Execution. In Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VLHCC ’05). IEEE Computer
Society, Washington, DC, USA, 117ś124. https://doi.org/10.1109/VLHCC.2005.64

[35] Doug Simon and Cristina Cifuentes. 2005. The Squawk Virtual Machine: Java™on
the Bare Metal. In Companion to the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’05).
ACM, New York, NY, USA, 150ś151. https://doi.org/10.1145/1094855.1094908

[36] Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux. 2017. Environment-
driven reachability for timed systems. International Journal on Software Tools
for Technology Transfer 19, 2 (01 Apr 2017), 229ś245. https://doi.org/10.1007/
s10009-015-0401-2

[37] Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy. 2016. Past-
Free[ze] Reachability Analysis: Reaching further with DAG-directed exhaustive
state-space analysis. Software Testing, Verification and Reliability 26, 7 (2016),
516ś542. https://doi.org/10.1002/stvr.1611 stvr.1611.

[38] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and Frédéric
Mallet. 2015. A Behavioral Coordination Operator Language (BCOoL). In Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS),
Timothy Lethbridge, Jordi Cabot, and Alexander Egyed (Eds.). ACM, Ottawa,
Canada, 462.

[39] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012. Mbeddr:
An Extensible C-based Programming Language and IDE for Embedded Systems.
In Proceedings of the 3rd Annual Conference on Systems, Programming, and Appli-
cations: Software for Humanity (SPLASH ’12). ACM, New York, NY, USA, 121ś140.
https://doi.org/10.1145/2384716.2384767

https://doi.org/10.1145/1289927.1289967
https://doi.org/10.1145/3106237.3106278
https://doi.org/10.1109/RTAS.2006.7
https://doi.org/10.1109/RTAS.2006.7
https://doi.org/10.1145/2814251.2814262
https://doi.org/10.1145/2814251.2814262
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1109/SENSORCOMM.2009.27
https://doi.org/10.1145/3183399.3183406
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.4230/DROPS.MEMICS.2009.2349
http://www.ooatool.com/docs/ASL03.pdf
http://www.ooatool.com/docs/ASL03.pdf
https://github.com/GaloisInc/HaLVM
http://www.ooatool.com/docs/OAL08.pdf
http://www.ooatool.com/docs/OAL08.pdf
https://doi.org/10.1007/978-1-4614-2266-2_5
https://doi.org/10.1007/978-1-4614-2266-2_5
https://doi.org/10.1145/605432.605407
https://doi.org/10.1145/605432.605407
https://doi.org/10.1145/2448076.2448079
www.omg.org/spec/ALF/1.1/PDF
www.omg.org/spec/ALF/1.1/PDF
https://www.omg.org/spec/FUML/1.3/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://doi.org/10.1109/VLHCC.2005.64
https://doi.org/10.1145/1094855.1094908
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1002/stvr.1611
https://doi.org/10.1145/2384716.2384767

	Abstract
	1 Introduction
	2 Illustrating Example
	3 Overview
	4 Interpreter Design and Implementation Details
	4.1 Generation of the Runtime Model
	4.2 Interpreter Design
	4.3 Action Language
	4.4 Interpreter Execution

	5 Control Model Execution for Diagnosis Purpose
	5.1 Design of the Diagnosis Part
	5.2 Connecting the Diagnosis Tools
	5.3 Verification of Formal Properties
	5.4 Application to Model-Checking

	6 Experiments and Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

