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Abstract. Model-checkers increasing performance allows engineers to apply 

model-checking for the verification of real-life system but little attention has 

been paid to the methodology of model-checking. Verification “in the large” 

suffers of two practical problems: the verifier has to deal with many verification 

objects that have to be carefully managed and often re-verified; it is often diffi-

cult to judge whether the formalized problem statement is an adequate reflec-

tion of the actual problem.  An organizing system - an intentionally arranged 

collection of resources and the interactions they support – makes easier the 

management of verification objects and supports reasoning interactions that fa-

cilitates diagnosis decisions. We discuss the design of such an organizing sys-

tem, we show a straightforward implementation used within our research team 

and we present the possible ameliorations of the organizing system. 
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1 Introduction 

System verification is used to establish that the design or product under considera-

tion possesses certain properties. Formal verification has been advocated as a way 

forward to address verification tasks of complex embedded systems.Formal methods, 

within the field of computer science, is the formal treatment of problems related to the 

analysis of designs, but “it does not yet generally offer what its name seems to sug-

gests, viz. methods for the application of formal techniques [1].”  

Our research work is underlined by the observation that verification “in the large” 

causes a proliferation of interrelated models and verification sessions “that must be 

carefully managed in order to control the overall verification process [1].” This paper 

is concerned with practical ways to structure and control the verification and diagno-

sis activities. The main formal technique discussed in this paper is verification by 

model-checking. “Model checking is a formal verification technique which allows for 

desired behavioral properties of a given system to be verified on the basis of a suitable 

model of the system through systematic inspection of all states of the model [2].” 

Model-based verification techniques (including model-checking) are based on models 
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describing the possible system behavior in a precise and unambiguous manner. “It 

turns out that – prior to any form of verification – the accurate modelling of systems 

often leads to the discovery of incompleteness, ambiguities, and inconsistencies in 

informal system specifications [3].” 

Model-checking walks through different phases within an iterative process [3]: 

Modelling phase: model the system under consideration using the model descrip-

tion language of the model checker at hand; as a first check and quick assessment of 

the model perform some simulations; formalize the property to be checked using the 

specification language. 

Running phase: run the tool to check the validity of the property in the model.  

Analysis phase: if the property is satisfied, then check next property (if any); if the 

property is violated, then analyze generated counterexample by simulation and refine 

the model, design, or property.  

In addition to these steps, the entire verification should be planned, administered, 

and organized. 

The applicability of model-checking to large systems suffers of two practical prob-

lems. A verification session refines the model or the design, and because properties 

are verified one by one, previously verified properties need or need not to be verified 

again, depending on the refinement performed. Moreover, if the model-checker runs 

out of memory, some divide-and-conquer techniques should be employed in order to 

reduce the model and try again. These techniques exploit regularities in the structure 

of the models or of the verification process itself that are difficult to understand and 

their performance may vary considerably. 

A second practical problem arises from the difficulty to judge whether the formal-

ized problem statement (model + properties) is an adequate reflection of the actual 

problem. This is also known as the validation problem or the problem of the validity 

of the formal model. If the verifier suspects the validity of a property, the property 

needs to be re-formalized and it starts the whole verification again. If the verifier sus-

pects the validity of the design, the verification process restarts after an improvement 

of the design. It is admitted that the complexity of the involved system, as well as the 

lack of precision of the informal specification of the system’s functionality, makes it 

hard to answer the validation problem satisfactorily [1], [3]. 

Both problems require a more organized verification method (although organized 

should be an indispensable attribute of a method). Organizing creates or supports 

capabilities by intentionally imposing order and structure. In this paper, we will apply 

the concepts of an organizing system promoted by [4]: “an Organizing System is an 

intentionally arranged collection of resources and the interactions they support." As 

an attempt to solve the problems mentioned above, we designed and built a prototype 

of an Organizing System for the support of verification and diagnosis activities. In 

section 2, we precise the issues of the management of verification cycles; we intro-

duce a general theory of diagnosis, used for solving the error interpretation and we 

presents some design decisions for our Organizing System. Section 3 deepens differ-

ent aspects of an Organizing System: knowledge management and ontologies, tech-

nical aspects of the tiers of the organizing system, and its place in the whole verifica-

tion toolset. Section 4 relates our work with previous work, and Section 5 concludes. 



2 Organizing System for Verification and Diagnosis activities 

2.1 Managing the Verification Trajectories 

There are basically three possible outcomes of a verification run: the specified proper-

ty is either valid in the given model or not, or the model is faced with the state space 

explosion problem (it turns out to be too large to fit within the computer memory). 

If a state is encountered that violates the property under consideration, the model 

checker provides a counterexample that describes an execution path that leads from 

the initial system state to a state that violates the property being verified. It is indis-

putable that the verification results obtained using a verification tool should always be 

reproducible [5]. Tool support is required and we will present in Fig. 3 the objects that 

are significant and tool-managed during the verification phases. The specification-

design-modelling-verification cycles are presented in Fig. 1. Baier and Katoen book 

[3] is used as a reference terminology in the paper. 
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Fig. 1. The specification-design-modelling-verification process and its cycles 

Modelling. 

Model checking inputs are a model of the system under consideration and a formal 

characterization of the property to be checked. Models are mostly expressed using 

finite-state automata, consisting of a finite set of states and a set of transitions. To 

allow verification, properties are described using a property specification language, 

relying generally on temporal logic that allows people to describe properties in a pre-

cise and unambiguous manner. As mentioned above, it may be a serious problem 

(known as the validation problem) to judge whether the formalized problem statement 

(model + properties) is an adequate description of the actual verification problem [3]. 



Verification: running the model-checker. 

Current model checkers provide the user with various options and directives to opti-

mize and tune the functionality and performance of the verification run. Subsequently, 

the actual model checking takes place. Basically, model-checking explores all possi-

ble system states to check the validity of the property under consideration. 

Whenever a property is not valid, it may have different causes. A modelling error 

means that the model does not reflect the design of the system. After a correction of 

the model, verification has to be restarted with the improved model. This corresponds 

to the bolded cycle in Fig. 1. When there is no undue discrepancy between the design 

and its model, then either a design error has been exposed, or a property error has 

taken place (this case is not considered in the paper). In case of a design error, the 

verification is concluded with a negative result, and the design (together with its mod-

el) has to be improved. This corresponds to the situation where the designer proceeds 

with iterative refinements and is depicted with a normal plain cycle in Fig. 1. 

Interpreting the error(s). 

From the debugging viewpoint, the main advantage of model checking is the pro-

duction of counterexamples demonstrating that a system does not satisfy a specifica-

tion. Extracting the essence of an error from even a detailed source-level trace of a 

failing run requires a great deal of human-effort [6] and a lot of research work focus 

on counterexample processing to produce an error explanation. Hence, correcting the 

error(s) starts with an error diagnosis, and more precisely, using the fault, error, and 

failure nomenclature of [7], it starts with a failure diagnosis. Failure diagnosis is the 

process of identifying the fault that has led to an observed failure of a system or its 

constituent components.  

Model-based diagnosis. 

The technique we use for failure diagnosis is a model-based diagnosis (also called 

reasoning from first principles) based on a theory of diagnosis established by [8], [9], 

[10]. A diagnosis is as a set of assumptions about a system component’s abnormal 

behavior such that observations of one component’s misbehavior are consistent with 

the assumptions that all the other components are acting correctly [10]. The computa-

tional problem is to determine all possible diagnoses for a given faulty system. The 

representation of the knowledge of the problem domain should achieve the desired 

coverage and quality of diagnoses while remaining computationally tractable [11]. 

Verification organization. 

Whether the verification trajectory is incorporated in an adaptive design strategy or 

focused on modelling-and-verifying cycles, the entire model-checking process should 

be well organized, well structured, and well planned. According to [3], different mod-

el descriptions are made describing different parts of the system, various versions of 

the verification models are established, and plenty of verification parameters and 

results are available. Our proposal is to use an organizing system in order to manage a 

practical model-checking process and to allow the reproduction of the experiments 

carried out by the engineers. 



It is normal to organize our world, but doing so systematically is key and the sub-

ject of The Discipline of Organizing (TDO) approach promoted by Robert J. Glushko 

and al. [4]. The authors made the observation that library and information science, 

informatics, computer science and other fields focus on the characteristic types of 

resources and collections that define those disciplines. In contrast, TDO complements 

the focus on specific resource and collection types with a framework that views or-

ganizing systems as existing in a multi-dimensional design space in which we can 

consider many types of resources at the same time and see the relationships among 

them. The framework is based on an assessment of what is being organized, why, how 

much, when and by what means. It leads to an Organizing System defined as “an 

intentionally arranged collection of resources and the interactions they support [4].” 

To sum up the problem statement of this section, managing the verification trajec-

tories is an indispensable support for using model checkers “in the large”. Moreover 

the proliferation of verification resources and the variety of possible interactions with 

them requires an Organizing System. “The concept of the Organizing System high-

lights the design dimensions and decisions that collectively determine the extent and 

nature of resource organization and the capabilities of the processes that compare, 

combine, transform and interact with the organized resources [4].”  

In the next section, we will address the domain of diagnosis and some of its issues. 

2.2 Theories of Diagnosis 

A variety of failure diagnosis techniques drawing from diverse areas of computing 

and mathematics such as artificial intelligence, machine learning, statistics, stochastic 

modelling, Bayesian inference, rule-based inference, information theory, and graph 

theory have been studied in the literature [12]. “From a modelling perspective, there 

are methods that require accurate process models, semi-quantitative models, or quali-

tative models. At the other end of the spectrum, there are methods that do not assume 

any form of model information and rely only on historic process data [13].” 

Venkatasubramanian has broadly classified fault diagnosis methods into three general 

categories and reviewed them in three parts: quantitative model-based methods [13], 

qualitative model-based methods [14], and process history based methods [15].  

In the model-based diagnosis, often referred as diagnosis from first principles, one 

is given a description of a system, together with an observation of the system's behav-

ior which conflicts with the way the system is meant to behave. “The diagnostic prob-

lem is to determine those components of the system which, when assumed to be func-

tioning abnormally, will explain the discrepancy between the observed and correct 

system behavior [10].” Under the process-history based methods, only the availability 

of large amount of historical process data is needed. The structure or the design of the 

real system being diagnosed is only weakly represented, or not at all. “Successful 

diagnoses stem from the codified experience of the human expert being modeled, 

rather than from what is often referred to as "deep" knowledge of the system being 

diagnosed [10].” Without denying the importance of the experiential approaches, we 

use a theory of diagnosis from fist principles based on Reiter’s work [10] as a general 

theory of diagnosis. The theory is presented in Fig. 2, with a summary after the figure. 



Definition  2.1.  A  system  is  a  pair  (SD,  COMPONENTS)  where:  

(1)  so,  the  system  description,  is  a  set  of  first-order  sentences;  

(2) COMPONENTS,  the  system  components,  is  a  finite  set  of  constants. 

In  all  intended  applications,  the  system  description  will  mention  a  distin-

guished  unary  predicate  AB(*),  interpreted  to  mean  "abnormal."  

 

Diagnostic settings involve observations.  Without  observations,  we cannot  de-

termine  whether  something  is  wrong  and  whether  a diagnosis  is  called  for. 

 

Definition 2.2.  An  observation  of  a  system  is  a  finite  set  of first-order  sen-

tences. We  shall  write  (SD,  COMPONENTS, OBS) for  a  system  (SD,  

COMPONENTS)  with observation  OBS.  

 

Suppose we have determined that a system (SD, {c1,  …, cn})  is  faulty,  by  which  

we  mean  informally  that  we  have  made  an  observation  OBS  which conflicts  

with  what  the  system  description  predicts  should  happen  if  all  its components  

were  behaving  correctly.  Now  {¬AB(c1),...,  ¬AB(cn)}  represents  the  assumption  

that  all  system  components  are  behaving  correctly,  so  that so  SD U {¬AB(c1),.  .  

.  ,  ¬AB(cn)}  represents  the  system  behavior  on  the  assumption  that  all  its  

components  are  working  properly.  Hence  the  fact  that  the observation  OBS  

conflicts  with  what  the  system  should  do  were  all  its  components  behaving  

correctly  can  be  formalized  by:  

 SD U {¬AB(c1) .....  ¬AB(cn) } U OBS (1)  is  inconsistent.  

Intuitively,  a  diagnosis  is  a  conjecture that  certain  of  the  components  are 

faulty  (ABnormal)  and  the  rest  normal.  The  problem  is  to  specify  which com-

ponents  we  conjecture  to  be  faulty.  Now  our  objective  is  to  explain  the incon-

sistency  (1),  an  inconsistency  which  stems  from  the  assumptions ¬AB(c1)  ....  

,¬AB(cn), i.e. that all components  are  behaving  correctly.  The natural  way  to  

explain  this  inconsistency  is  to  retract  enough  of  the  assumptions   ¬AB(c1)  ....  

,¬AB(cn),  so  as  to  restore  consistency  to  (1).  But we should not be overzealous 

and exhibit a diagnosis where all components are faulty.  

 

Definition  2.3.  A  diagnosis for  (SD,  COMPONENTS, OBS)  is  a  minimal  set  

Δ est inclus dans COMPONENTS  such  that SD U OBS U {AB(c) | c appartient à Δ} 

U {¬AB(c) | c appartient à COMPONENTS  - Δ} is  consistent. 

  

In  other  words,  a  diagnosis  is  determined  by  a  smallest  set  of  components 

with  the  following  property:  The  assumption  that  each  of  these  components  is 

faulty  (ABnormal),  together  with  the  assumption  that  all  other  components  are 

behaving  correctly  (¬ABnormal),  is  consistent  with  the  system  description and  

the  observation. 

Fig. 2. Reiter, R. (1987). A theory of diagnosis from first principles. Artificial intelligence, 

32(1), 57-95. 



One begins with a description of a system, including desired properties and the struc-

ture of the system’s interacting components. Whatever one's choice of representation, 

the description will specify how that system normally behaves on the assumption that 

all its components are functioning correctly. We need a diagnosis if we have available 

an observation of the system's actual behavior and if this observation is logically in-

consistent with the way the system is meant to behave. Intuitively, a diagnosis deter-

mines system components which, when assumed to be functioning abnormally, will 

explain the discrepancy between the observed and correct system behavior [10]. 

There may be several competing explanations (diagnoses) for the same faulty system, 

the computational problem, then, is to determine all possible diagnoses. 

2.3 Design Decisions 

Explicitly or by default, establishing an Organizing System (OS) requires many 

decisions. These decisions are deeply intertwined, but it is easier to introduce them as 

if they were independent. In [4], authors introduce five groups of design decisions. 

What is being organized? 

System models, verification runs and diagnosis are our primary source of interest. 

There are all made of digital resources, but we can make a distinction between prima-

ry resources (such as [parts of] models, properties, verification runs, and counterex-

amples) and description resources that describe the primary resources and/or their 

relationships. Verification benchmarks (such as the BEEM — BEnchmarks for Ex-

plicit Model checkers [16]) provide valuable inputs and need to be organized in col-

lections. Any OS user can also organize her/his own verification endeavors in collec-

tions, sub-collections of models, properties, runs and results. 

Why it is being organized? 

OS users are modelling and verification engineers, working alone or in teams, who 

need “to deal with the data explosion of the modelling phase and the versioned prod-

uct space explosion of the verification phase [1].”  The OS gathers and organizes 

quantitative and qualitative information to support knowledge creation and automated 

diagnosis reasoning. OS users share knowledge without being constrained to espouse 

a given formalism. OS users need to navigate efficiently through the resources space. 

The OS supports a reverification procedure to make sure that errors found in the mod-

el do not invalidate previous verification runs.  

How much is it being organized? 

The simplest OS can be a software configuration management system controlling 

the release and change of each digital resource, leaving the burden of organization 

outside of the OS. At the opposite of the spectrum, the OS can be a full ontology 

where any relationship between any piece of information is carefully defined and 

controlled, allowing many reasoning possibilities. For our point of view, the OS man-

ages essentially documents (models, results, traces). Each document organizes its 

knowledge structure and content, according to its document type, and the engineer 



writes and reads information according to this structure. The reification of the under-

lying knowledge structure for reasoning purposes is done automatically by the OS. 

When is it being organized?  

The OS is intended to assist the engineer in his/her daily modelling and verification 

tasks, hence resources are organized continuously. However, the OS should offer an 

ingestion feature that helps to enter inputs into the OS. Ingest feature provides the 

services and functions to accept complex verification endeavors or benchmark collec-

tions and prepares the contents for storage and management within the OS. Converse-

ly, an access feature provides the services and functions that support users in  deter-

mining  the  existence,  description,  location  and  availability  of  information  stored  

in  the  OS,  and  allowing  users  to extract information in a parametrized manner. 

How or by whom, or by what computational processes, is it being organized? 

Although a single verification engineer will benefit of the OS use, the OS is in-

tended to support teamwork and to share knowledge about models and verification 

endeavors. As mentioned above, automated processes should extract as much 

knowledge as possible from the documents internal structure and from the collections 

organization. As a collaborative teamwork, organization is performed in a distributed, 

bottom-up manner. 

3 Inside the Organizing System 

3.1 Knowledge Management and Ontologies 

In [17], the authors state that knowledge is an enterprise’s most important assets 

and define the basic activities of knowledge management: identification, acquisition, 

development, dissemination, use, and preservation of the enterprise’s knowledge. 

They advocate a corporate or organizational memory (OM) at the core of a learning 

organization, supporting sharing and reuse of individual and corporate knowledge and 

lessons learned [17]. The concept of an organizing system intended to knowledge 

management (KM) is a modern reincarnation of the organizational memory and we 

can benefit from the results gained in this research area. Knowledge acquisition and 

maintenance pose a serious challenge for organizational memories and [17] recom-

mend adhering to the following principles: - exploit easily available information 

sources ; - forgo a complete formalization of knowledge; - use automatic knowledge-

acquisition tools; - encourage user feedback and suggestions for improvements; - 

check the consistency of newly suggested knowledge. 

An organizational memory or a KM organizing system relies substantially on exist-

ing information sources, which constitute the first tier of its architecture, called the 

object level in [17] and the storage tier in [4]. This level or tier is characterized by a 

variety of sources, heterogeneous with respect to several dimensions concerning form 

and content properties. An organizational memory or an information organizing sys-

tem offers presentation facilities in the access tier, called the application-specific level 



in [17] and the presentation tier in [4]. This level or tier performs the mapping from 

the application-specific information needs to these heterogeneous object-level sources 

via a uniform access and utilization method on the basis of a logic-based, knowledge-

rich level, a middle tier called the knowledge description level in [17] and the logic 

tier in [4]. The knowledge-rich level has the central role of a shared language to con-

nect people to people, people to information, and information to information [18], and 

the level includes ontologies as a core enabler. As major knowledge-based KM appli-

cations, ontologies are used for the following three general purposes [18]: to support 

knowledge visualization; to support knowledge search, retrieval, and personalization; 

to serve as the basis for information gathering and integration. 

Fig. 3 represents the main concepts and relationships of our ontology. A system is 

referred to by several propositional objects: system requirements (sentences and for-

malized properties), the system model (and its components), observations generally 

made about verification runs that are organized within verification endeavors. Ac-

cording to Reiter’s theory presented in Fig. 2, a diagnosis is a conjecture that certain 

of the components are faulty (Abnormal) and the rest normal, stemming from an ob-

servation inconsistent with the system descriptions. All information on a particular 

verification run is not detailed here, and include, among others, checked properties, 

run outcomes, model-checker options and statistics. 
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Fig. 3. Main elements of the ontological level. 

3.2 Technical Aspects of the Tiers of the Organizing System  

Modern applications separate the storage of data, the business logic or functions 

that use the data, and the user interface or presentation components through which 

users or other applications interact with the data. For each tier, we kept the design as 

simple as possible, relying on straightforward and widely-used solutions. 

The storage tier.  

As mentioned in the introduction, a practical difficulty of using model checkers “in 

the large” is the management of all (generated) data during the verification endeavors. 



A disciplined recording of information on the different models during the verification 

phase becomes even more indispensable when errors are found, because, once the 

erroneous models have been corrected and re-verified, all models that have been veri-

fied previously and which are affected by the error should be re-verified as well [1]. 

We propose to use a Software Configuration Management (SCM) system to control 

the versioned artifacts produced during modelling and verification phases.  

We do not impose any arrangement to the verification engineers. Hence, a verifica-

tion endeavor is associated with a directory, with a total freedom to arrange endeavors 

and runs in a recursive manner. Using the combination of SCM feature and tools (e.g., 

the tool make) able to process automatically the building of software artifacts, each 

engineer organizes her/his endeavors in an arranged hierarchy or a rake of runs. 

Complex objects such as set of properties or models decomposition are managed in 

the same manner, with a root directory and a freedom of organization. In order to ease 

the integration of each single object at the logical level, an XML description file 

stores information about the objects, a feature called a version description in a SCM 

system. The structure of the XML (its schema) is used by the software components 

(providing ingest and access features) to maintain an up-to-date ontological network 

in the logical level. 

 

Fig. 4. The three tiers of the Organizing System 

Avoiding the building of an information silo was also a concern. A silo is an insu-

lar management system that is unable to operate with any other systems. Files, direc-



tories, XML description, source version control ensure an access independent of any 

management system. 

The access tier.  

One of the main goals of an Organizing System is to support the design and im-

plementation of the actions, functions or services that make use of the resources. In 

classical 3-tier architecture, the presentation tier is the tier in which users interact with 

an application. Typical user interactions are ingestions (importing new resources into 

the OS), searches, browsing, tagging and annotations, retrieval, information extrac-

tion. An Organizing System is also intended to interact with other applications and 

should provide information exchange features with or without semantic transfor-

mations. Because any of the user interactions mentioned above might be performed in 

a dedicated tool, in this perspective, the presentation layer is merely an access layer 

and its main concern is tool interoperability. Among possible solutions, we choose a 

pragmatic approach, called conceptual interoperability based on the concept of the 

federation of models [19] and its open source tooling (http://research.openflexo.org). 

The Openflexo tool set provides support for building conceptual views expanding 

upon existing models and tools; the modelling environment is divided into three re-

sponsibilities or spaces: an open and free conceptual modelling space, the designer 

interactions, projections in the technological or information spaces. 

The ontological tier.  

From a conceptual perspective, the ontological layer is divided into two parts. The 

semantic network of types, on one hand, consists of semantic types linked by types of 

semantic relations, equivalent to an entity-relationship model or an UML class dia-

gram). The semantic network of objects, on the other hand, contains a node for each 

fine-grained object plus nodes for the composite objects, each of which is assigned to 

one or more semantic types and linked to other objects by semantic relations. 

The ontological tier is evolving continuously over time, because new resources 

types and new resources can be added at any time. It is unrealistic to expect that all 

people and organizations developing information and knowledge application systems 

will use a common, shared ontology [20]. We have to live with different ontologies 

and there will be a need to reconcile these ontologies with a common upper ontology. 

Because we are accustomed to the CIDOC CRM ontology, a standardized structure 

(ISO 21127:2014) for describing the implicit and explicit concepts and relationships 

used in cultural heritage documentation, we use the CIDOC CRM as an upper ontolo-

gy (http://www.cidoc-crm.org/official_release_cidoc.html), but we have to examine 

other candidates, such as SUMO [21] or DOLCE [22]. 

Technically, the ontological layer is stored in a TDB triple store; and we use the 

Apache Jena API to extract data from and write to RDF graphs 

(http://jena.apache.org/). There is an isomorphism between physical objects in the 

storage layer and semantic objects in the ontological layer; it is the responsibility of 

the access layer to maintain the isomorphism when items are added in the storage tier. 

http://research.openflexo.org/
http://www.cidoc-crm.org/official_release_cidoc.html
http://jena.apache.org/


3.3 The Big Picture : place of the Organizing System in the Whole 

Recall that our research work aims to contribute to the solving of two practical 

problems: to deal with many verification objects (that have to be carefully managed 

and often re-verified); and to facilitate the judgement of the validation problem (is the 

formalized problem statement an adequate reflection of the actual problem?).  

The first problem requires essentially a methodology of verification and a support 

tool. Each verification engineer work process is made of slightly different activities 

using their own resources through different verification tools; hence each engineer 

defines her/his methodology or uses a given one. Our aim is to provide an integration 

framework for the tools and methodologies; this is precisely the goal of an Organizing 

System to arrange resources and to support interactions with. As a next step, the OS 

will be assessed using three fundamental criteria, understandability, reproducibility, 

and usefulness [23]. 

The second problem is part of a larger problem of computer-supported diagnosis 

that, as mentioned in Section 2.2, has been addressed within several solution spaces 

and a multitude of techniques. Our hypothesis is that the logical tier of the OS, 

knowledge-rich and ontology-based, serves as the basis for information gathering, 

information integration, knowledge creation and knowledge sharing. Thanks to the 

access layer, tools interoperability is made easier and tools collaboration provides the 

user with the required help. The OS acts as a backbone and we present in this section 

some experiments we already made and that we will add as plugins for computer-

aided diagnosis: visualization, omniscient debugging, and case-based reasoning. 

Visualization.  

The formal model of the system-under-study (SUS), for instance concurrent state-

machines, is used to exhaustively explore the SUS possible configurations. Then 

properties to be satisfied by the SUS have to be specified, and weaved with the SUS 

model. The weaving yields a Labeled Transition System (LTS) whose exploration 

permits to assert if a property is satisfied or not. If the property is violated the model-

checker produces a counter-example trace. The analysis of large model exploration is 

almost impossible without tool support; visualization tools exploit the human ability 

to quickly understand complex visual patterns. A large number of visualization tools 

exists for studying traces; they exploit a wide range of diagram structures ranging 

from waveforms to large graph visualizations [24]. 

Omniscient debugging.  

In case a model fails to satisfy a property, the model-checker offers counterexam-

ples serving as indispensable debugging information. However, diagnosis is made 

difficult for several reasons: the trace conforms to a structure that is internal to the 

verification tool and hence hard to exploit, the trace yields low-level information, the 

trace size can be large. Omniscient debuggers, also known as back-in-time debuggers, 

record the whole history, or execution trace, of an execution of the debugged pro-

gram. Omniscient debuggers make it possible to navigate backwards in time within an 

execution trace, drastically improving the debugging of complex applications [25]. 



Case-based reasoning. 

The main limitation of model-based diagnosis is that it requires a model. What 

does mean a modelling error in a model-checking approach? It means that, upon stud-

ying the error it is discovered that the model does not reflect the design of the system 

and that implies a correction of the model [3]. Hence it means that the design is the 

subject of diagnosis, and that we need a correct model of the design (that we do not 

have, in essence) to apply model-based reasoning. Fortunately, we can use case-based 

reasoning (CBR) to find this correct model. In CBR, a reasoner remembers previous 

situations similar to the current one and uses them to solve the new problem. So, we 

need to describe the old cases (called Problem Cases) in the OS using a Problem Case 

Template (mainly the problem statement, the formalized properties, the “correct” 

model and implementations for different model-checkers). Reasoning on a new case 

(called Sample Case) suggests “a model of reasoning that incorporates problem solv-

ing, understanding, and learning and integrates all with memory processes [26].” 

Experimentations.  

Our team develops and maintains a model-checking tool kit. The SUS is described 

using the Fiacre language [27], which enables the specification of interacting behav-

iors and timing constraints through timed-automata. Our approach, called Context-

aware Verification, focuses on the explicit modelling of the environment as one or 

more contexts. Interaction contexts are described with the Context Description Lan-

guage (CDL). CDL enables also the specification of requirements through predicates 

and properties. The requirements are verified within the contexts that correspond to 

the environmental conditions in which they should be satisfied. All these develop-

ments are implemented in the OBP tool kit [28] and are freely available
1
. We de-

signed a visualization front-end for the LTS and traces [29] and a trace query lan-

guage called KriQL, featuring a blend of set filters and graph-based operations [30]. 

A work using pattern for relate Problems and Sample Cases is under submission [31]. 

4 Related work 

The research work of Theo C. Ruys, from his PhD [32] to his recent tools [33] is 

the closest to ours, particularly for the first research problem addressed in this paper. 

The concept of managing the verification trajectory [1], by Ruys and Brinksma, has 

been a seminal paper for the understanding of the verification cycles and the need for 

a Software Configuration Management System for the verification “in the large” of 

real-life systems. We differ in scope because Ruys’s work is focused on the use of the 

SPIN model-checker while we are looking for an agnostic view of model-checking 

that implies an intermediate abstract (and ontological) layer between the verification 

engineer and her/his verification objects. We have common practical goals and we 

agree that the verification engineer uses a given model-checker (e.g. SPIN) and 

her/his proper management methodology and would not pay an added price to use the 

                                                           
1  1OBP Languages and Tool kit website: http://www.obpcdl.org 



Organizing System, i.e. to describe and manipulate verification objects and results at 

an abstract level. Because any resources ingested in the Organizing System is going 

through the access layer, the only extra price to pay for the verification engineer is to 

describe her/his organization documents (e.g. the version descriptor used in [1]; con-

taining a description of the files included in a particular version) in a schema (e.g. in a 

XML Schema definition) and to relate schema components (e.g. element and attribute 

declarations and complex and simple type definitions) with semantic types and/or 

semantic relations of the OS ontological layer. If the verifiers’ schema components 

does not exist in the ontological layer, the verification engineer has to indicate wheth-

er semantic constructs they refine and missing components will be added in the ontol-

ogy. Thanks to this mapping, the particular view of any verification engineer will be 

shared with the other users of the OS. 

Hence, our work and Ruys’s work address the same issues and rely on the same so-

lution scheme. However, our approach has two main advantages: it supports any 

model-checking tool and method and enlarges the community of OS users; the onto-

logical layer permits shared knowledge and reasoning over different model-checking 

verification experiences, working across boundaries. 

 

The research work of the Divine team [34] was a second source of inspiration. Di-

vines verifies models in multiple input formats and has excellent execution perfor-

mances using a cluster of multi-core machines and partial order reduction techniques, 

breaking through the limits of the state space explosion problem. However, our work 

has been more influenced by side products of the Divine team, mainly issues related 

to the BEEM benchmark management [16] and the automation of the verification 

process [34]. Automation is necessary for practical applicability of formal verifica-

tion. Pelanek states his work in such terms “given a system and a property, find a 

technique T and parameter values p such that T(p) can provide answer to the verifica-

tion problem. This can be viewed as a verification meta-search problem [35].” He 

agrees for the need for classifications based on a model structure and also classifica-

tions based on features of state spaces, which relate to model-based or experiential 

diagnosis introduced in Section 2.2. Pelanek’s work perspectives mention a long term 

goal intended to develop an automated ‘verification manager’, which would be able to 

learn from experience [35]. Our approach is more humble and pragmatic: to provide 

the user with the bigger possible set of knowledge about verification, including an 

ontological classification of the problem and the solution spaces. Thanks to the ar-

ranged knowledge within the Organizing System, the verification engineer can plug 

her/him plug tools to address the automated verification manager issue in her/his way 

 

Alrajeh and al work is also a source of inspiration. They state that “Model check-

ing and Inductive Logic Programming (ILP) can thus be seen as two complementary 

approaches with much to gain from their integration [36].” In their approach, counter-

examples (false execution sequences) and witnesses (positive execution sequences) 

are the key data for this integration. Model checking provides ILP with a precise con-

text for learning the most relevant hypotheses in the domain being studied, and ILP 

supplies model checking with an automatic method for learning corrections to mod-



els. In a broad perspective, the inductive learning of a concept focuses on examples 

showing how the concept is used whether the deductive learning explains a given 

concept and follows this explanation with examples. Hence, an ILP approach does not 

care too much on a semantic description of the problem and solution spaces whereas 

this point is fundamental in our Organizing System approach. However, Alrajeh and 

al. work give us the direction for integrating artificial intelligence and machine-

learning techniques in the quest of solving our second research problem related to 

error interpretation and diagnosis. 

5 Conclusion 

Verification “in the large” suffers of two practical problems: the verifier has to deal 

with many verification objects that have to be carefully managed and often re-

verified; it is often difficult to judge whether the formalized problem statement is an 

adequate reflection of the actual problem.  We designed and built a prototype of an 

organizing system (OS) - an intentionally arranged collection of resources and the 

interactions they support – that makes easier the management of verification objects 

and supports reasoning interactions that facilitates diagnosis decisions.  

Key points and driving issues of this research work are the usability of the OS, host-

ing a large variety of model-checking tools, techniques and methods; and the interop-

erability of the OS with external tools, providing the user with the freedom to use the 

proper approach to her/his problems. 

However, we keep in mind that “any verification using model-based techniques is 

only as good as the model of the system. [3].” Hence, a particular attention to the 

validity of the problem formalization (known as the validation problem) will drive our 

future research efforts.   
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