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Abstract. In this paper, a new technique to synthesis structured Ro-
bust Control Law is developed. This technique is based on global op-
timization methods using a Branch-and-Bound algorithm. The original
problem is reformulated as a min/max problem with non-convex con-
straint. Our approach uses techniques based on interval arithmetic to
compute bounds and accelerate the convergence.

1 Context

Controlling an autonomous vehicle or a robot requires the synthesis of control
laws for steering and guiding. To generate efficient control laws, a lot of specifica-
tions, constraints and requirements have been translated into norm constraints
and then into an constraint feasibility problem. This problem has been solved,
sometimes with relaxations, using numerical methods based on LMI (Linear Ma-
trix Inequalities) or SDP (Semi Definite Program) [2, 3]. The main limitation of
these approaches are the complexity of the controller for implementation in an
embedded system. But, if a physical structure is imposed to the law control in
order to make easier the implementation, the synthesis of this robust control law
is much more complex. And this complexity has been identified as a key issue for
several years. A efficient first approach was given by Apkarian and Noll based
on local non-smooth optimization [1].

In this talk, we will present a new approach based on global optimization
in order to generate robust control laws.

2 H∞ control synthesis under structural constraints

We illustrate our approach on an example on the control of a periodic second
order system G with a PID controller K subjected to two frequency constraints
on the error e and on the command u of the closed-loop system. The objective
is to find k = (kp, ki, kd) to stabilize the closed-loop system and minimizing the
H∞ norm of the controlled system to ensure the robustness.
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The H∞ norm of a dynamic system P is defined as follow:

||P ||∞ = sup
ω

(σmax(P (jω))),

with σmax the greatest singular value of the transfert function P and j the
imaginary unit.

In our particular case, the closed-loop system can be interpreted as two SISO
systems (Single In Single Out). The H∞ norm of a SISO system is the maximum
of the absolute value of the transfer function. Indeed, to minimize the H∞ norm
of our example, we need to solve the following min/max problem:

min
k

max

(
sup
ω

∣∣∣∣ W1(jω)

1 +G(jω)K(jω)

∣∣∣∣ , sup
ω

∣∣∣∣ W2(jω)K(jω)

1 +G(jω)K(jω)

∣∣∣∣) ,
s.t. The closed-loop system must be stable.

(1)

The stability constraint of a closed-loop is well-known: the roots of denomi-
nator part of the transfer function 1

1+G(s)K(s) must have a non-positive real part

[4]. Using Routh-Hurwitz stability criterion [5], this constraint can be reformu-
lated as a set of non-convex constraints.

Proposition 1. Let us consider a polynomial Q(s) = ans
n + an−1s

n−1 + · · ·+
a1s+a0. The real part of its root are negative if the first column of the following
table are positive:

v1,1 = an v1,2 = an−2 v1,3 = an−4 v1,4 = an−6 . . .
v2,1 = an−1 v2,2 = an−3 v2,3 = an−5 v2,4 = an−7 . . .

v3,1 = −1
v2,1

∣∣∣∣v1,1 v1,2

v2,1 v2,2

∣∣∣∣ v3,2 = −1
v2,1

∣∣∣∣v1,1 v1,3
v2,1 v2,3

∣∣∣∣ v3,3 = −1
v2,1

∣∣∣∣v1,1 v1,4
v2,1 v2,4

∣∣∣∣ . . . . . .

v4,1 = −1
v3,1

∣∣∣∣v2,1 v2,2

v3,1 v3,2

∣∣∣∣ v4,2 = −1
v3,1

∣∣∣∣v2,1 v2,3
v3,1 v3,3

∣∣∣∣ . . . . . . . . .

v5,1 = −1
v4,1

∣∣∣∣v3,1 v3,2

v4,1 v4,2

∣∣∣∣ . . . . . . . . . . . .

.

.

.
. . .

. . .
. . .

. . .

Indeed, the H∞ control synthesis under structural constraint is reformulated
as a min/max problem with non-convex constraints.

3 Global optimization of min/max problems

In order to solve Problem (1), our approach is based on an Brand-and-Bound
technique [7]. At each iteration, the domain under study is bisected to improve



the computation of bounds. Boxes are eliminated if and only if it is certified that
no point in the box can produce a better solution than the current best one, or
that at least one constraint cannot be satisfied by any point in such a box.

The non-convex contraint can be handled with constraint programming tech-
nique. In our approach, we use the ACID algorithm [8] which reduces the width
of the boxes and so accelerate the convergence of the branch-and-bound.

But, the key point concerns the computation of the bounds of the objec-
tive function. In our example, the objective function can be reformulate as the
following expression:

f(x) = sup
ω∈[ωmin,ωmax]

g(x, ω). (2)

At each iteration, Algorithm 1 is used to compute a lower bound of this
function over a box [x]. This algorithm is also a branch-and-bound algorithm
based on Interval Arithmetic. But, for not wasting time, we limit the maximum
number of iterations for computing faster lower bounds. Each element ([ω], ubω)
stored in L are composed with: (i) [ω] a sub-interval of [ωmin,ωmax] and (ii) ubω
an upper bound of g over [x]× [ω].

Algorithm 1 Computation of bounds of f over a box [x]

Require: g: the function under study (see Equation 2); x: a initial box; L: the list of
boxes; nbIter: the maximal number of iterations.

1: Initialization: (lbout, ubout) = (−∞,∞).
2: for nb := 1 to nbIter do
3: Extract an element (ω, ubω) from L.
4: Bisect ω into two sub-boxes ω1 and ω2.
5: for i:=1 to 2 do
6: Compute lbωi and ubωi a lower and an upper bound of g(x,ω) over [x]× [ωi]

using Interval Arithmetic techniques [6].
7: if lbωi > lbout then
8: lbout := lbωi , {Update the best lower bound}
9: Remove from L all the element k such as ubωk < lbout,

10: end if
11: if ubωi > ubout then
12: ubout := ubωi , {Update the worst upper bound}
13: end if
14: if ubωi > lbout then
15: Add (ω, ubωi) in L,
16: end if
17: end for
18: end for
19: return (lbout, ubout): a lower and an upper bound of f over x.

Thanks to Interval Analysis, at the end of Algorithm 1, we can ensure that
the value of the maximum of f over [x] is include in [lbout, ubout].



4 Application

In our example, we consider a second-order system and weighting functions W1

and W2 penalizing the error signal and control signal respectively:

G(s) =
1

s2 + 1.4s+ 1
, K(s) = kp +

ki
s

+
kds

1 + s
.

W1(s) =
s+ 100

100s+ 1
, W2(s) =

10s+ 1

s+ 10
.

We want to find kp, ki and kd the coefficients of the structured controller K such
that the closed-loop system respects the constraints W−11 and W−12 . The control
is bounded in [−2, 2] , and we limit the interval of ω to [10−2, 102].

Our algorithm gives the following result:

max

(
sup
ω

∣∣∣∣ W1(jω)

1 +G(jω)K(jω)

∣∣∣∣ , sup
ω

∣∣∣∣ W2(jω)K(jω)

1 +G(jω)K(jω)

∣∣∣∣) = 2.1414

with kp = −0.0425, ki = 0.4619, kd = 0.2566

Unfortunately, the value of the solution of the min/max problem is greater
than 1. So, the constraints W−11 and W−12 are not respected.
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In this example, the main advantage of our global optimization approach is
that unlike classical method based on non-smooth optimization, we can certify
that no robust solution of our problem exists.
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