

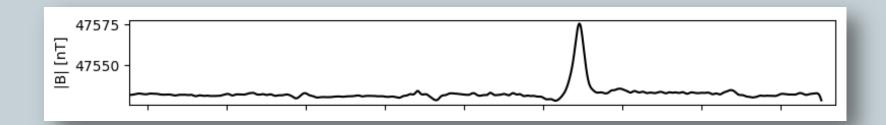
Brève introduction à la magnétométrie

1

CAS D'UN CAPTEUR VECTORIEL

PLAN:

- Généralités
- Les capteurs
- Le bruit ambiant
- Le niveau des cibles

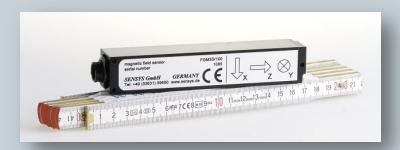

INSTITUT: ENSTA BRETAGNE AUTEUR: ROMAIN SCHWAB

ENS Breta

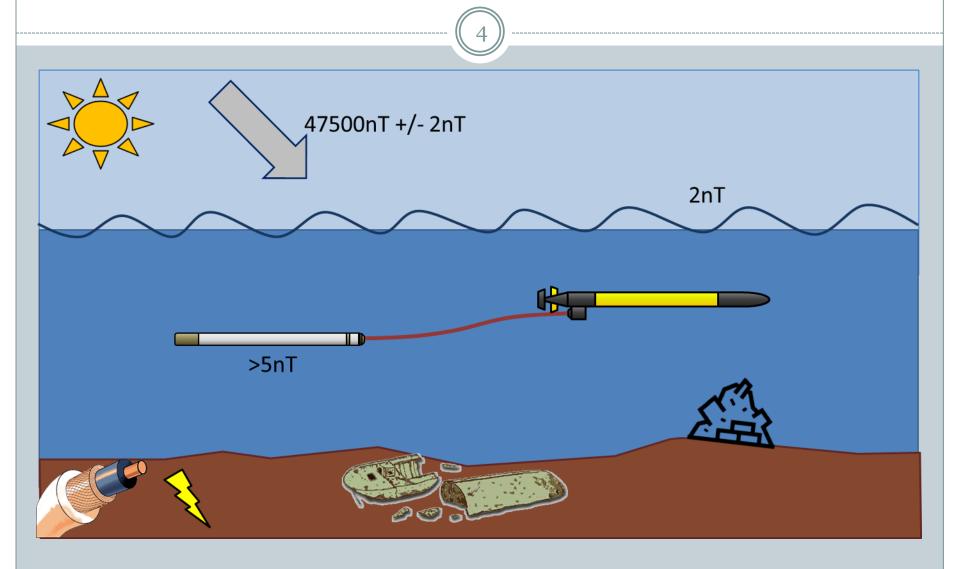
Généralités

- Détection d'objets ferreux ou de courants électriques
- Unité: Tesla (anomalies: 1 à 100nT)

• Cible ponctuelle : $B(x) = C \times \frac{1}{x^3}$


Les capteurs

technologie	Scalaire	Vectoriel (flux-gate)		
mesure	absolue	relative		
information	scalaire (intensité)	vectorielle (intensité + direction)		
sensibilité	excellente: <0,1nT	si capteur mobile : >5nT		
bande passante	20Hz	2kHz		
prix	25k€	3k€		
consommation	3oW	3W		


Geometrics G882

Sensys FGM3D

Les sources de bruit

Ordres de grandeur

5

- Sensibilité capteur *flux-gate* : > 5nT
- Niveau de bruit ambiant TBF : quelques nT*
- 1 tonne de fer :

Distance [m]	5m	10m	15m	20m
Anomalie magnétique [m]	120nT	15nT	4nT	2nT

Pour aller plus loin...

6)

QUELQUES FORMULES

CAPACITES DE DETECTION D'UN CAPTEUR FLUX-GATE

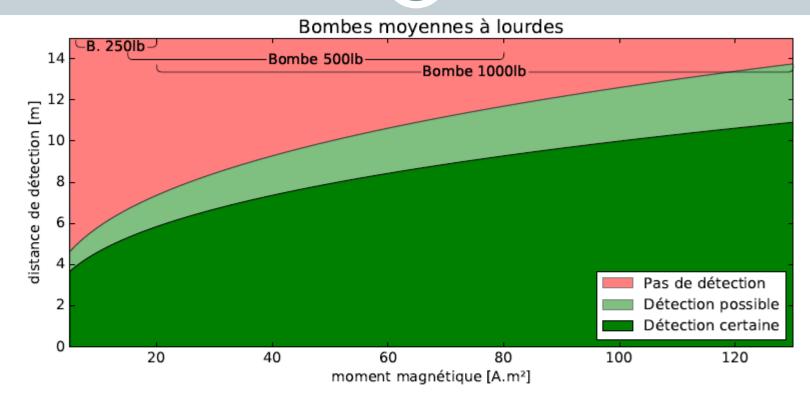
REFLEXIONS

ENSTABretagne

Quelques formules

 Anomalie d'une cible ponctuelle de moment magnétique μ à x mètres :

$$\frac{100\mu}{x^3} \le B(nT) \le \frac{200\mu}{x^3}$$


• Relation empirique entre la masse de fer M (en tonnes) et le moment magnétique μ (en A.m²) :

$$\mu \approx 100 \times M \leftrightarrow (1 \text{ tonne de fer} \approx 100 \text{A.m}^2)$$

Capacités de détection d'un flux-gate

Portée de détection en fonction du moment magnétique de la cible. Le seuil de détection du capteur est fixé à $10~\rm nT$. Les moments magnétiques étudiés sont représentatifs de bombes de $100~\rm à~1000~lb$.

Réflexions

- Suppression des sources de bruit lointaines :
 - o Gradientmètre
 - o Capteur de référence à terre
- Autres méthodes :
 - Acoustique (sondeur de sédiment, voire SMF si épave non enfouie)
 - Résistivité
 - Magnétométrie active

faible portée mais détecte tout objet conducteur

Sources

- Schéma de l'épave de « La Poursuivante » :
 - o site web scubaspot.free.fr
- Schéma du câble sous-marin :
 - o site web lewebpedagogique.com
- Autres schémas :
 - o Projet BODAMM, ENSTA Bretagne