
Global Optimization of H∞ problems:
Application to robust control synthesis under

structural constraints

Dominique Monnet1, Jordan Ninin1, and Benoit Clement1

ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue Francois Verny, 29806 Brest, France,
dominique.monnet@ensta-bretagne.fr, jordan.ninin@ensta-bretagne.fr,

benoit.clement@ensta-bretagne.fr

Abstract. In this paper, a new technique to compute a synthesis struc-
tured Robust Control Law is developed. This technique is based on global
optimization methods using a Branch-and-Bound algorithm. The orig-
inal problem is reformulated as a min/max problem with non-convex
constraint. Our approach uses interval arithmetic to compute bounds
and accelerate the convergence.

1 Context

Controlling an autonomous vehicle or a robot requires the synthesis of control
laws for steering and guiding. To generate efficient control laws, a lot of specifica-
tions, constraints and requirements have been translated into norm constraints
and then into a constraint feasibility problem. This problem has been solved,
sometimes with relaxations, using numerical methods based on LMI (Linear
Matrix Inequalities) or SDP (Semi Definite Program) [2, 3]. The main limitation
of these approaches is the complexity of the controller for implementation in an
embedded system. However, if a physical structure is imposed on the control
law in order to make the implementation easier, the synthesis of this robust
control law is much more complex. And this complexity has been identified as a
key issue for several years. A efficient first approach based on local non-smooth
optimization was given by Apkarian and Noll [1].

In this talk, we will present a new approach based on global optimization
in order to generate robust control laws.

2 H∞ control synthesis under structural constraints

We illustrate our approach with an example of the control of a periodic second
order system G with a PID controller K subjected to two frequency constraints
on the error e and on the command u of the closed-loop system, see Figure 1.
The objective is to find k = (kp, ki, kd) to stabilize the closed-loop system while
minimizing the H∞ norm of the controlled system to ensure robustness.
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Fig. 1. 2-blocks H∞ problem

The H∞ norm of a dynamic system P is defined as follow:

||P ||∞ = sup
ω

(σmax(P (jω))),

with σmax the greatest singular value of the transfert function P and j the
imaginary unit.

In our particular case, the closed-loop system can be interpreted as two SISO
systems (Single In Single Out). The H∞ norm of a SISO system is the maximum
of the absolute value of the transfer function. Indeed, to minimize the H∞ norm
of our example, we need to solve the following min/max problem:

min
k

max

(
sup
ω

∣∣∣∣ W1(jω)

1 +G(jω)K(jω)

∣∣∣∣ , sup
ω

∣∣∣∣ W2(jω)K(jω)

1 +G(jω)K(jω)

∣∣∣∣) ,
s.t. The closed-loop system must be stable.

(1)

The stability constraint of a closed-loop is well-known: the roots of denomi-
nator part of the transfer function 1

1+G(s)K(s) must have a non-positive real part

[4]. Using Routh-Hurwitz stability criterion [5], this constraint can be reformu-
lated as a set of non-convex constraints.

Proposition 1. Let us consider a polynomial Q(s) = ans
n + an−1s

n−1 + · · ·+
a1s+a0. The real parts of its roots are negative if the entries in the first column
of the following table are positive:

v1,1 = an v1,2 = an−2 v1,3 = an−4 v1,4 = an−6 . . .
v2,1 = an−1 v2,2 = an−3 v2,3 = an−5 v2,4 = an−7 . . .

v3,1 = −1
v2,1

∣∣∣∣v1,1 v1,2

v2,1 v2,2

∣∣∣∣ v3,2 = −1
v2,1

∣∣∣∣v1,1 v1,3
v2,1 v2,3

∣∣∣∣ v3,3 = −1
v2,1

∣∣∣∣v1,1 v1,4
v2,1 v2,4

∣∣∣∣ . . . . . .

v4,1 = −1
v3,1

∣∣∣∣v2,1 v2,2

v3,1 v3,2

∣∣∣∣ v4,2 = −1
v3,1

∣∣∣∣v2,1 v2,3
v3,1 v3,3

∣∣∣∣ . . . . . . . . .

v5,1 = −1
v4,1

∣∣∣∣v3,1 v3,2

v4,1 v4,2

∣∣∣∣ . . . . . . . . . . . .

.

.

.
. . .

. . .
. . .

. . .

Indeed, applying Proposition 1 with Q(s) = 1 + G(s)K(s), the H∞ control
synthesis under structural constraint is reformulated as a min/max problem with
non-convex constraints.



3 Global optimization of min/max problems

In order to solve Problem (1), our approach is based on an Branch-and-Bound
technique [7]. At each iteration, the domain under study is bisected to improve
the computation of bounds. Boxes are eliminated if and only if it is certified that
no point in the box can produce a better solution than the current best one, or
that at least one constraint cannot be satisfied by any point in such a box.

The non-convex contraint can be handled with constraint programming tech-
niques. In our approach, we use the ACID algorithm [8] which reduces the width
of the boxes and so accelerates the convergence of the branch-and-bound.

The key point of our approach concerns the computation of the bounds of the
objective function. In our example, the objective function can be reformulated
as the following expression, with x = (kp, ki, kd):

f(x) = sup
ω∈[ωmin,ωmax]

g(x, ω). (2)

At each iteration, Algorithm 1 is used to compute a lower bound of this
function over a box [x]. This algorithm is also a branch-and-bound algorithm
based on Interval Arithmetic. But, for not wasting time, we limit the maximum
number of iterations for computing faster lower bounds. Each element ([ω], ubω)
stored in L is composed of: (i) [ω] a sub-interval of [ωmin,ωmax] and (ii) ubω an
upper bound of g over [x]× [ω].

Algorithm 1 Computation of bounds of f over a box [x]

Require: g: the function under study (see Equation 2); x: a initial box; L: the list of
boxes; nbIter: the maximal number of iterations.

1: Initialization: (lbout, ubout) = (−∞,∞).
2: for nb := 1 to nbIter do
3: Extract an element (ω, ubω) from L.
4: Bisect ω into two sub-boxes ω1 and ω2.
5: for i:=1 to 2 do
6: Compute lbωi and ubωi a lower and an upper bound of g(x,ω) over [x]× [ωi]

using Interval Arithmetic techniques [6].
7: if lbωi > lbout then
8: lbout := lbωi , {Update the best lower bound}
9: Remove from L all the element j such as ubωj < lbout,

10: end if
11: if ubωi > lbout then
12: Add (ωi, ubωi) in L,
13: end if
14: end for
15: end for
16: ubout := max

(ωi,ubωi
)∈L

ubωi

17: return (lbout, ubout): a lower and an upper bound of f over x.



Thanks to Interval Analysis, at the end of Algorithm 1, we can ensure that
the value of the maximum of f over [x] is included in [lbout, ubout].

4 Application

In our example, we consider a second-order system and weighting functions W1

and W2 penalizing the error signal and control signal respectively:

G(s) =
1

s2 + 1.4s+ 1
, K(s) = kp +

ki
s

+
kds

1 + s
.

W1(s) =
s+ 100

100s+ 1
, W2(s) =

10s+ 1

s+ 10
.

We want to find kp, ki and kd the coefficients of the structured controller K such
that the closed-loop system respects the constraints:

max

(
|| W1(jω)

1 +G(jω)K(jω)
||∞, ||

W2(jω)K(jω)

1 +G(jω)K(jω)
||∞
)
≤ 1

The control is bounded in [−2, 2] , and we limit the interval of ω to [10−2, 102].

Our algorithm gives the following result:

max

(
sup
ω

∣∣∣∣ W1(jω)

1 +G(jω)K(jω)

∣∣∣∣ , sup
ω

∣∣∣∣ W2(jω)K(jω)

1 +G(jω)K(jω)

∣∣∣∣) = 2.1414

with kp = −0.0425, ki = 0.4619, kd = 0.2566

Unfortunately, the value of the solution of the min/max problem is greater
than 1. So, the constraints are not respected as shown on Figure 2 (solid lines
are above dotted lines of the same color at some frequencies).

In this example, the main advantage of our global optimization approach is
that unlike classical method based on non-smooth optimization, we can certify
that no robust solution of our problem exists.
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Fig. 2. Weighting functions and singular values of the solution
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