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Abstract. Nowadays, the quadratic assignment problem (QAP) is widely
considered as one of the hardest of the NP-hard problems. One of the
main reasons for this consideration can be found in the enormous dif-
ficulty of computing good quality bounds for branch-and-bound algo-
rithms. The practice shows that even with the power of modern comput-
ers QAPs of size n ą 30 are typically recognized as huge computational
problems. In this work, we are concerned with the design of a new low-
dimensional semidefinite programming relaxation for the computation of
lower bounds of the QAP. We discuss ways to improve the bounding pro-
gram upon its semidefinite relaxation base and give numerical examples
to demonstrate its applicability.
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1 Introduction

The quadratic assignment problem (QAP) was introduced by Koopmans and
Beckmann [12] in 1957 as a mathematical model for problems in the allocation of
indivisible resources. The class of QAPs entails a great number of applications
from different scenarios in the topic of combinatorial optimization. This includes
problems arising in location theory, facility layout, VLSI design, communications
and various other fields. For extensive lists of applications of QAPs, we refer to
the survey works by Pardalos et al. [19], Burkard et al. [4], Çela [5], Loiola et al.
[15] and most recently Burkard et al. [3].

In this work, we are concerned with the computation of lower bounds for
QAPs which can be formulated in Koopmans-Beckmann trace formulation [8]:

inf
XPΠn

trpAXBXT ` CXT q, (KBQAP)

where A,B,C P Rnˆn are the parameter matrices of the QAP, Πn denotes the
set of nˆ n permutation matrices, and trpq terms the trace function. More pre-
cisely, our concern is a new technique for the construction of a low-dimensional
semidefinite programming (SDP) relaxation for (KBQAP).

Our main contribution is the introduction of a new relaxation approach based
on interrelated matrix splitting. The derivation of the corresponding framework
can be found in Subsection 2.2. Subsequently, we discuss additional cuts which
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are based on techniques introduced by Mittelmann and Peng in [17]. In Subsec-
tion 3.1, we propose a way to tighten the respective constraints by exploiting a
degree of freedom that is present in the original versions of these cuts.

1.1 Notation and preliminaries

Unless otherwise stated, we assume that both matrices A and B are symmetric.
Furthermore, without loss of generality, it is assumed that the diagonal elements
of A and B are equal to zero. If this is not the case, the corresponding costs can
be shifted to the linear term by setting Cnew :“ C ` diagpAqdiagpBqT , where
diagpAq denotes a column vector formed of the diagonal elements of A. Through-
out this paper, B “

řn
i“1 λiqiq

T
i shall denote the eigenvalue decomposition of

B.
If not stated otherwise, } ¨ } is used for the spectral norm. The trace inner

product of two real matrices G,H is denoted by xG,Hy :“ trpGTHq. Further-
more, we write H: for the Moore-Penrose pseudoinverse of H [18, 22]. If H is an
operator, RpHq denotes its range in the sense of its image. In the case that H
is a matrix, we use the same notation referring to its column space.

The cone of symmetric positive semidefinite matrices is of major importance
for every discussion about SDP problems. We denote the space of n ˆ n sym-
metric matrices by Sn and its positive semidefinite subset by Sn`. In this context,
we also utilize the relation sign ’ľ’ to denote a Loewner’s partial ordering, i.e.
H ľ G is used to note the positive semidefiniteness of H ´G. In addition to the
already mentioned sets, we consider the space of mˆ n matrices Mm,n and the
set of n ˆ n double stochastic matrices Dn. By e we denote the n dimensional
column vector of all ones and I :“ re1, . . . , ens is used for the n ˆ n identity
matrix. Generally, we spare redundant informations on matrix dimensions. For
instance, we write Mm instead of Mm,m. Moreover, in cases where the dimen-
sion is evident from the context, the accompanying indicators may be discarded
completely.

Complementary to the diag-operator, offpHq denotes a column vector that
contains all off-diagonal elements of the matrix H. This vector is obtained by
vertical concatenation of the columns of H, but without its diagonal elements.
Another considered linear transformation is the triangular vectorization of a
matrix; tripHq denotes the vector obtained from the vertical concatenation of
the columns of H taking solely its lower triangular elements (without matrix
diagonal) into account. These operators may also be used in combination with
relations, for instance t“off ,ěoff ,ďoff . . .u. In case of the subscript off , the re-
spective relations apply only to the off-diagonal elements of the corresponding
matrices, hence A ěoff B is the short form for offpAq ě offpBq.

2 QAP relaxations based on matrix splitting

Relaxation is a fundamental approach for the computation of lower or upper
bounds of intractable programming problems. It can be used directly as an ap-
proximation of the original problem, for bound computations in branch-&-bound
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and branch-&-cut approaches, or as a tool to measure the quality of other bound-
ing algorithms. In regard to the form of the given optimization problem the first
step of a relaxation process requires the reformulation of the original problem.
The second step comprises the removal or replacement of constraints that are
the cause for intractability.

One of the most popular relaxation approaches for quadratic programming
problems is based on vector lifting. A good source for relaxations of this kind is
given by Zhao et al. in [26]. Compared to newer low-dimensional SDP relaxations
for the QAP, relaxation frameworks based on vector lifting have their strength in
the computation of tighter bounds. Their major drawbacks are the large number
of Opn4q variables and the accompanying computational costs.

There are some efforts to reduce the computational costs of these high di-
mensional SDP relaxations, see for instance [23, 2, 25, 10]. Nevertheless, regard-
ing QAP instances of size n ą 30 and with little symmetry, the computational
costs for solving SDP relaxation frameworks based on vector lifting remain too
high for practical usage.

2.1 Non-redundant positive semidefinite matrix splitting

For a special class of QAPs - instances which are associated with Hamming and
Manhatten distances - Mittelmann and Peng [17] pursued the idea of another
low-dimensional SDP relaxation framework. The presented bounds not only
involve a less expensive computational process, they are also provably tighter
than the ones proposed in [6] by Ding and Wolkowicz. In [20] and [21], Peng et
al. generalized the matrix splitting approach for other classes of the QAP.

If the parameter matrix B is positive semidefinite, the equality Y “ XBXT

can be relaxed to the convex semidefinite relation Y ľ XBXT . The implemen-
tation of the latter is usually realized by utilization of the Schur complement
inequality [1], here

„

B BXT

XB Y



“

„

B
1
2

XB
1
2



“

B
1
2 B

1
2XT

‰

P S2n
` . (1)

In general, however, B does not satisfy any definiteness property. Peng et al.
[20, 21] dealt with this case by applying a non-redundant positive semidefinite
matrix splitting scheme.

Definition 1. For a given matrix B a matrix pair pB1, B2q is called a positive
semidefinite matrix splitting of B if it satisfies

B “ B1 ´B2, B1, B2 P S`. (2)

The splitting is said to be redundant if there exists a nonzero positive semidefinite
matrix R, such that

B1 ´R P S`, B2 ´R P S`. (3)

If R ” 0 is the only feasible matrix that is positive semidefinite and satisfies p3q,
we say that the splitting is non-redundant.
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For the relaxation framework F-SVD introduced in [20], the authors used
the following non-redundant splitting:

B` “
ÿ

i : λią0

λiqiq
T
i and B´ “

ÿ

i : λiă0

´λiqiq
T
i . (4)

Together with (1) and the observations that

@X P Πn, B PMn : diagpXBXT q “ X diagpBq, XBXT e “ XBe, (5)

we derive the SDP basis of their framework, here referred to as B-SVD :

inf
XPDn, Y`,Y´PSn

xA,Y` ´Y´y ` xC,Xy (6a)

s. t.
«

B` B`X
T

XB` Y`

ff

P S`,

«

B´ B´X
T

XB´ Y´

ff

P S`, (6b)

diagpY`q “ X diagpB`q, diagpY´q “ XdiagpB´q, (6c)

Y`e “ XB`e, Y´e “ XB´e, (6d)

where the variables Ỳ and Ý are used to relax the quadratic terms XB`X
T

and XB´X
T , respectively.

In regard to a matrix splitting based SDP relaxation such as (6), Peng et al.
demonstrated the general advantage of non-redundant matrix splittings over re-
dundant ones, see [21, Theorem 1]. Roughly speaking the theorem states that for
any redundant positive semidefinite matrix splitting there exists a non-redundant
splitting which leads to a tighter relaxation. Even though additional constraints
on the respective variables may change this circumstance, the absence of redun-
dancies in the positive semidefinite matrix splitting is a good indicator for a
beneficial splitting scheme.

2.2 Interrelated matrix splitting

A particularly beautiful property of the positive semidefinite matrix splitting
defined in (4) is that the ranges of the matrices B`,B´ are not overlapping,
i.e. RpB`q X RpB´q “ H or B`B´ ” 0. As an immediate consequence of this
circumstance, B` and B´ are simultaneously diagonalizable. It would be a great
advantage if we could make use of these interrelations in the actual relaxation.
Unfortunately, it is quite difficult to exploit the corresponding properties in
form of beneficial SDP constraints. For the design of new relaxation strategies,
we need a different kind of interrelation. In this subsection, we say goodbye to
the idea of redundancy free positive semidefinite matrix splitting pairs pB`, B´q
and present a new splitting scheme.

B “ BM ´BO with additional conditions on pBM, BOq. (7)

By the introduction of specific redundancies, we induce the presence of artificial
correlations between the respective splitting parts. These interrelations shall be
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used to construct new types of constraints which are applicable in the corre-
sponding QAP relaxations.

A beneficial interrelation property for the relaxation of QAP is the semidef-
inite inverse relation

BM ľ B´1
O ľ 0. (8)

The existence of the inverse B´1
O implies the regularity of BO and thereby also

the regularity of BM. By the matrix equality

BO ´B
´1
M “ B´1

M pBM ´B
´1
O

loooomoooon

ľ0

qB´1
M ` pI ´B´1

O B´1
M qT BO

loomoon

ľ0

pI ´B´1
O B´1

M q,

it is furthermore apparent that (8) implies the validity of

BO ľ B´1
M ľ 0 (9)

Indeed, it is straightforward to show that the conditions (8) and (9) are equiva-
lent.

The discussed interrelation property can be exploited by transferring the
same to the relaxation variables for the quadratic terms YM “ XBMX

T and
YO “ XBOX

T . The orthogonality of permutation matrices X P Π gives

XB´1
O XT “ pXBOX

T q´1.

Relation (8) therefore requires XBMX
T ľ pXBOX

T q´1 ľ 0 providing the ba-
sis for the constraint YM ľ Y´1

O ľ 0. The latter condition can be realized by
utilization of the Schur complement inequality [1]:

„

YM I

I YO



P S2n
` . (10)

For the attainment of tight SDP conditions, we are looking for matrices BM

and BO with minimal traces. This is the case for the splitting that satisfies the
identity BM “ B´1

O .

Theorem 1. Let B P Sn be given and consider the minimization problem

inf
BM,BOPSn

trpBMq ` trpBOq

s. t. BM ľ B´1
O ľ 0,

BM ´ BO “ B.

(11)

A solution to this program is given by the matrix pair pBM, BOq defined as

BM :“
1

2

´

B `
a

B2 ` 4I
¯

, BO :“ BM ´B. (12)

This pair satisfies the identity BM “ B´1
O .
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Proof. The multiplication of the matrices defined in (12) gives

BMBO “
1

2

´

B `
a

B2 ` 4I
¯ 1

2

´

a

B2 ` 4I ´B
¯

“
1

4

`

B2 ` 4I ´B2
˘

“ I

and proves BM “ B´1
O . It is also straightforward to check that pBM, BOq sat-

isfies the constraints of problem (11), hence states a feasible point. For now,
let us assume that there is some solution pB̂M, B̂Oq that accompanies a smaller
objective value than the matrix pair from (12), thus trpB̂Mq ă trpBMq. By defini-
tion, the matrices B, BM and BO are all three simultaneously diagonalizable. Let
tq1, . . . , qnu denote the set of the corresponding orthonormal eigenvectors, then

n
ÿ

i“1

qTi B̂Mqi “ trpB̂Mq ă trpBMq “

n
ÿ

i“1

qTi BMqi

and therefore
Dk P t1, . . . , nu : qTk B̂Mqk ă qTk BMqk.

Since BM ´ B̂M “ BO ´ B̂O, this also means that qTk B̂Oqk ă qTk BOqk, such that

qTk B̂Mqk ă qTk BMqk “ λkpBMq “ λkpBOq
´1 “ pqTk BOqkq

´1 ă pqTk B̂Oqkq
´1.

Moreover, the positive semidefinitenes of

«

qTk B̂
´1
O qk 1

1 qTk B̂Oqk

ff

“

«

qTk B̂
´ 1

2
O

qTk B̂
1
2
O

ff«

qTk B̂
´ 1

2
O

qTk B̂
1
2
O

ffT

P S2
`

implies a nonnegative determinant of this matrix, which in turn requires that
pqTk B̂

´1
O qkqpq

T
k B̂Oqkq ě 1. Taken together, we obtain the inequality

qTk B̂Mqk ă pq
T
k B̂Oqkq

´1 ď qTk B̂
´1

O qk,

which violates the positive semidefinite condition B̂M ľ B̂
´1

O , thereby contradicts
our assumption and finishes the proof.

The efficiency of constraint (10) depends to a significant amount on the
scaling of B. For QAP instances in which the spectral norm of }B} is much
greater than 1, the effect on the corresponding feasible set is hardly noticeable.
On the other hand, if }B} ! 1, the validity of (8) is purchased by introducing
a relatively large redundancy. To counteract this behavior, we utilize a linear
homogeneous function τ : Sn Ñ R and replace condition (8) with

BM ľ τpBq2B´1
O ľ 0. (13)

By numerical tests, we discovered that the trace norm of a projection of the
respective matrix is a suitable base for τ . In the actual implementation, we use
the renormalization function τ defined as

τpBq :“
1

4n

n
ÿ

i“1

σipPBP q, (14)
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where the orthogonal projection matrix P is defined as P :“ I´ 1
nee

T , and σip¨q
denotes the i-th singular value of the corresponding matrix. Among the tested
matrix norms and various scalings of these, the choice given in (14) worked best
for a large range of problems.

For QAP instances with low-rank parameter matrices B, it is possible to
strengthen the semidefinite constraint by replacing the inverse property in (8)
with the pseudoinverse relations

BM ľ B:O ľ 0 and BO ľ B:M ľ 0. (15)

Any matrix pair pBM, BOq that complies with these two conditions necessarily
satisfies

RpBMq Ě RpB:Oq “ RpBOq Ě RpB:Mq “ RpBMq,

such that RpBMq “ RpBOq. This in turn demonstrates the equivalence of (15)
and the semidefinite condition

«

BM BMB
:
M

BMB
:
M BO

ff

P S2n
` .

In the actual implementation, we take the approach one step further by
incorporating the renormalization function τ and weighting the utilization of
the inverse interrelation property against the introduced redundancy. In order
to achieve these objectives, we apply the following program:

inf
BM,BO,GPSn

trpBMq ` trpBOq ´ ξ trpGq

s. t.
„

BM G

G BO



P S2n
` ,

BM ´ BO “ B,

}G} ď τpBq,

(16)

where ξ is a nonnegative real value that serves as a threshold for the introduced
redundancy.

The choice of ξ influences the effectiveness of the generalized inverse interre-
lation. For the extreme ξ “ 0 the result is equivalent to the pure non-redundant
matrix splitting utilized in relaxation (6), hence pBM, BO, Gq “ pB`, B´, 0pn,nqq.
On the other hand, for ξ ą 2 the attained splitting corresponds to the normal-
ized version of the original inverse property given in (13). By no means, however,
ξ is used as a trade-off between speed and quality of the respective relaxations.
The best bounding results are obtained for values in between these extremes.
For the numerical examples in the last section, we use ξ “ 3

2 as this value works
well for a large range of problems.

The last piece in the puzzle of designing a new matrix splitting based SDP re-
laxation for the QAP is the construction of the corresponding quadratic semidef-
inite constraints. For the optimal matrix triple pBM, BO, Gq to problem (16), we
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have G “ B
1
2
M B

1
2
O “ B

1
2
O B

1
2
M . In the following relaxation framework, we implement

the relation
«

XBMX
T XGXT

XGXT XBOX
T

ff

ľ

»

–

XB
1
2
M

XB
1
2
O

fi

fl

”

B
1
2
M XT B

1
2
O XT

ı

.

via utilization of the respective Schur complement inequality. Finally, we are in
the position to present the SDP basis of the inverse interrelated matrix splitting
relaxation, here referred to as B-IIMS :

inf
XPDn, G,YM,YOPSn

xA,YM ´YOy ` xC,Xy (17a)

s. t.
»

—

—

–

I B
1
2
M XT B

1
2
O XT

XB
1
2
M YM G

XB
1
2
O G YO

fi

ffi

ffi

fl

P S3n
` , (17b)

«

´

τpBqI ´B
1
2
M B

1
2
O

¯:

UXT

XU τpBqI ´G

ff

P S2n
` , (17c)

diagpYMq “ XdiagpBMq, diagpYOq “ XdiagpBOq,

diagpGq “ XdiagpB
1
2
M B

1
2
O q,

(17d)

YMe “ XBMe, YOe “ XBOe, (17e)

where U denotes the orthogonal projection matrix to the column space of τpBqI´

B
1
2
M B

1
2
O , that is

U :“
´

τpBqI ´B
1
2
M B

1
2
O

¯: ´

τpBqI ´B
1
2
M B

1
2
O

¯

.

3 Additional cuts based on symmetric functions

For many QAPs, it is possible to attain a significant improvement of the respec-
tive SDP relaxations by applying additional bounds to its optimization variables.
In [17] and [20], Mittelmann, Peng and Li introduced new inequality constraints
based on symmetric functions [16].

Definition 2. A function fpvq : Rn Ñ R is said to be symmetric if for any
permutation matrix X P Πn, the relation fpvq “ fpXvq holds.

One of these functions, namely the additive function fpvq “ xe, vy, has already
been used for the constraints (6d) and (17e). Other symmetric functions, that
are useful for the construction of valid constraints, are the minimum and the
maximum function as well as p-norms:

@v P Rn : minpvq “ min
1ďiďn

vi, maxpvq “ max
1ďiďn

vi, Lppvq “

˜

n
ÿ

i“1

|vi|
p

¸
1
p

.
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If applied to a matrix M P Mm,n, these operators act along the rows of the
matrix, i.e.

minpMq “ rminpeT1 Mq, . . . , minpeTmMq s
T .

In [17], [20], [21] and also [11], the minimum and maximum functions are used
to obtain linear bounds for several optimization variables.

eTi XminpBq ď pY` ´Y´qij ď eTi XmaxpBq for 1 ď i, j ď n. (18)

The same authors used constraints based on p-norm conditions for a further
tightening of their relaxation frameworks:

LppY` ´Y´q ď XLppB` ´B´q. (19)

In [20], Peng et al. extended this approach by applying the same kind of con-
straint to each matrix variable Y` and Y´ as well as their sum.

3.1 Further improvements

The linear inequalities given in (18) can be presented in the form of so-called
sum-matrix inequalities. In accordance to [21], a sum-matrix is defined as:

Definition 3. A matrix M P Mn is called a sum-matrix if M is representable
as

M “ veT ` ewT (20)

for some v, w P Rn. In the symmetric case it is v “ w.

Let vmin :“ minpBq and vmax :“ maxpBq denote the vectors consisting of the
minimal and maximal row elements of B, respectively. Condition (18) may then
be rewritten as

Xvmine
T ď Y` ´Y´ ď Xvmaxe

T .

Indeed, by the nonnegativity of X, it is straightforward to show that vmine
T ď

B ď vmaxe
T implies

Xvmine
T “ Xvmine

TXT ď XBXT ď Xvmaxe
TXT “ Xvmaxe

T

and thus yields (18). The last observation motivates a further exploitation of
sum-matrix inequalities for the attainment of tighter constraints. Define for in-
stance

wmin :“ minpB ´ evTminq and wmax :“ maxpB ´ evTmaxq.

It obviously is vmine
T ` ewTmin ď B ď vmaxe

T ` ewTmax, which in turn gives the
inequality constraints

Xvmine
T ` ewTminX

T
ď Y` ´Y´ ď Xvmaxe

T ` ewTmaxX
T .

By wmin ě 0 and wmax ď 0, it is apparent that these bounds are at least as good
as the ones in (18).
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For the linear inequalities based on the minimum respectively maximum func-
tion, Mittelmann and Peng [17] pointed out that - since the diagonal elements
of Y` and Y´ are already described by the corresponding equality constraints
- it is sufficient to account solely the off-diagonal variables. We further observe
that, due to symmetry of B, the symmetric parts of the respective sum-matrices
satisfy the same bounding conditions, i.e.

veT ` ewT ďoff B ùñ 1
2 pv ` wqe

T ` 1
2epv ` wq

T ďoff B. (21)

Let the gap between a sum-matrix veT ` ewT “ pvi ` wjq and an arbitrary
real matrix B “ pbijq of the same dimension be defined as

δgappB, v, wq :“
ÿ

i,j
i‰j

|bij ´ vi ´ wj |. (22)

A suitable approach for the attainment of tight sum-matrix inequalities is the
minimization of the respective gaps.

By δgappB, v, wq “ δgappB,
1
2 pv`wq,

1
2 pv`wqq and the implication in (21), it

is apparently sufficient to concentrate on the lower respectively upper triangular
elements of symmetric sum-matrices. The following linear programming problem
can be used to compute lower and upper symmetric sum-matrix bounds for B
that accompany minimal gaps:

inf
vl,vuPRn

xe, vu ´ vly

s. t. vle
T ` evTl ďtri B ďtri vue

T ` evTu .
(23)

The solution vectors to this problem are used to implement the following linear
inequality conditions

Xvle
T ` evTl X

T
ďtri Y` ´Y´ ďtri Xvue

T ` evTuX
T . (24)

Suitable approaches for a further tightening of these bounds are the appli-
cation of multiple varying sum-matrix inequalities and the construction of the
same type of bounds for linear combinations of the respective matrix variables.

In a very similar way, it is possible to apply the sum-matrix reformulation
technique from above for a tightening of the respective p-norm based constraints.
However, numerical tests have shown that the effect of these extensions is rela-
tively small. For this reason, we avoid the necessity of further computations for
the determination of suitable sum-matrix updates.

4 Numerical Results

In the last section of this paper, we want to discuss the practical applicability
of the presented relaxation strategy on the basis of numerical tests. For this
purpose, we compare our own frameworks with one of the best performing low-
dimensional SDP relaxations for the QAP, namely F-SVD which was introduced
in [20].
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The actual implementation of the SDP problems is realized via Yalmip [14] in
Octave [7]. The used solver is SDPT3 [24]. For the presentation of the respective
bounds, we follow the style in [20] and use the relative gap defined as

Rgap “ 1´
Lower bound from relaxation

Optimal or best known feasible objective value
.

The corresponding computation times are listed in seconds under the ’CPU’
columns. Since the discussed relaxation frameworks are not designed for a specific
class of QAPs, we chose the instances for our numerical tests arbitrarily from
the quadratic assignment problem library [4]. The names in the column ’prob.’
consists of three or four letters which indicate the names of their authors or
contributors, and a number that gives their dimension. If the authors provided
multiple problem instances for the same dimension, the respective instance is
indicated by another letter at the end of the name. For more information on the
naming scheme and the individual applications, see [4].

Prior to the comparison of the full frameworks with all additional constraints
being applied, in Table 1, we compare the pure SDP relaxation bases presented
in Section 2.

B-SVD B-IIMS

prob. Rgap(%) CPU Rgap(%) CPU

Esc16b 17,34 2 17,09 3
Had20 5,34 4 3,61 6
Kra32 42,64 13 32,27 36
LiPa40a 4,88 28 3,31 63
Nug30 12,39 11 9,93 22
Scr20 60,02 5 45,35 7
Ste36a 57,54 25 44,97 64
Tai30b 15,82 17 15,34 41
Tai50a 39,03 103 28,37 244
Tho40 14,94 40 13,06 91

Table 1. Selected bounds for comparison of base relaxations

The results presented in Table 1 reveal the significant differences between
the considered relaxation approaches. As expected, the new relaxation program
B-IIMS is more expensive than B-SVD . On the other hand, for many problem
instances the additional computational costs pay off by resulting in significantly
improved lower bounds.

For the attainment of the full relaxation frameworks, we extend the problems
(6) and (17) by adding the constraints (24) together with the 2-norm conditions
of the form (19) which are also present in F-SVD . We denote the full version
of problem (6) by F-SVD2 , since the only difference two the framework F-SVD
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from [20] is the utilization of different inequality constraints. Instead of the
8n2 ´ 8n minimum and maximum bound inequalities applied in F-SVD , here
we solely use the n2 ´ n constraints from (24). The full version of problem (17)
applies the respective adaptations of the same constraints. The integration is
realized simply by replacing the term Y` ´ Y´ with YM ´ YO. We follow the
general naming scheme and denote this program by F-IIMS .

F-SVD F-SVD2 F-IIMS

prob. Rgap(%) CPU Rgap(%) CPU Rgap(%) CPU

Esc16b 5,82 3 6,73 3 6,56 4
Had20 2,53 8 2,67 6 2,32 8
Kra32 18,77 34 18,93 24 18,67 36
LiPa40a 0,11 74 0,24 42 0,23 74
Nug30 8,05 26 8,12 18 7,88 33
Scr20 16,18 10 16,24 7 16,01 8
Ste36a 19,06 55 19,35 40 18,55 55
Tai30b 12,69 32 12,88 24 13,50 48
Tai50a 21,43 250 21,58 197 21,49 240
Tho40 12,61 76 12,76 54 12,13 102

Table 2. Selected bounds for comparison of full QAP relaxations

The results in Table 2 demonstrate the efficiency of the constraints in (24)
compared to the significantly greater number of linear inequalities used in F-
SVD . The difference between the bounds computed with F-SVD and F-SVD2
is generally really small whereas the computation times of F-SVD2 are noticeable
shorter. Nevertheless, the results in Table 2 also reveal that the combined effect of
the additional linear bounds applied in F-SVD is superior to the improvement
of a single sum-matrix bound. The sheer number of additional constraints is
difficult to beat.

The second observation from the results given in Table 2 is that the presence
of the additional cuts diminishes the effect of the incorporation of the artificial
inverse interrelation property. Among the tested QAP instances there is even
an instance for which the application of the inverse interrelated matrix splitting
approach is disadvantageous. Overall, the computational costs as well as the
bounding quality of the frameworks F-SVD and F-IIMS are very similar. The
latter relaxation, however, has a greater potential for even stronger bounds, for
instance via the utilization of so-called QAP reformulations or the incorpora-
tion of a similar number of linear inequalities as used in F-SVD . An elaborate
investigation of these possibilities is left for subsequent studies.
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