
Global Optimization based on Contractor
Programming:

an Overview of the IBEX library

Jordan Ninin

ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue Francois Verny, 29806 Brest, France,
jordan.ninin@ensta-bretagne.fr

Abstract. IBEX is a open-source C++ library for constraint processing
over real numbers. It provides reliable algorithms for handling non-linear
constraints. In particular, roundoff errors are also taken into account.
It is based on interval arithmetic and affine arithmetic. The main fea-
ture of IBEX is its ability to build strategies declaratively through the
contractor programming paradigm. It can also be used as a black-box
solver or with an AMPL interface. Two emblematic problems that can
be addressed are: (i) System solving: A guaranteed enclosure for each
solution of a system of (nonlinear) equations is calculated; (ii) Global
optimization: A global minimizer of some function under non-linear
constraints is calculated with guaranteed and reliable bounds on the ob-
jective minimum.

1 Kernel of IBEX

Considering sets in place of single points is not a common point of view in the
Mathematical Programming communities. Unlike classical optimization tools,
IBEX library relies on set-membership approach [1]. These methods and algo-
rithms do not consider single numerical values, or floating-point numbers, but
manipulate sets. The interval arithmetic offers a solid theoretical basis to repre-
sent and to calculate with subsets of Rn.

1.1 Interval Arithmetic

An interval is a closed connected subset of R. A non-empty interval [x] can be
represented by its endpoints: [x] = [x, x] = {x : x ≤ x ≤ x} where x ∈ R∪{−∞},
x ∈ R ∪ {+∞} and x ≤ x. The set of intervals is denoted by IR.

In IBEX, three external implementations of the Interval Arithmetic can be
linked: Filib++ [11], Profil-Bias [9], Gaol [8]. To improve the portability and
the compatibility of IBEX, a homemade interval arithmetic is available without
using low-level functionality which can be dependent of the architecture of the
CPU. All the arithmetics have been patched to comply with the new IEEE
1788-2015 Standard for Interval Arithmetic.



1.2 Affine Arithmetic

Affine arithmetic is a technique to compute lower and upper bounds of functions
over an interval. It is based on the same principle as interval arithmetic excepted
that the quantities are represented by an affine form, see [15].

As in interval arithmetic, the usual operations and functions are extended
to deal with affine forms. For the non-affine operations and some transcendental
functions, such as the square root, the logarithm, the inverse and the exponential,
several algorithms exist depending on the use: if you focus on computation of
the bound, or on performance, or on linear approximation, or on the reliability,
etc. Indeed, seven different versions are available to satisfy all needs of the user.

1.3 Contractor Programming

The concept of contractor is directly inspired by the ubiquitous concept of filter-
ing algorithm in constraint programming [6]. The strength of IBEX lies mainly
in this concept. Every algorithm in IBEX is included as a Contractor.

Definition 1. Let X ⊆ Rn be a feasible region.
The operator CX : IRn → IRn is a contractor for X if:

∀[x] ∈ IRn,

{
CX([x]) ⊆ [x], (contraction)
CX([x]) ∩ X ⊇ [x] ∩ X. (completeness)

This definition means that: (i) Filtering gives a sub-domain of the input
domain [x]; (ii) the resulting sub-domain CX([x]) contains all the feasible points.
No solution is lost. A contractor is defined by a feasible region X, and its purpose
is to eliminate a part of a domain which is not in X.

All set operators can be extended to contractors. For example, the inter-
section of two contractors creates a contractor for the intersection of these two
sets. In the same way, the hull of two contractors creates a contractor for the
disjunction of these constraints.

Definition 2. Let X and Y ⊆ Rn be two feasible regions.

CtcCompo: (CX ∩ CY)([x]) = CX([x]) ∩ CY([x])
CtcUnion: (CX ∪ CY)([x]) = CX([x]) ∪ CY([x])

CtcFixPoint: C∞ = C ◦ C ◦ C ◦ . . .

Using these properties, interacting, combining and merging heterogeneous
techniques becomes simple.

2 Lists of Contractors

In this section, a small part of all contractors available in IBEX is described:

CtcFwdBwd and CtcHC4: the atomic contractors
Forward-backward is a classical algorithm in constraint programming for con-
tracting quickly with respect to one equality or inequality constraint. See, e.g.,



[3], [7]. However, the more occurrences of variables in the expression of the
(in)equality, the less accurate the contraction. Hence, this contractor is often
used as an atomic contractor embedded in an higher-level operator like Propa-
gation or Shaving.

HC4 is another classical algorithm of constraint programming. It allows to
contract with respect to a system of constraints. The basic idea is to calculate
the fix point of a set of n contractors C1, . . . , Cn, i.e. (C◦· · ·◦C)∞, without calling
a contractor when it is unnecessary.

Ctc3BCid and CtcAcid: the shaving contractors
Ctc3BCID is a shaving operator. It is an implementation of the 3BCID algorithm
defined in [16]. The shaving operator applies a contractor C on sub-parts (slices)
of the input box. If a slice is entirely eliminated by C, the input box can be
contracted by removing the slice from the box. This operator can be viewed as
a generalization of the SAC algorithm in discrete domains [4]. The concept with
continuous constraint was first introduced in [10] with the ”3B” algorithm. In
[10], the sub-contractor C was CtcHC4. In IBEX, the idea was extended and
Ctc3BCID can be combined with every contractor.

CtcAcid is an adaptive version of the 3BCID contractor. The handled number
of variables for which a shaving will be performed is adaptively tuned. The
ACID algorithm alternates: (i) small tuning phases (during e.g 50 nodes) where
the shaving is called on a number of variables double of the last tuned value (all
variables in the first tuning phase); statistics are computed in order to determine
an average number of interesting calls, The number of variables to be handled
in the next running phase is computed at the end of the tuning phase; (ii) and
large running phases (during e.g. 950 nodes) where 3BCID is called with the
number of variables determined during the last tuning phase.

CtcPolytopeHull: Contractors based on Linear relaxation
Considering a system of linear inequalities, CtcPolytopeHull gives the possibil-
ity to contract a box to the hull of the polytope (the set of feasible points). This
contractor calls a linear solver linked with IBEX (CPLEX, Soplex or CLP) to cal-
culate for each variable xi, the following bounds: min

Ax≤b∧x∈[x]
xi and max

Ax≤b∧x∈[x]
xi,

where [x] is the box to be contracted.

If some constraints are nonlinear, Linearization procedures can automatically
linearize the non-linear constraints. There exists some built-in linearization tech-
niques in IBEX :
(i) LinearRelaxXTaylor: a corner-based Taylor relaxation [2];
(ii) LinearRelaxAffine2: a relaxation based on affine arithmetic [14];
(iii) LinearRelaxCombo: a combination of the two previous techniques (the poly-
tope is basically the intersection of the polytopes calculated by each technique).

CtcQInter: the q-relaxed intersection
If a set of constraints is based on physical data, it is not uncommon that some
of this data is wrong. In this situation, the q-relaxed intersection of contractors
can be applied to this problem.



The q-relaxed intersection of m subsets X1, . . . ,Xm of Rn is the set of all

x ∈ Rn which belong to at least (m− q) Xi. We denote it by X{q} =
⋂{q}Xi.

Since the q-relaxed intersection is a set operator, we have extended this no-

tion to contractors:
(⋂{q} CXi

)
([x]) =

⋂{q}
(CXi

([x])). This contractor allows

modeling the possibility of invalid constraints: it can also be used for robust
optimization.

In [5], Carbonnel et al. found an algorithm with a complexity θ(nm2) to
compute a box which contains the q-relaxed intersection of m boxes of Rn.

CtcExist and CtcForAll: the contractors with quantifiers
Another possibility is to project a subset of Rn over one or more dimensions. For
example, if a constraint needs to be satisfied for all values of a parameter in a
given set, such as {x ∈ Rn : ∀t ∈ X ⊆ Rm, g(x, t) ≤ 0}, few solvers are available
to deal with it. Another example is when a constraint needs to be satisfied for at
least one value of the parameter, such as {x ∈ Rn : ∃t ∈ X ⊆ Rm, g(x, t) ≤ 0}.

Two operators are defined as contractors. The first one is CtcForAll and
the second one is CtcExist. CtcForAll contracts each part of [x] which is
contracted by C([x] × {y}) for any y ∈ Y. Indeed, each part [a] of [x], such
as ∃y ∈ Y, ([a], y) /∈ Z, can be removed. Thus, each part [b] of [x], such as
∀y ∈ Y, ([b], y) ∈ Z, is kept. A similar algorithm is used in CtcExist.

3 Optimization Strategies

To find the global optimum of a problem in a reliable way, IBEX included several
global optimization strategies. The principle of these algorithms is based on a
branch-and-bound technique [12]. At each iteration, the domain under study is
bisected to improve the computation of bounds. Boxes are eliminated if and only
if it is certified that no point in the box can produce a better solution than the
current best one, or that at least one constraint cannot be satisfied by any point
in such a box. To accelerate convergence, contractors are used at each iteration
to prune the width of boxes.

The default optimization strategy is based on a mathematical model of the
optimization problem that needs to be solved. This model can be constructed
directly using the symbolic kernel of IBEX or using the AMPL interface. The de-
fault contractor inside is the following: CtcAcid∩(CtcPolytopeHull ∩ CtcHC4)

∞
.

The performance of the default optimizer is comparable to the global opti-
mizer BARON. However, our approach is completely reliable, and can deal with
more general problems (with trigonometric function).

Moreover, a general pattern is also available [13]. This pattern only requires
a contractor defined on the feasible set X of the problem and an other contractor
on the unfeasible set X. Indeed, IBEX can address more complex real-life prob-
lems with disjunction constraint, quantifier, outliers, non-linearities, trigonomet-
ric functions, etc.



References

1. IBEX : a C++ numerical library based on interval arithmetic and constraint pro-
gramming. http://www.ibex-lib.org.

2. I. Araya, G. Trombettoni, and B. Neveu. A contractor based on convex interval
Taylor. In Integration of AI and OR Techniques in Contraint Programming for
Combinatorial Optimzation Problems, pages 1–16. Springer, 2012.

3. F. Benhamou and L. Granvilliers. Continuous and interval constraints. Handbook
of Constraint Programming, 2:571–603, 2006.

4. C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency. In
Proceedings of ECAI-04 workshop on Modeling and Solving Problems with Con-
straints, 2004.

5. C. Carbonnel, G. Trombettoni, P. Vismara, and G. Chabert. Q-intersection Algo-
rithms for Constraint-Based Robust Parameter Estimation. In AAAI’14-Twenty-
Eighth Conference on Artificial Intelligence, pages 26–30, 2014.

6. G. Chabert and L. Jaulin. Contractor programming. Artificial Intelligence,
173(11):1079–1100, 2009.

7. H. Collavizza, F. Delobel, and M. Rueher. A Note on Partial Consistencies over
Continuous Domains. In M. Maher and J.-F. Puget, editors, Principles and Prac-
tice of Constraint Programming CP98, number 1520 in Lecture Notes in Computer
Science, pages 147–161. Springer Berlin Heidelberg, 1998.

8. F. Goualard. Gaol: NOT Just Another Interval Library. University of Nantes,
France, 2005.

9. O. Knuppel. PROFIL/BIAS–A fast interval library. Computing, 53(3-4):277–287,
1994.

10. O. Lhomme. Consistency techniques for numeric CSPs. In IJCAI, volume 93,
pages 232–238. Citeseer, 1993.

11. M. Nehmeier and J. Wolff v Gudenberg. FILIB++, Expression Templates and the
Coming Interval Standard. Reliable Computing, 15(4):312–320, 2011.

12. J. Ninin. Optimisation Globale basée sur l’Analyse d’Intervalles : Relaxation Affine
et Limitation de la Mémoire. PhD thesis, Institut National Polytechnique de
Toulouse, Toulouse, 2010.

13. J. Ninin and G. Chabert. Global optimization based on contractor programming.
In XII GLOBAL OPTIMIZATION WORKSHOP, pages 77–80, 2014.

14. J. Ninin, F. Messine, and P. Hansen. A reliable affine relaxation method for global
optimization. 4OR, 13(3):247–277, 2014.

15. J. Stolfi and L.H. De Figueiredo. Self-validated numerical methods and applica-
tions. Monograph for 21st Brazilian Mathematics Colloquium. IMPA/CNPq, Rio
de Janeiro, Brazil, 1997.

16. G. Trombettoni and G. Chabert. Constructive interval disjunction. In Principles
and Practice of Constraint Programming–CP 2007, pages 635–650. Springer, 2007.


