
“REGULAR-SS12: The Bernstein1

branch-and-prune algorithm for constrained2

global optimization of multivariate3

polynomial MINLPs”4

Bhagyesh V. Patil5

Cambridge Centre for Advanced Research in Energy Efficiency in Singapore6

50 Nanyang Ave, Singapore 6397987

bvpatil@ntu.edu.sg8

Abstract. This paper address the global optimization problem of poly-9

nomial mixed-integer nonlinear programs (MINLPs). A improved branch-10

and-prune algorithm based on the Bernstein form is proposed to solve11

such MINLPs. The algorithm use a new pruning feature based on the12

Bernstein form, called the Bernstein box and Bernstein hull consistency.13

The proposed algorithm is tested on a set of 16 MINLPs chosen from14

the literature. The efficacy of the proposed algorithm is brought out via15

numerical studies with the previously reported Bernstein algorithms and16

several state-of-the-art MINLP solvers.17

1 Introduction18

Optimizing a MINLP is a challenging task and has been a point of attraction to
many researchers from academia as well as industry. This work present a new
solution procedure for such MINLPs. Typically, this work addresses MINLPs of
the following form:

min
x

f(x)

subject to

gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , n (1)

xk ∈ x ⊆ R, k = 1, 2, . . . , ld

xk ∈ {0, 1, . . . , q} ⊂ Z, k = ld + 1, . . . , l

where f : Rl 7→ R is the (possibly nonlinear polynomial) objective function,19

gi : Rl 7→ R (i = 1, 2, . . . ,m), and hj : Rl 7→ R (j = 1, 2, . . . , n) are the (possibly20

nonlinear polynomial) inequality and equality constraint functions. Further, x :=21

[x, x] is an interval in R, xk (k = 1, 2, . . . , ld) are continuous decision variables,22

and the rest of xk (k = ld + 1, . . . , l) are integer decision variables with values 023

to q, q ∈ Z.24

Several techniques exist in literature to solve MINLP problems. Most of these25

techniques either decompose and reformulate the original problem (1) into a26

series of mixed-integer linear programs (MILPs) and nonlinear programs (NLPs),27

or they attempt to solve a NLP relaxation in a branch-and-bound framework.28

The interested reader can refer [2] and references therein for more specific details29

about these techniques.30

Recently, global optimization algorithms based on the Bernstein polynomial31

approach has been proposed (see [11], [12]), and found to be very effective in32

solving small to medium dimensional polynomial MINLPs of the form (1). The33

current scope of the work involve systematic extension of the above proposed34

Bernstein global optimization algorithms to form a new improved algorithm. The35

improved algorithm is of a branch-and-prune type and use consistency techniques36

(constraint propagation) based on the Bernstein form. The consistency tech-37

niques prune regions from a solution search space that surely do not contain the38

global minimizer(s) [5], [6], hence this improved algorithm is defined as the Bern-39

stein branch-and-prune algorithm for the MINLPs (that is, BBPMINLP). The40

algorithm BBPMINLP has some new features: (a) the consistency techniques are41

framed in a context of the Bernstein form, namely Bernstein box consistency and42

Bernstein hull consistency. (b) a new form of domain contraction step based on43

the application of Bernstein box and Bernstein hull consistency to a constraint44

f(x) ≤ f̃ is introduced. The main feature of the algorithm BBPMINLP is, all45

operations (branching and pruning) are done using the Bernstein coefficients.46

The performance of the algorithm BBPMINLP is compared with the earlier47

reported Bernstein algorithms BMIO [12] and IBBBC [11], as well as with several48

state-of-the-art MINLP solvers on a collection of 16 test problems chosen from49

the literature. The performance comparison is made on the basis of the number50

of boxes processed (between the algorithms BMIO, IBBBC, and BBPMINLP),51

and ability to locate a correct global minimum (between state-of-the-art MINLP52

solvers and the algorithm BBPMINLP). The findings are reported at the end of53

the paper.54

The rest of the paper is organized as follows. In Section 2, the reader is intro-55

duced to some background of the Bernstein form. In Section 3, the consistency56

techniques are introduced. In sequel, Bernstein box and Bernstein hull consis-57

tency techniques are also presented. In Section 4, the main global optimization58

algorithm BBPMINLP to solve the MINLP problems is presented. Finally, some59

conclusions based on the present work are presented in the Section 5.60

2 Background61

This section briefly presents some notions about the Bernstein form. Due to the62

space limitation, a simple univariate Bernstein form is introduced. A compre-63

hensive background and mathematical treatment for a multivariate case can be64

found in [12].65

We can write a univariate l-degree polynomial p over an interval x in the66

form67

p(x) =

l∑
i=0

aix
i, ai ∈ R . (2)

Now the polynomial p can be expanded into the Bernstein polynomials of the68

same degree as below69

p (x) =

l∑
i=0

bi (x)Bl
i (x) . (3)

where Bl
i are the Bernstein basis polynomials and bi(x) are the Bernstein coef-70

ficients give as below71

Bl
i =

(
l
i

)
xi(1− x)1−i . (4)

bi (x) =

i∑
j=0

(
i
j

)
(
l
j

)aj , i = 0, . . . , l. (5)

Equation (3) is referred as the Bernstein form of a polynomial.72

Theorem 1 (Range enclosure property) Let p be a polynomial of degree l, and73

let p(x) denote the range of p on a given interval x. Then,74

p(x) ⊆ B(x) := [min (bi(x)) , max (bi(x))] . (6)

Proof: See [4].75

76

Remark 1 The above theorem says that the minimum and maximum coeffi-77

cients of the array (bi(x)) provide lower and upper bounds for the range. This78

forms the Bernstein range enclosure, defined by B(x) in equation (6). The Bern-79

stein range enclosure can successively be sharpened by the continuous domain80

subdivision procedure [4].81

3 Consistency techniques82

The consistency techniques are used for pruning (deleting) unwanted regions that83

surely do not contain the global minimizer(s) from the solution search space. This84

pruning is achieved by assessing consistency of the algebraic equations (in our85

case inequality and equality constraints) over a given box x.86

This section now describe algorithms based on the consistency ideas bor-87

rowed from [5], and expanded in context of the Bernstein form. Henceforth,88

these algorithms are called as Bernstein box consistency (BBC) and Bernstein89

hull consistency (BHC). These algorithms work as a pruning operator in the90

main global optimization algorithm BBPMINLP (reported in the Section 4).91

3.1 Bernstein box consistency92

A Bernstein box consistency (BBC) technique is used to contract the bounds on93

a variable domain. The implementation of a BBC involve the application of a94

one-dimensional Bernstein Newton contractor [9] to solve a single equation for95

a single variable.96

Consider an equality constraint polynomial g(x) = 0, and let (b(x)) be the97

Bernstein coefficients array of g(x). Consider any component direction, say the98

first, with x1 = [a, b]. In the BBC technique, typically an attempt is made to99

increase the value of a and decrease the value of b, thus effectively reducing the100

width of x1.101

To increase the value of a, first find all those Bernstein coefficients of (b(x))102

corresponding to x1 = a. The minimum to maximum of these coefficients gives103

an interval denoted by g(a). If 0 /∈ g(a), then the constraint is infeasible at this104

endpoint a, and we search starting from a, along x1 = [a, b] for the first point105

at which constraint becomes just feasible, that is, we try to find a zero of g(x).106

Let us denote this zero as a′. Clearly, g(x) is infeasible over [a, a′), and so it107

can discarded to get a contracted interval [a′, b] . On the other hand, if 0 ∈ g(a)108

then we abandon the process to increase a and instead switch over to the other109

endpoint b and make an attempt to decrease it in the same way as we did to110

increase a.111

To find a zero of g in [a, b], one iteration of the univariate version of the
Bernstein Newton contractor given in [9] is used. It is as follows

N (x1) = a− (g(a)/g′x1
),

x′1 = x1 ∩N (x1) ,

where, g(a) is the minimum to maximum of the Bernstein coefficients array112

(b(x)) at x1 = a, g′x1
denotes an interval enclosure for the derivative of g on113

x1, and x′1 gives a new contracted interval. A similar process is carried out from114

the other endpoint b, and if desired, the whole process can be repeated over all115

other component directions to a get contracted box x′116

The algorithm for the BBC which can be applied to both equality and in-117

equality constraints is as follows.118

119

Algorithm Bernstein box consistency: x′ = BBC((bg(x)),x, r, xstatus,r, eq type)120

121

122

Inputs: The Bernstein coefficient array (bg(x)) of a given constraint polyno-123

mial g (x), the l-dimensional box x, the direction r (decision variable) for which124

the bounds are to be contracted, flag xstatus,r to indicate whether rth direction125

(decision variable) is continuous (xstatus,r = 0) or integer (xstatus,r = 1), and126

flag eq type to indicate whether g (x) is equality constraint (eq type = 0) or127

inequality constraint (eq type = 1).128

129

Outputs: A box x′ that is contracted using Bernstein box consistency tech-130

nique for a given constraint polynomial g (x).131

132

BEGIN Algorithm133

1. Set a = inf xr, b = supxr.134

2. From the Bernstein coefficient array (bg(x)), compute the derivative enclo-135

sure g
′

xr
in the direction xr.136

3. (Consider left endpoint of xr). Obtain the Bernstein range enclosure g(a)137

as the minimum to maximum from the Bernstein coefficient array of (bg(x))138

for xr = a.139

4. If eq type = 1, then modify g(a) as g(a) = [min g(a), inf].140

5. If 0 ∈ g(a), then we cannot increase a. Go to step 8 and try from the right141

endpoint b of the interval xr.142

6. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = a− (g(a)/g′xr
).

x′ra = xr ∩N (xr) .

7. If x′ra = ∅, then there is no zero of g on entire interval xr and hence the143

constraint g is infeasible over box x. EXIT the algorithm in this case with144

x′ = ∅.145

8. (Consider right endpoint of xr). Obtain the Bernstein range enclosure g(b)146

as the minimum to maximum from the Bernstein coefficient array of (b(x))147

for xr = b.148

9. If eq type = 1, then modify g(b) as g(b) = [min g(b), inf].149

10. If 0 ∈ g(b), then we cannot decrease b. Go to step 13150

11. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = b− (g(b)/g′xr
).

x′rb = xr ∩N (xr) .

12. If x′rb = ∅, EXIT the algorithm with x′ = ∅.151

13. Compute x′r as follows:152

(a) x′r = x′ra∩ x′rb , if both x′ra and x′rb are computed.153

(b) x′r = x′ra or x′rb , which ever is computed.154

(c) x′r = xr (both x′ra and x′rb are not computed).155

14. for k = 1, 2 if xstatus,r = 1 then156

(a) if x(r, k) and x′r(r, k) are equal then go to substep (e).157

(b) Set ta = x(r, k), and tb = x′r(r, k).158

(c) if ta > tb then set x′r(r, k) = bx′r(r, k)c.159

(d) if ta < tb then set x′r(r, k) = dx′r(r, k)e.160

(e) end (of k-loop).161

15. Return x′ = x′r.162

END Algorithm163

3.2 Algorithm Bernstein box consistency for a set of constraints164

A single application of the proposed algorithm BBC in the section 3.1 can con-165

tract only one variable domain. For a multivariate constraint, in turn, we can166

apply BBC to each variable separately. Below algorithm, called as BBC2SET167

applies BBC to all the variables present in a constraint, and if there are multiple168

constraints, BBC2SET applies BBC to all of them simultaneously.169

170

Algorithm BBC for a set of constraints: x′ = BBC2SET(B, k, C,x, xstatus)171

172

Inputs: A cell structure B containing Bernstein coefficient arrays of all the173

constraint polynomials with first k Bernstein coefficient arrays are for the equal-174

ity constraints, the total number of constraints C, the l−dimensional box x, and175

a column vector xstatus describing the status (continuous or integer) of the each176

variable xi (i = 1, 2, . . . , l).177

178

Outputs: A contracted box x′.179

180

BEGIN Algorithm181

1. Set r = 0.182

2. (a) for i = 1, 2, . . . , l183

(b) for j = 1, 2, . . . , C184

(i) Set r = r + 1, and xstatus,r = xstatus(r). if r > l then r = 1.185

(ii) if j < k then x1=BBC(B{j},x, r, xstatus,r, 0).186

(iii) if j > k then x1=BBC(B{j},x, r, xstatus,r, 1).187

(iv) Update x = x ∩ x1.188

(v) if x = ∅, then set x′ = ∅ and EXIT the algorithm.189

(c) end (of i−loop).190

(d) end (of j−loop).191

3. Return x′ = x.192

END Algorithm193

3.3 Bernstein hull consistency194

Similar to a BBC, a Bernstein hull consistency (BHC) technique contract bounds195

on a variable domain. The typical BHC procedure is as below.196

Consider a multivariate equality constraint h(x) = 0. To apply BHC to a197

selected term of h(x) = 0, we need to keep the selected term on the left hand198

side and remaining all other terms need to be taken on the right hand side, that199

is, we write the constraint in the form aIx
I = h1(x) where, x = (x1, x2, . . . , xl)200

and I = (i1, i2, . . . , il). The new contracted interval for the variable xr (in rth201

direction) can be obtained as202

x′r =

(
h′

aI
∏

xik
k

)1/ir ⋂
xr , r = 1, 2, . . . , l. (7)

Here to compute h′ we compute the Bernstein coefficients of the monomial term203

aIx
I and from them subtract the Bernstein coefficients of the constraint polyno-204

mial h(x). The minimum to maximum of this subtracted Bernstein coefficients205

will give h′. For a given constraint all the terms can be solved or only selected206

terms can be solved.207

The algorithm for the BHC that can be applied for both equality and in-208

equality constraints is as follows.209

210

Algorithm Bernstein hull consistency: x′ = BHC((bg(x)), aI , I,x, xstatus, eq type)211

212

213

Inputs: The Bernstein coefficient array (bg(x)) of a given constraint polyno-214

mial g (x), coefficient aI of the selected term t, power I of the each variable in215

term t, the l−dimensional box x, a column vector xstatus,r describing the sta-216

tus (if continuous, then xstatus,r = 0; if integer, then xstatus,r = 1) of the each217

variable xr (r = 1, 2, . . . , l), and flag eq type to indicate whether g(x) is equality218

constraint (eq type = 0) or inequality constraint(eq type = 1).219

220

Outputs: A box x′ that is contracted using Bernstein hull consistency tech-221

nique applied to a given constraint polynomial g (x) and selected term t.222

223

BEGIN Algorithm224

1. Compute the Bernstein coefficient array of the selected term t as (bt (x)).225

2. Obtain the Bernstein coefficients of the constraint inverse polynomial by226

subtracting (bg(x)) from (bt (x)), and then obtain its Bernstein range enclo-227

sure as the minimum to maximum of these Bernstein coefficients. Denote it228

as h′.229

3. if eq type = 1 then230

(a) Compute an interval y as y = [−∞, 0] ∩ [min (bg(x)),max (bg(x))].231

(b) if y = ∅ then set x′ = ∅, and EXIT the algorithm. Else modify h′ as232

h′ = h′ + y.233

4. (a) for r = 1, 2, . . . , l234

(b) Compute x′r =

(
h′

aI

∏
x
ik
k

)1/ir ⋂
xr235

(c) for k = 1, 2 if xstatus(r) = 1 then236

(i) if x(r, k) and x′r(r, k) are equal then go to substep (v).237

(ii) Set ta = x(r, k) and tb = x′r(r, k).238

(iii) if ta > tb then set x′r(r, k) = bx′r(r, k)c.239

(iv) if ta < tb then set x′r(r, k) = dx′r(r, k)e.240

(v) end (of k−loop).241

(d) end (of r−loop).242

5. Return x′.243

END Algorithm244

3.4 Algorithm Bernstein hull consistency for a set of constraints245

A single application of BHC algorithm can be made only to a single term of the246

selected constraint. However, in practice, we may want to apply BHC to more247

terms, or if there is more than one constraint, we may want to call BHC several248

times.249

Below algorithm BHC2SET applies BHC to the multiple terms and to the250

multiple constraints. This algorithm will call BHC several times. Our criteria for251

term selection is as follows. In a given constraint, if a term contains maximum252

power for any of the variable, then it is selected. If the term contains maximum253

power for two variables, then it is solved two times and so on. This criteria is254

inspired from the ideas about interval hull consistency reported in [5].255

256

Algorithm BHC for a set of constraints: x′ = BHC2SET(A,B, k, C,x, xstatus)257

258

259

Inputs: The cell structure A containing the coefficient arrays of all constraint260

polynomials with first k coefficient arrays are for the equality constraints, a cell261

structure B containing Bernstein coefficient arrays of all the constraint polyno-262

mials, where first k Bernstein coefficient arrays are for the equality constraints,263

the total number of constraints C, the l−dimensional box x, and a column vector264

xstatus,r describing the status (if continuous, then xstatus,r = 0; if integer, then265

xstatus,r = 1) of the each variable xr (r = 1, 2, . . . , l).266

267

Outputs: A contracted box x′.268

269

BEGIN Algorithm270

1. Set r = 0.271

2. (a) for i = 1, 2, . . . , l272

(b) for j = 1, 2, . . . , C273

(i) Set r = r + 1. if r > l then r = 1274

(ii) Select the term having the maximum power for r in the constraint275

j, and obtain the coefficient aI of the selected term and I containing276

the power of each variable in the selected term (this shall be obtained277

from A).278

(iii) if j < k then x1=BHC(B{j}, aI , I,x, xstatus, 0).279

(iv) if j > k then x1=BHC(B{j}, aI , I,x, xstatus, 1).280

(v) Update x = x ∩ x1.281

(vi) if x = ∅ then set x′ = ∅, and EXIT the algorithm.282

(c) end (of j−loop).283

(d) end (of i−loop).284

3. Return x′ = x.285

END Algorithm286

4 Main algorithm BBPMINLP287

This section presents the main algorithm for constrained global optimization of288

the MINLPs of a form (1). The working of the algorithm is similar to a interval289

branch-and-bound procedure, but with following enhancements.290

– This algorithm use the Bernstein form as a inclusion function for the global291

optimization.292

– Unlike classical subdivision procedure, the algorithm use a modified subdi-293

vision procedure from [11].294

– Similarly, this algorithm use a efficient cut-off test, called as a vectorized295

Bernstein cut-off test (VBCT) from [11].296

– Further, this algorithm use the efficient Bernstein box and Bernstein hull297

consistency techniques. These techniques serve as a pruning operator in the298

algorithm, thereby speeding up the convergence of the algorithm.299

Algorithm Bernstein branch-and-prune constrained optimization:300

[ỹ, p̃, U]=BBPMINLP(N, aI ,x, xstatus, εp, εx, εzero)301

302

Inputs: Degree N of the variables occurring in the objective and constraint303

polynomials, the coefficients aI of the objective and constraint polynomials in304

the power form, the initial search domain x, a column vector xstatus,r describing305

the status (if continuous, then xstatus,r = 0; if integer, then xstatus,r = 1) of306

a each variable xr (r = 1, 2, . . . , l), the tolerance parameters εp and εx on the307

global minimum and global minimizer(s), and the tolerance parameter εzero to308

which the equality constraints are to be satisfied.309

310

Outputs: A lower bound ỹ and an upper bound p̃ on the global minimum311

f∗, along with a set U containing all the global minimizer(s) x(i).312

313

BEGIN Algorithm314

1. Set y := x and ystatus,r := xstatus,r.315

2. From aI , compute the Bernstein coefficient arrays of the objective and con-316

straint polynomials on the box y respectively as (bo(y)) , (bgi(y)) , (bhj(y)),317

i = 1, 2, ...,m, j = 1, 2, ..., n.318

3. Set p̃ :=∞ and y := min (bo(y)).319

4. Set R = (R1, . . . , Rm, Rm+1, . . . , Rm+n) := (0, . . . , 0).320

5. Initialize list L := {(y, y, R, (bo(y)) , (bgi(y)) , (bhj(y)))}, Lsol := {}.321

6. If L is empty then go to step 22. Otherwise, pick the first item (y, y, R, (bo(y)) ,322

(bgi(y)) , (bhj(y))) from L, and delete its entry from L.323

7. Apply the Bernstein hull consistency algorithm to the relation f(y) ≤ p̃. If
the result is empty, then delete item (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))) and
go to step 6.

y′ = BHC((bo(y)) , aI , I,y, ystatus,r, 1)

8. Set y := y′ and compute the Bernstein coefficient arrays of the objective and324

constraint polynomials on the box y, respectively as (bo(y)) , (bgi(y)) , (bhj(y)),325

i = 1, 2, ...,m, j = 1, 2, ..., n. Also set y := min (bo(y)).326

9. Apply the Bernstein box consistency algorithm to the f(y) ≤ p̃. If the result
is empty, then delete item (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))) and go to step
6.

y′ = BBC((bo(y)) ,y, r, ystatus,r, 1)

where bound contraction will be applied in the rth direction.327

10. Set y := y′ and compute the Bernstein coefficient arrays of the objective and328

constraint polynomials on the box y, respectively as (bo(y)) , (bgi(y)) , (bhj(y)),329

i = 1, 2, ...,m, j = 1, 2, ..., n. Also set y := min (bo(y)).330

11. {Contract domain box by applying Bernstein hull consistency to all the
constraints} Apply the algorithm BHC2SET to all the constraints

y′ = BHC2SET(Ac, Bc, k, C,y, ystatus,r)

Here Ac is a cell structure containing the coefficient arrays of the all con-331

straints, where the first k coefficient arrays are for the equality constraints,332

Bc is a cell structure containing the Bernstein coefficient arrays of the all333

constraints, where the first k Bernstein coefficient arrays are for the equality334

constraints, C is the total number of constraints, y is a domain box, and y′335

is the new contracted box.336

12. Set y := y′ and compute the Bernstein coefficient arrays of the objective and337

constraint polynomials on the box y, respectively as (bo(y)) , (bgi(y)) , (bhj(y)),338

i = 1, 2, ...,m, j = 1, 2, ..., n. Also set y := min (bo(y)).339

13. {Contract domain box by applying Bernstein box consistency to all the con-
straints} Apply the algorithm BBC2SET to all the constraints

y′ = BBC2SET(Bc, k, C,y, ystatus,r)

Here Bc is a cell structure containing the Bernstein coefficient arrays of all340

the constraints, where the first k Bernstein coefficient arrays are for the341

equality constraints, C is the total number of constraints, y is a domain342

box, and y′ is a new contracted box.343

14. Set y := y′ and compute the Bernstein coefficient arrays of the objective and344

constraint polynomials on the box y, respectively as (bo(y)) , (bgi(y)) , (bhj(y)),345

i = 1, 2, ...,m, j = 1, 2, ..., n. Also set y := min (bo(y)).346

15. {Branching}347

(a) If w(yi) = 0 for all i = ld + 1, . . . , l (that is, all the integer variables has348

been fixed to some integer values from there respective domains) then349

go to substep (c).350

(b) Choose a coordinate direction λ parallel to which yld+1×· · ·×yl has an351

edge of maximum length, that is λ ∈ {i : w(y) := w(yi), i = ld+1, . . . , l}.352

Go to step 16.353

(c) Choose a coordinate direction λ parallel to which y1 × · · · × yld has an354

edge of maximum length, that is λ ∈ {i : w(y) := w(yi), i = 1, . . . , ld}.355

16. Bisect y normal to direction λ, getting boxes v1, v2 such that y = v1 ∪ v2.356

The modified subdivision procedure from [11] is used.357

17. for k = 1, 2358

(a) Set Rk = (Rk
1 , . . . , R

k
m, R

k
m+1, . . . , R

k
m+n) := R.359

(b) Find the Bernstein coefficient array and the corresponding Bernstein360

range enclosure of the objective function (f) over vk as (b0(vk)) and361

B0(vk), respectively.362

(c) Set dk := minBo(vk).363

(d) If p̃ < dk then go to substep (j).364

(e) for i = 1, 2, . . . ,m if Ri = 0 then365

(i) Find the Bernstein coefficient array and the corresponding Bernstein366

range enclosure of the inequality constraint polynomial (gi) over vk367

as (bgi(vk)) and Bgi(vk), respectively.368

(ii) If Bgi(vk) > 0 then go to substep (j).369

(iii) If Bgi(vk) ≤ 0 then set Rk
i := 1.370

(f) for j = 1, 2, . . . , n if Rm+j = 0 then371

(i) Find the Bernstein coefficient array and the corresponding Bernstein372

range enclosure of the equality constraint polynomial (hj) over vk373

as (bhj(vk)) and Bhj(vk), respectively.374

(ii) If 0 /∈ Bhj(vk) then go to substep (j).375

(iii) If Bhj(vk) ⊆ [−εzero, εzero] then set Rk
m+j := 1.376

(g) If Rk = (1, . . . , 1) then set p̃ := min(p̃,maxBo(vk)).377

(h) Enter (vk, dk, R
k) into the list L such that the second members of all378

items of the list do not decrease.379

(j) end (of k−loop).380

18. {Cut-off test} Discard all items (z, z, R, (bo(z)) , (bgi(z)) , (bhj(z))) in the list381

L that satisfy p̃ < z. For the remaining items in the list L apply the vec-382

torized Bernstein cut-off test from [11], and update the current minimum383

estimate p̃.384

19. Denote the first item of the list L by (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))).385

20. If (w(y) < εx) & (max Bo(y)−min Bo(y)) < εp then remove the item from386

the list L and enter it into the solution list Lsol.387

21. Go to step 6.388

22. {Compute the global minimum} Set the global minimum ỹ to the minimum389

of the second entries over all the items in Lsol.390

23. {Compute the global minimizers} Find all those items in Lsol for which the391

second entries are equal to ỹ. The first entries of these items contain the392

global minimizer(s) x(i).393

24. Return the lower bound ỹ and upper bound p̃ on the global minimum f∗,394

along with the set U containing all the global minimizer(s) x(i).395

END Algorithm396

5 Numerical studies397

This section reports a numerical experimentation with the algorithm BBP-398

MINLP on a set of 16 test problems. These test problems were chosen from399

[3], [8], [13]. At the outset, the performance of the algorithm BBPMINLP was400

compared with the Bernstein algorithms BMIO in [12] and IBBBC in [11]. Fur-401

ther, the algorithm BBPMINLP was compared with the four state-of-the-art402

MINLP solvers, namely AlphaECP, BARON, Bonmin, DICOPT, whose GAMS403

interface is available through the NEOS server [10], and one MATLAB based404

open-source solver BNB20 [7].405

For all computations, a desktop PC with Pentium IV 2.40 GHz processor406

with 2 GB RAM was used. The algorithm BBPMINLP was implemented in the407

MATLAB [1] with an accuracy ε = 10−6 for computing the global minimum and408

global minimizer(s), and a maximum limit on the number of subdivisions to be409

500.410

Table 1 describes the list of symbols for Table 3. Table 2 reports for the411

16 test problems, the total number of boxes processed and the computational412

time taken in seconds to locate a correct global minimum by the Bernstein413

algorithms BMIO, IBBBC, and the algorithm BBPMINLP reported in this work.414

The algorithm BBPMINLP was compared using three different flags described415

as below:416

– A: Application of the Bernstein hull consistency to the inequality and equal-417

ity constraints, that is algorithm BHC2SET (see Section 3.4) is applied to418

these constraints.419

– B: Application of the Bernstein box consistency to the inequality and equal-420

ity constraints, that is algorithm BBC2SET (see Section 3.2) is applied to421

these constraints.422

– C: Application of the Bernstein hull and box consistencies to the constraint423

f(x) ≤ f̃ (f̃ is the current global minimum estimate). This serves to delete424

a subbox that bounds a nonoptimal point of f(x).425

The findings are as below. It was observed that the algorithm BMIO failed426

to solve for the four test problems (wester, hmittelman, sep1, tln5) and the427

algorithm IBBBC is unable to solve one test problem sep1. Similary, the al-428

gorithm BBPMINLP with flags A and C is unable to solve one test problem429

(sep1). This is perhaps the Bernstein hull consistency in this problem was un-430

able to sufficiently prune the search region, and hence may take more time to431

find the solution. However, for one test problem (tln5) we found the algorithm432

BBPMINLP with flag A to be more efficient than the others. In contrast, the433

algorithm BBPMINLP with flag B was able to successfully solve all the test434

problems. Moreover, it was observed for two test problems (wester, hmittelman)435

algorithm with flag B performed exceptionally well than the others. Overall, the436

performance of the algorithm BBPMINLP with flag B was seen to be the best437

in terms of both the number of boxes processed and the computational time it438

took to found a global minimum.439

Table 3 reports for the 16 test problems the quality of the global minimum ob-440

tained with the algorithm BBPMINLP and the state-of-the-art MINLP solvers1.441

The bold values in the table indicate the local minimum value. For these test442

problems the performance of the state-of-the-art solvers was as follows:443

1 All the solver were executed in their default options for the 16 test problems con-
sidered.

– AlphaECP found the local minimum for two test problem (zhu2, tln5), and444

failed to solve one test problem (hmittelman).445

– Bonmin found the local minimum for two test problems (zhu2, tln5).446

– BNB20 found the local minimum for four test problems (floudas1, zhu2,447

hmittelman, sep1), and failed to solve three test problems (wester, st test3,448

tln5).449

– DICOPT found the local minimum for three test problems (floudas1, zhu2,450

tln5), and failed solve two test problems (zhu1, hmittelman).451

However, the algorithm BBPMINLP was able to found the correct the global452

minimum value for all the test problems, and compares well with the state-of-453

the-art solvers in terms of the computational time.454

6 Conclusions455

In this work the Bernstein algorithm (BBPMINLP) was proposed to solve the456

polynomial type of MINLPs. This algorithm was composed with the two new457

solution search space pruning operators, namely the Bernstein box and Bernstein458

hull consistency. Further, the proposed algorithm also used another pruning459

operator based on the application of the Bernstein box and hull consistency460

to a constraint based on the objective function f(x) and a current minimum461

estimate f̃ . This step along with a cut-off test improves the convergence of the462

algorithm. The performance of the proposed algorithm BBPMINLP was tested463

on a collection of 16 test problems. The test problems had dimensions ranging464

from 2 to 35 and number of constraints varying from 1 to 31. At the outset, the465

effectiveness of the algorithm BBPMINLP was demonstrated over the previously466

reported Bernstein algorithms BMIO and IBBBC. The algorithm BBPMINLP467

was found to be more efficient in the number of boxes processed, resulting an468

average reduction of 96 − 99% compared to BMIO and 42 − 88% compared to469

IBBBC. Similarly, from the computational perspective BBPMINLP was found470

to be well competent with the algorithms BMIO and IBBBC.471

Lastly, the performance of the algorithm BBPMINLP was compared with the472

existing state-of-the-art MINLP solvers, such as AlphaECP, BARON, Bonmin,473

BNB20, and DICOPT. Test results showed the superiority of the proposed algo-474

rithm BBPMINLP over state-of-the-art MINLP solvers in terms of the solution475

quality obtained. Specifically, all solvers (except BARON) located local solution476

or failed for atleast one problem from a set of 16 test problems considered. On the477

otherhand, the algorithm BBPMINLP could locate correct global minimum for478

all the test problems. In terms of the computational time, BBPMINLP was some479

order of magnitudes slower than the considered MINLP solvers. However, this480

could be due to the difference in the computing platforms used for the algorithm481

implementation and testing.482

Table 1. Description of symbols for Table 3.

Symbol Description

l Total number of the decision variables (binary, integer and continuous)
f* Bold values in this row indicates local minimum obtained
* Indicates that the solver failed giving the message “relaxed NLP is

unbounded”
** Indicates that the solver searched one hour for the solution, still could

not find the solution and therefore was terminated
*** Indicates that the solver returned the message “terminated by the solver”
**** Indicates that the solver failed giving the message “infeasible row with

only small Jacobian elements”

Table 2. Comparison of the number of boxes processed and computational time (in
seconds) taken by the earlier Bernstein algorithms BMIO, IBBBC and the algorithm
BBPMINLP.

Example l Statistics BMIO IBBBC BBPMINLP
A B C

floudas1 2 Boxes 1003 33 29 10 31
Time 0.45 0.08 0.3 0.10 0.18

zhu1 2 Boxes 1166 173 63 61 81
Time 1.05 0.14 0.5 0.40 0.59

st testph4 3 Boxes 1870 47 20 15 29
Time 2.21 0.18 0.15 0.10 0.44

nvs21 3 Boxes 1149 785 125 67 615
Time 0.81 0.10 0.23 0.31 1.17

gbd 4 Boxes 2201 23 23 5 15
Time 1.40 0.09 0.11 0.02 0.28

st e27 4 Boxes 572 21 5 5 13
Time 0.40 0.08 0.06 0.07 0.21

zhu2 5 Boxes 2571 700 84 81 173
Time 2.71 1.40 3.35 2.30 4.13

st test2 6 Boxes 2987 107 17 16 5
Time 1.63 0.18 0.30 0.12 0.11

wester 6 Boxes * 1621 1500 4 6003
Time 5.25 300 0.07 39.83

alan 8 Boxes 4015 1 1 1 1
Time 3.03 0.01 0.01 0.02 0.01

ex1225 8 Boxes 6869 385 343 85 261
Time 6.60 0.15 0.7 0.40 3.17

st test6 10 Boxes 3003 111 18 18 91
Time 3.57 2.68 1.25 0.70 11.51

st test3 13 Boxes 3960 340 119 21 261
Time 48.50 4.32 5.61 4.31 75.40

hmittelman 16 Boxes * 431 5000 3 191
Time 61.52 1561 1.35 316.44

sep1 29 Boxes * ** ** 1034 **
Time 5.96

tln5 35 Boxes * >10,000 1003 2972 >8003
Time 68.28 18.96

* indicates that the algorithm returned “out of memory error”.
** indicates that the algorithm did not give the result even after one hour and

is therefore terminated.

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

o
f

th
e

g
lo

b
a
l

m
in

im
u
m

o
b
ta

in
ed

a
n
d

co
m

p
u
ta

ti
o
n
a
l

ti
m

e
(i

n
se

co
n
d
s)

ta
k
en

b
y

th
e

a
lg

o
ri

th
m

B
B

P
M

IN
L

P
w

it
h

st
a
te

-o
f-

th
e-

a
rt

M
IN

L
P

so
lv

er
s.

E
x
a
m

p
le

l
S
ta

ti
st

ic
s

S
o
lv

er
/
A

lg
o
ri

th
m

A
lp

h
a
E

C
P

B
A

R
O

N
B

o
n
m

in
B

N
B

2
0

D
IC

O
P

T
B

B
P

M
IN

L
P

fl
o
u
d
a
s1

2
f
*

−
8
.5

−
8
.5

−
8
.5

−
5

−
4

−
8
.5

T
im

e
1
.0

4
0
.2

5
0
.1

4
0
.0

1
0
.2

1
0
.1

zh
u
1

2
f
*

−
3
.9

3
7
4
E

+
1
0

−
3
.9

3
7
4
E

+
1
0

−
3
.9

3
7
4
E

+
1
0

−
3
.9

3
7
4
E

+
1
0

*
−

3
.9

3
7
4
E

+
1
0

T
im

e
1
.3

6
0
.2

5
0
.1

6
0
.0

7
0
.4

0
st

te
st

p
h
4

3
f
*

−
8
0
.5

−
8
0
.5

−
8
0
.5

−
8
0
.5

−
8
0
.5

−
8
0
.5

T
im

e
0
.8

9
0
.2

6
0
.2

6
0
.2

2
0
.4

7
0
.1

0
n
v
s2

1
3

f
*

−
5
.6

8
−

5
.6

8
−

5
.6

8
−

5
.6

8
−

5
.6

8
−

5
.6

8
T

im
e

1
5
.5

4
1
.0

6
0
.1

6
0
.2

9
0
.2

3
0
.3

1
g
b

d
4

f
*

2
.2

2
.2

2
.2

2
.2

2
.2

2
.2

T
im

e
0
.5

0
.2

5
0
.2

2
0
.0

3
0
.2

2
0
.0

2
st

e2
7

4
f
*

2
2

2
2

2
2

T
im

e
0
.7

1
0
.2

6
0
.1

3
0
.0

1
0
.2

2
0
.0

7
zh

u
2

5
f
*

0
−

5
1
,5

6
8

0
−
4
2
,5

8
5

0
−

5
1
,5

6
8

T
im

e
1
.9

4
0
.2

5
0
.1

6
1
.3

8
0
.2

3
2
.3

0
st

te
st

2
6

f
*

−
9
.2

5
−

9
.2

5
−

9
.2

5
−

9
.2

5
−

9
.2

5
−

9
.2

5
T

im
e

1
.8

3
0
.3

2
0
.3

1
0
.2

9
0
.8

4
0
.1

2
w

es
te

r
6

f
*

1
1
2
,2

3
5

1
1
2
,2

3
5

1
1
2
,2

3
5

*
*

1
,1

2
,2

3
5

1
1
2
,2

3
5

T
im

e
6
.6

6
0
.3

7
0
.0

8
0
.8

2
0
.0

7
a
la

n
8

f
*

2
.9

2
2
.9

2
2
.9

2
2
.9

2
2
.9

2
2
.9

2
T

im
e

0
.6

1
0
.2

3
0
.2

0
0
.1

4
1
.0

2
0
.0

2
ex

1
2
2
5

8
f
*

3
1

3
1

3
1

3
1

3
1

3
1

T
im

e
0
.7

2
0
.2

6
0
.2

8
0
.2

8
0
.4

7
0
.4

0
st

te
st

6
1
0

f
*

4
7
1

4
7
1

4
7
1

4
7
1

4
7
1

4
7
1

T
im

e
3
.5

6
1
.4

2
1
.1

7
0
.8

2
1
.4

2
0
.7

0
st

te
st

3
1
3

f
*

−
7

−
7

−
7

*
*

−
7

−
7

T
im

e
0
.9

4
0
.2

7
0
.6

1
0
.9

8
4
.3

1
h
m

it
te

lm
a
n

1
6

f
*

*
*
*

1
3

1
3

1
9

*
*
*
*

1
3

T
im

e
0
.4

2
2
.6

2
0
.0

9
1
.3

5
se

p
1

2
9

f
*

−
5
1
0
.0

8
−

5
1
0
.0

8
−

5
1
0
.0

8
−

5
0

−
5
1
0
.0

8
−

5
1
0
.0

8
T

im
e

7
.9

1
0
.0

6
0
.0

4
0
.1

4
0
.0

0
1

5
.9

6
tl

n
5

3
5

f
*

1
0
.6

1
0
.3

1
0
.6

*
*

1
3
.7

1
0
.3

T
im

e
1
2
.2

3
0
.5

3
5
2
.7

4
0
.0

0
2

1
8
.9

6

Acknowledgement483

This work was funded by the Singapore National Research Foundation (NRF)484

under its Campus for Research Excellence And Technological Enterprise (CRE-485

ATE) programme and the Cambridge Centre for Advanced Research in Energy486

Efficiency in Singapore (CARES).487

References488

1. The Mathworks Inc., MATLAB version 7.1 (R14) (Natick, MA, 2005)489

2. D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated490

practical overview. Annals of Operations Research 204(1), 301–320 (2013)491

3. Floudas, C.A.: Nonlinear and mixed-integer optimization: fundamentals and ap-492

plications. Oxford University Press, New York (1995)493

4. Garloff, J.: The Bernstein algorithm. Interval Computations 2, 154–168 (1993)494

5. Hansen, E.R., Walster, G.W.: Global optimization using interval analysis, 2nd edi-495

tion. Marcel Dekker, New York (2005)496

6. Hooker, J.: Logic-based methods for optimization: combining optimization and497

constraint satisfaction. John Wiley, New York (2000)498

7. Kuipers, K.: Branch-and-bound solver for mixed-integer nonlinear optimization499

problems. MATLAB Central for File Exchange. (Retrieved 18 December 2009)500

8. GAMS MINLP Model Library: Available at501

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm. (Accessed 20 March502

2015)503

9. Nataraj, P.S.V., Arounassalame, M.: An interval Newton method based on the504

Bernstein form for bounding the zeros of polynomial systems. Reliable Computing505

15(2), 109–119 (2011)506

10. NEOS server for optimization.: Available at http://www.neos-507

server.org/neos/solvers/index.html. (Accessed 20 March 2015)508

11. Patil, B.V., Nataraj, P.S.V.: An improved Bernstein global optimization algorithm509

for MINLP problems with application in process industry. Mathematics in Com-510

puter Science 8(3-4), 357–377 (2014)511

12. Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global optimization of mixed-integer512

nonlinear (polynomial) programming problems: the Bernstein polynomial ap-513

proach. Computing 94(2-4), 325–343 (2012)514

13. Zhu, W.: A provable better branch and bound method for a nonconvex integer515

quadratic programming problem. Journal of Computer and System Sciences 70(1),516

107–117 (2005)517

