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Abstract—The overlay approach –FPGA over FPGA– has a
number of expected benefits, including bitstream compatibility
between different vendors and parts, fast reconfiguration and,
more generally, ease of use. However the number of complex
engineering tasks to design, explore and make use of such
overlays severely restrains their diffusion. This paper presents
a downloadable integrated tool flow named Argen. Argen sup-
ports defining reconfigurable architecture and generating the
corresponding overlay along with its System-on-chip exploitation
environment.

Index Terms—FPGA, prototyping, software environment, over-
lay

I. INTRODUCTION

When considering general purpose hardware acceleration,
the potential users are mostly software programmers. Those,
when addressing FPGA design, often find themselves battling
with the much lower design productivity in developing hard-
ware designs [1]. Hence, there is a need for abstracting the
complexity away from the designer, enabling architectures to
be exploited as programmable accelerators, alongside general
purpose processors, within a software-centric runtime frame-
work.

Existing overlay architectures offer a number of advantages
for hardware acceleration, among which application portability
and fast compilation. Yet, not only is the architecture flexible,
supporting tailoring the architecture towards a given applica-
tion field or a programming model, but also the bitstream’s
definition is made public. On one hand, this comes at the
expense of area and performance overheads due to limited
consideration for the underlying FPGA architecture. On the
other hand, there are many potential optimizations and thus
many research fields that overlays make possible to explore:
impact of architecture against metrics, security mechanisms,
etc.

Obviously, this requires a complete environment, so that
researchers can serialize topics on which to focus one by
one. This environment must support defining the architecture,
synthesizing application, scoring metrics, offering advanced
debug facilities, and potentially deploying the overlays to
create a topology of reconfigurable nodes.

This paper introduces such an environmentt, which is
currently downloadable as a virtual machine image through
the provided link [2].

The rest of this paper is organized as follows: section II
reviews existing overlays and their toolset, section III itemizes
the requirements that guided the tools development, Sections
IV and V respectively present the resulting tool flow for over-
lay modelling and generation, and for application synthesis.
Section VI exposes some use cases, and section VI summarizes
some learned lessons and draws perspectives.

II. LITERATURE OVERVIEW AND PROBLEM STATEMENT

As FPGA themselves are becoming mainstream, overlays
have quickly become a field of research in their own rights.
In the field of reconfigurable systems however, the notion of
overlay has been around for several years (sometimes called
virtual FPGAs [3]). Overlays’ main intent is to bring more
productivity to application developers by providing a new layer
on top of physical FPGAs.

Technically, they can be viewed as programmable and
mostly regular architectures, either fine or coarse grained.
An immediate analogy can be drawn with the adoption of
virtual machines like JVM in the software domain : instead of
using the physical processor, programmers rely on a software-
defined processor to develop and deploy their applications.
By using VMs, programmers have made the explicit choice
to trade strict performance for flexibility and binary com-
patibility. Overlays also offer a mean to apply a separation
of concerns, by tuning the architecture to domain specific
problems.

A. Fine grained overlays

Among some emblematic overlays found in the literature is
ZUMA [4]. ZUMA can be considered as a virtual FPGA, as it
offers the same granularity as classical FPGAs, for operations
at the bit level. Brant & Lemieux have optimized ZUMA
so that virtual LUTs can be directly mapped on physical
ones. Accordingly, many more optimizations can be studied.
As an example, authors in [5] have introduced the notion of
Virtual Time Propagation Registers (VTPRs) that optimize the
synthesis of the overlay itself, by conforming to a strictly
synchronous RTL model of the overlay. Despite their evident
drawbacks in terms of performance loss versus the host FPGA,
fine-grained overlays offer a playground to study overlay978-1-5386-3344-1/17/$31.00 © 2018 European Union



architectures under a microscope. The template architecture
used in Argen will be further described in section IV-A.

B. Coarse grained overlays

Coarse grained overlays have attracted even more attention,
due to their higher computational performances. Design covers
a wide range of architectures, starting from simple word-level
operators to assembly of software cores. The literature also
exposes many types of interconnexions, either point-to-point
connexions, simply restricted to a close neighbourhood or bus-
based. The pairing of general purpose processors and coarse-
grained overlays makes them an ideal coprocessor, either
tighly or loosely coupled [6], or part of their pipeline [7].

Jain [8] proposed an interesting categorization of coarse-
grained FPGA overlays: the first distinction separates spatially-
configured and timed-multiplexed architectures. Then in each
category, we may further distinguish overlays presenting
nearest-neighbor style routing mechanisms (e.g CGRAs) vs
island style (e.g Intermediate Fabrics [9], Dyser [10], etc.) or
even customized routing topologies.

Coarse grained overlays offer much more interesting perfor-
mances than their fine grain counterparts. A typical reported
overhead in the literature in terms of clock cycles and surface
(with respect to a native synthesis on the host FPGA) amounts
to respectively only 7% and 44% (case of Intermediate Fabrics
[9]).

As in the case of fine-grained overlays, the source of
optimizations naturally comes from a synergetic design of the
overlay and a cautious use of host resources. For instance, Jain
et al. [11] have designed the functional units of their overlay
by reusing the host DSP blocks (Xilinx DSP48E1). A different
strategy has been reported by Coole and Stitt, called ”super-
nets” (netlist superset), which aims at minimizing the overhead
in terms of surface. The strategy consists in finding shareable
parts of various application netlists, in order to fuse them in
the overlay. A secondary interconnect network is then added
to the overlay in order to bring more flexibility to the whole
architecture. Even more generally, Fahmy [12] addresses the
typical overhead encountered in island-style interconnect by
a close look at applications, where arithmetic expressions
naturally lead to direct-acyclic graphs: cone-shaped cluster
of FUs utilizing a simple linear interconnect between them
suffices without substantial lost of programmability, but with
huge gains in terms of surface of the overlay.

C. Tooling associated to overlays

While a great amount of research has been conducted so
far in the exploration of such architectures, the EDA tooling
associated to overlays seems to lag quite behind. Most of the
reported experiments have concentrated on mapping dataflow
graphs on overlays, or on runtime management. Instead, papers
barely report the level of usability of the tools associated to
these experiments.

III. REQUIREMENTS FOR OVERLAY-CENTRIC INTEGRATED
TOOLING

At least two branches of the underlying activities must be
addressed : the overlay building (modelling and generation)
and the synthesis of applications onto the overlay.

However, to offer a true one-stop-shopping point environ-
ment, ta number of requirements has to be satisfied:

1) Overlay Domain Space Exploration must be sup-
ported. In the same way software virtual machines
(VMs) can be tuned to specific requirements, the design
of specific overlays should be proposed to the program-
mer.

2) The environment must support Third-party tooling in-
tegration, as, low level tooling may be overlay specific,
and at a higher level, many opportunities can arise by the
advent of overlays, seen as means to propose alternatives
to classical HLD languages, proprietary tools and closed
methodologies.

3) Open bitstream structure is mandatory for researchers
working on overlay security.

4) SoC integration of overlays should be easy, mean-
ing that at both hardware and system levels, facilities
are provided to simplify the deployment of modeled
overlays. At a hardware level, DMA access, pinout
interconnect, control signals should be easily accessible.

5) Metrics and simple feedback must be provided to the
user for him to evaluate his overlay, or the overlay-
application adequation.

6) Debug capabilities must help the designer in setting up
a fully functional solution. That requires a full controla-
bility over the overlay (halting, resuming execution) and
introspection capabilities (read/write over registers and
memories).

7) Environment availability and ease of installation are
two strong requirements for succeeding on offering a
community animation support.

The Argen environment conforms to all of these require-
ments.

An overview of Argen toolchain is depicted on figure 1.
Argen is a complete EDA toolchain, which encompasses

traditional design phases in a compact way : architectural and
application design, application mapping and synthesis, as well
as final binary code generation, for both the overlay and the
application. It seeks to facilitate the chaining of these activities,
from a user point of view, through a GUI that makes the
methodology explicit and serves as guidelines for the user.
The strict respect of these guidelines is recommended, but not
mandatory, which opens up several possibilities of enrichment
of the toolset. In the sequel (as well as in the tool), we will
resort to ’architecture’ or ’overlay’ interchangeably.

This methodology amounts to the application of 10 passes
as illustrated by figure 2. Some passes consist in a direct call to
external tools, while some others are strictly handled by Argen.
The interleaving of theses various calls remains transparent to
the user.



Fig. 1. Overlay: principles
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Fig. 2. Overview of Argen tool flow

IV. ARGEN, HARDWARE SIDE

A. Overlay definition

The first activity is the description of the overlay itself as
illustrated by fig. 3. The architecture conforms to a VPR [13]
[14] template. This template describes a regular array of cells
(CLBs), each of which embeds several logic elements (BLEs).
A BLE contains a Look-Up Table and a register. The cells
are surrounded by routing channels, interconnected through
switch boxes. The switch boxes can expose several connection
schemes, but the Wilton [15] connectivity is most commonly
used.

The CLBs can drive a portion of their close routing tracks,
while some of the tracks can drive the CLB’s inputs. The
number of inputs for a CLB is usually less than the sum
of inputs of its BLEs. As a consequence, efficient resources
sharing through a smart packing is a key issue.

The left side of figure 9 provides a schematic view of such
an architecture. Specializing this template requires to fill up
several fiels. In the Argen GUI, these fields correspond to the
number of rows and columns of the overlay, the number of
routing channels per track, the logical grain, the number of
BLEs per CLB and the CLB connectivity. Also, the pinout is
specified through a number of IOs per OIPin.

This leads to the generation of an XML file, that is readable
by VPR for architecture synthesis, but also by Odin-II [16] for
application synthesis (number of inputs by LUTs needs to be
given).

B. Overlay generation

Starting from the architecture description, VPR generates a
resources routing file, that, in turn, is read back by Argen. As
a result, Argen can generate the RTL sources for the overlay,
that can be synthesized using commercial FPGA tools.

Yet, as an overlay exhibits many potential combinational
paths, the generation relies on extra registers, called VTPRs
(Virtual Time Propagation Registers) [5]. The VTPRs latch
the output of every configurable multiplexer that connects
routing wire tracks. The VTPRs break down physical logic
chains into short segments, and prevent any combinatorial loop
from appearing on the overlay implementation, whichever its
configuration. As VTPRs are transparent for circuits mapped
on the overlay, VTPRs are not considered during the modelling
phase but are rather silently injected during the generation step.

VTPRs exhibit two decisive advantages. First, using VTPRs
in a overlay alleviates the task of the physical synthesizer, as
VTPRs reduce timing paths and prevent combinatorial loops
hence promotes architectures’ scalability. There is no more
need to limit size and complexity of synthesized architectures,

Fig. 3. Argen overlay modelling



Fig. 4. Surrounding DMAs can feed the overlay with data

nor to restrict the signal flow in one direction. This, however,
raises the need for an extra and faster clock (ClkV TPR), to al-
low signal propagation through VTPRs within one applicative
clock cycle. Second, VTPRs favor timing closure and make
the Place&Route step both simple ans predictable. This is due
to the uniform cost of routing segments.

In addition to VTPRs’ injection, the generation step also
hosts several options that make the designer’s life easier, as
shown in figure 4. First, the generated architecture can be
granted virtual memory access. Second, IOs can support an
interruption mode. And last, in order to further simplify the
integration of the overlay within a SoC, a DMA feature can
be added, in which case, setting the word width is on the user.

C. Overlay integration within a SoC

The overlay architecture has three main interfaces that must
be handled by additional controllers: i) the configuration shift
register (configuration layer), ii) the snapshot shift register
(state layer), and iii) the virtual clock signal Fvirt (connected to
virtual application registers of the computation layer). In order
to make the overlay usable, a wrapper module instantiates
the overlay architecture and includes the three controllers as
shown in Fig. 5. The wrapper has a Wishbone bus interface,
which maps configuration registers from these three con-
trollers. A DMA controller can feed the overlay virtual inputs
and save the virtual outputs from/to configurable memory areas
accessible on the bus. The DMA controller uses some specific
overlay virtual IOs to implement a handshake mechanism with
virtual applications (data request, data ready). Alternatively,
virtual IOs are also mapped as registers through the bus
interface and can be accessed when the DMA controller is
not used.

The wrapper module can be included to any SoC, allowing
the control of the overlay through a software layer; it can be
instantiated with an on-chip soft-core or used with an on-chip
hard-core SoC (e.g. Zynq), or can be accessed by an off-chip
system through a communication interface (such as PCIe with
an appropriate Wishbone to PCIe converter).

D. SoC host

In this paper, we use the ZeFF SoC [17] as an hypervisor,
completely synthesized on FPGA. ZeFF offers monitoring

Fig. 5. Argen and user friendly DSLs for RTL descriptions: example of
Picollo experimental language.

and management facilities, such as guest configurations and
data streams, and remote access through a standard Ethernet
interface and TCP/IP protocol. The SoC platform embeds
(Fig. 9), among others: a processor, memory controllers
(external RAMs, flash memories), and some communication
peripherals (e.g. Ethernet, UART). It is organized around a
Wishbone shared bus, associated to a dedicated generator,
easing the addition and removal of peripherals, thus making
the platform more flexible. When porting the whole platform
from one FPGA board to another, some parts of the SoC might
change depending on the on-board IO connections and devices,
such as memories or transceivers, which can have different IO
interfaces between boards. In this architecture, the SoC sees
the overlay as a peripheral device (Overlay IP), attached to
the system bus.

V. ARGEN, APPLICATION SIDE

A. Application synthesis: front end

Once done, the overlay is generated and can be integrated
on demand.

On the application side, several options are offered to the
user: in our experiments, we have used Verilog as well as our
own DSL (picollo) for RTL description (figure 5). Argen then
calls ABC [18] to generate a blif netlist. This step is shown in
figure 6. A reduced set of options is offered to the designer,
including optimization and retiming.

Still, other alternatives, either commercial or open-source,
can be envisioned, as long as a generic netlist in BLIF format
can be generated.

B. Application synthesis: back end

VPR [14] is responsible for the packing, placement and
routing tasks. The standard VPR options are made available
through the GUI: clustering options, placement policy, routing



Fig. 6. Argen takes advantage of established open-source tools for logic
synthesis

Fig. 7. Place and Route activities and virtual static timing analysis

algorithm, etc. Figure 7 illustrates this GUI panel. Again,
Argen retrieves various result files for further extracting a
virtual application bitstream.

C. Bitstream generation

At this time, the bitstream structure has no flexibility and
strictly conforms to a serpentine based visit of the architecture.
Then, the bitstream is outputted by serializing the local config-
uration in the proper order (figure 8). Note that the bitstream
does not include the BLEs’ register value; this information is
collected through an extra wiring, dedicated to snapshot, (state
capture and restoration).

Fig. 8. Bitstream generation in Argen

Argen also applies a static timing analysis to the synthesized
netlist to identify the longest path in term of VTPRs.

D. SoC OS and dedicated functions

The embedded software is based on FreeRTOS [19], the
LwIP TCP/IP stack and FatFs generic FAT file system module.
The system has been extended to support overlay management
functions, performing the following actions:

• push bitstream: This function transfers a user vBitstream
to the Overlay IP to configure the overlay resources.

• set vclk div: It specifies the clock divisor to generate the
virtual clock frequency at which the application operates.

• launch vclk for N cycles and stop vclk: They manage
the virtual clock controller, and are used to run and stop
the execution of the application whenever a live migration
or scheduling is required.

• save snapshot and restore snapshot: These functions
manipulate the interface between the snapshot register
and the virtual application registers (detailed in the pre-
vious section), whether to take or restore a state snapshot.

• pull snapshot, push snapshot: The first function extracts
the value of the snapshot register and saves it to an
external file, the second loads it back from a given file.

Three levels of management are considered. First, a task
manager is responsible for scheduling applications on the
overlay. This manager relies on the above functions. Then
a server waits for commands from the network, and allows
remote control. Last, ZeFF acts as a local hypervisor and as
an interface between its attached overlay and a higher-level
supervisor, handling migration decisions.

VI. ARGEN TOOLCHAIN : TYPICAL EXPERIMENTAL
USAGES

Overlays have recently emerged as a meaningful alternative
to direct FPGA designs. There are several motivations for that.
First, overlays can be easily customized to address specific
applicative domains. This promotes a smart application-to-
architecture adequation hence simplifies the programming
process. Second, overlays usually exhibit a coarser grain
than their implementation platforms. As a consequence, using
overlays reduces the bitstreams size, hence speeds up the
reconfiguration process. In addition, overlays can be decorated
with some on-demand functionalities, such as dynamic partial
reconfiguration (DPR) for any underlying platform.



Fig. 9. Integrating an overlay in a SoC

Argen, as previously explained, helps in exploiting such
benefits. Still, other usages make sense. These can be dis-
patched into four classes. First, one may want to prototype
a reconfigurable architecture. Second, software experts may
want to develop and score a new algorithm or data represen-
tation for the toolset. Third, system designers can use Argen
as a prototyping platform for a new usage. Last, Argen offers
an innovative teaching support.

The second item has been indirectly addressed in section
V-A, through mentioning some interchange issues (e.g. BLIF
format as a requirement for plugging in any synthesizer).
Hence, this section focuses on the other three points left
unaddressed.

A. Prototyping new embedded FPGAs

Argen supports fast modeling of overlays, and offers some
characterization metrics. Assuming some model to model
transformations are properly calibrated, Argen can also serve
as a prototyping tool to design embedded FPGAs (eFPGAs).
Such eFPGAs are offered by some companies (like FlexLogic,
Menta or Achronix), to add programmable parts in traditional
complex SoCs. eFPGAs are generally provided as a fixed-
transistor-layout building blocks, which require careful and in-
depth custom technology manipulations and characterizations.
In our case, our experiment involved estimating the number
of ASIC gates corresponding to our overlays generated at the
RTL level, using a standard Synopsys synthesis flow (a similar
experiment was presented in [20]). Our target technology was
STM 28nm FDSOI. The estimated gate counts are reported in
figure 10.

The design parameters under investigation are the number
of BLE per CLB (N), the number of inputs by LUT (k), as well
as the width (W) of routing channels. The figure shows that
a typical overlay (N = 8, k = 5) generated by Argen ranges
from 3 to 4 Millions gates, depending on W. This work is still
preliminary, but Argen appears as a promising tool to quickly
get some early results for such eFPGA prototypes. However,
getting accurate metric is highly challenging as optimizing a

Fig. 10. Gate estimation for various architectures generated by Argen on
STM 28nm FDSOI technology

silicon design often relies on human intervention. Hence, this
feature still requires extra work.

B. Innovative usage prototyping

By being target independent, overlays are intended to last
longer than the underlying FPGA technology that is used
for implementation. Then, overlays offer a durable baseline
when porting applications, regardless of the homogeneity of
the underlying platform. This enables a partial renewal of
FPGA boards in accordance with the policy of modernising
a distributed infrastructure (FPGAs based platform for IoT as
an example). Not only does Argen support ”blind” deployment
of applications over heterogeneous physical support thanks to
the overlay layer, but tasks can also be relocated on the fly.

In general, applications running on reconfigurable architec-
tures can be represented by the resource configuration and the
state of the application. Authors in [21] report two ways for
accessing the state of a task that executes on a FPGA:

1) By using the Internal Configuration Access Port (ICAP),
which is mostly used for DPR. This solution remains
technology and vendor dependent. Additionally the state
is read back along with configuration bits, which leads
to a slow extraction process. However the mechanism is
transparent to the application.

2) By decorating applications with some access facilities to
state bits. This solution is portable, and state extraction is
possible. However, every application has to be reworked,
and both area and frequency are impacted.

In an overlay context, the configuration of the vBitstream on
the vFPGA is done as presented in the previous sub-section,
while the state of the application is held on memory elements
in the computation layer. These memories correspond in this
architecture to the virtual application registers integrated in
each reconfigurable element.

pull snapshot generates a file that can be used on another
target node. As a consequence, tasks can be migrated between
nodes.

Figure 11 illustrates such a task migration between Xilinx
and Altera based FPGA boards.



Fig. 11. Binary task migration between Altera and Xilinx platforms

C. Education

Overlays also offer a smart playground to students. Argen
alleviates the need for a full mastery of complex traditional
design flows. The architecture can also be tailored on de-
mand, which promotes a just fit approach. The tool flow can
incorporate any third-party tooling stage. The result is easy
to visualize, as some simulation videos can be outputted as
illustrated in figure 12. The videos [22] show how signals
propagate through the routing topology, how IOs react, as well
as the internal state of BLEs.

Also, Argen comes along with a video tutorial [23].

Fig. 12. Videos can be generated during the simulation phase

VII. CONCLUSION AND FUTURE WORK

In this paper, the Argen toolchain for overlay-centric SoC
design has been presented. It gathers a set of tools to
design and explore fine-grained overlays, but also enables
a traditionnal designer to directly program these overlays.
Argen conforms to all of the requirements that have been
summarized in section III: the environment supports domain
space exploration, both in terms of hardware and associated
tooling, it offers debug capabilities, and comes along with
a sound documentation. As a result, Argen targets software
designers as well as hardware experts, and is accessible enough
to be a good candidate as teaching support.

The short term research directions are centered around
adding security and supporting more complex overlay struc-
tures:

a) Bitstream specialization: Argen is intended to serve
as a prototyping hub for overlay designers. Among others,
the ability to define its own bitstream is a key issue. This
is of prime importance when addressing security. In a close
future, Argen will include a bitstream specification feature.
Two options are under consideration. The first one is to simply
add a cryptographic protection (e.g. AES block). The other one
is a pure mixing system.

b) Heterogeneous architecture: Being based on VPR
template, Argen focuses on regular homogeneous architec-
tures. Still, other options exist, which support heterogeneous
architectures and mixed grain in a smooth way such as [3]. A
comparative study of these available environments is expected
to drive development of new features.
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