

SLAM with fleeting detections

Fabrice LE BARS

Outline

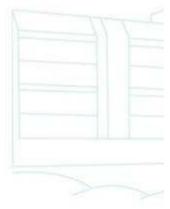
- Introduction
- **Problem formalization**
- CSP on tubes

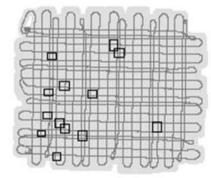
Contraction of the visibility relation

Introduction

- Context:
 - Offline SLAM for submarine robots
 - Fleeting detections of marks
 - Static and punctual marks
 - Known data association
 - Without outliers
- Tools:

 Experiments with Daurade and Redermor submarines with marks in the sea





Equations

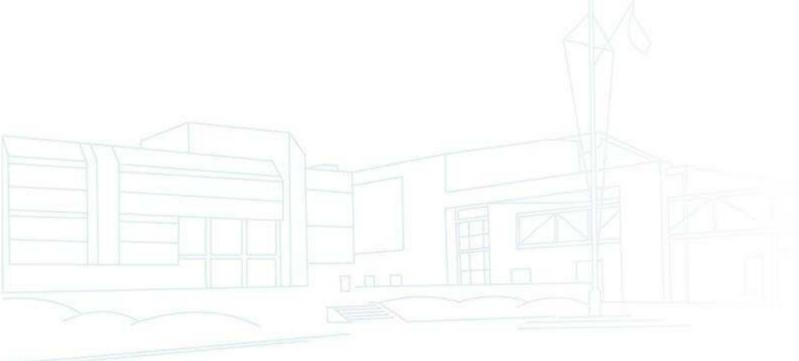
z = h(x, u, m)

- $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ (evolution equation) $\mathbf{y} = \mathbf{g}(\mathbf{x})$ (measurement equation)
 - (measurement equation independent from waterfall) (marks detection equations)

 $v(\mathbf{x}, \mathbf{u}, \mathbf{m}) = 0 \Rightarrow \mathbf{z} \in \mathbb{W}$ (marks visibility condition on the waterfall)

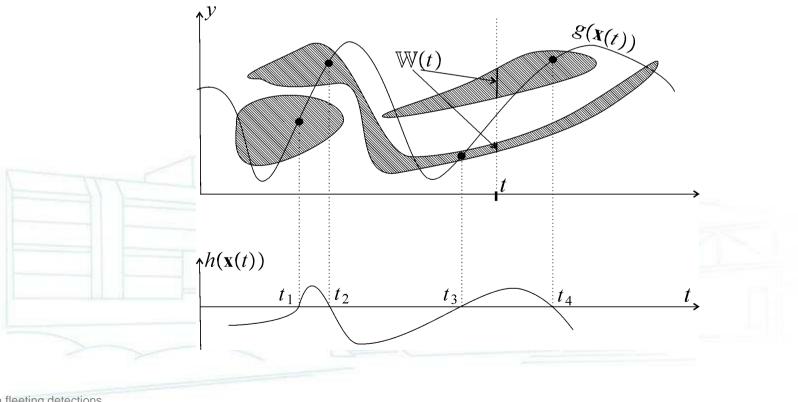
Fleeting data

- A fleeting point is a pair (t, \mathbf{z}) such that $v(\mathbf{x}(t), \mathbf{u}(t), \mathbf{m}) = 0$
- It is a measurement that is only significant when a given condition is satisfied, during a short and unknown time.



Waterfall

- \mathbb{W} is a function that associates to a time $t \in \mathbb{R}$ a subset $\mathbb{W}(t) \in \mathbb{R}$
- \mathbb{W} is called the waterfall (from the lateral sonar community).



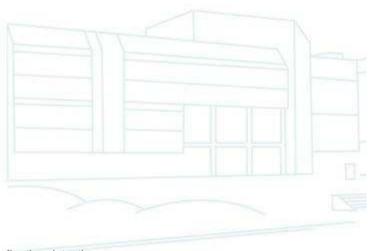
Robot Shipwreck Waterfall • Example: lateral sonar image Back of the robot Left sonar Right sonar Shipwreck _ @ × Altitude Low echo area monor principality a flood the full or which with the full and a marked and and Rangescale Shadow area

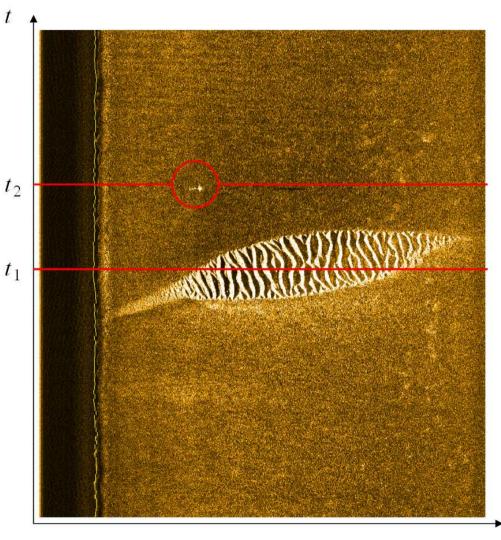
SLAM with fleeting detections

15/06/2011-9

- Waterfall
 - On a waterfall, we do not detect marks, we get areas where we are sure t_2 there are no marks

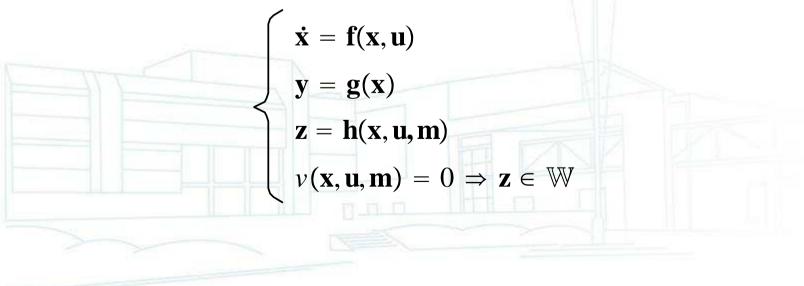
t





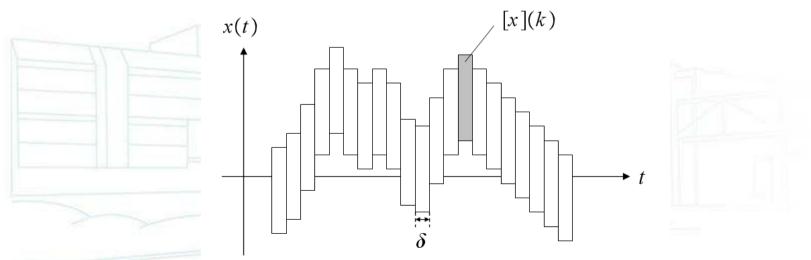
CSP

- Variables are trajectories (temporal functions) x(t), x(t) and real vector m
- Domains are interval trajectories (tubes) $[\mathbf{x}](t)$, $[\dot{\mathbf{x}}](t)$ and box $[\mathbf{m}]$
- Constraints are:



Tubes

- The set of functions from \mathbb{R} to \mathbb{R}^n is a lattice so we can use interval of trajectories
- A tube $[\mathbf{x}](t)$, with a sampling time $\delta > 0$ is a box-valued function constant on intervals $[k\delta, k\delta + \delta], k \in \mathbb{Z}$
- The box $[k\delta, k\delta + \delta] \times [\mathbf{x}](t_k)$, with $t_k \in [k\delta, k\delta + \delta]$ is the k^{th} slice of the tube $[\mathbf{x}](t)$ and is denoted $[\mathbf{x}](k)$

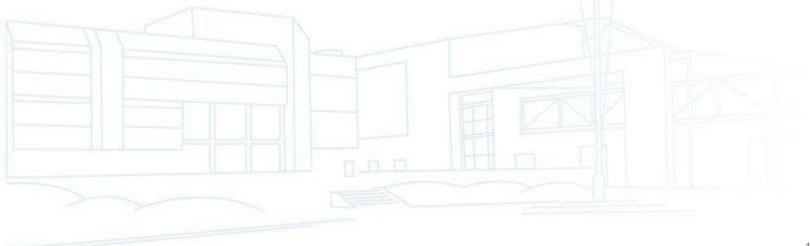


- Tubes
 - The integral of a tube can be defined as:

$$\int_{t_0}^t [\mathbf{x}](\tau) d\tau = \sum_{k \in \kappa([t_0,t])} \delta_{\cdot}[\mathbf{x}](k)$$

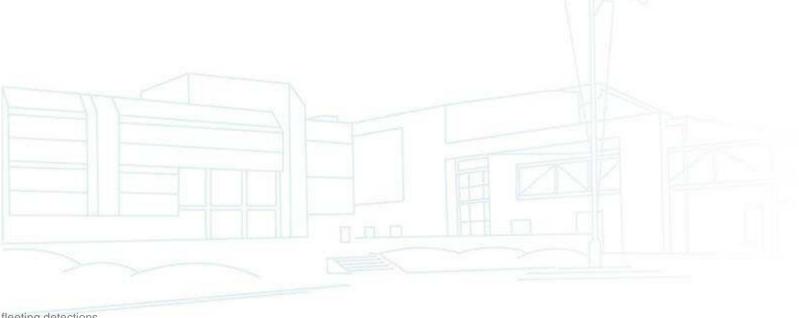
• We have also:

$$\mathbf{x}(t) \in [\mathbf{x}](t) \Rightarrow \int_{t_0}^t \mathbf{x}(\tau) d\tau \in \int_{t_0}^t [\mathbf{x}](\tau) d\tau$$



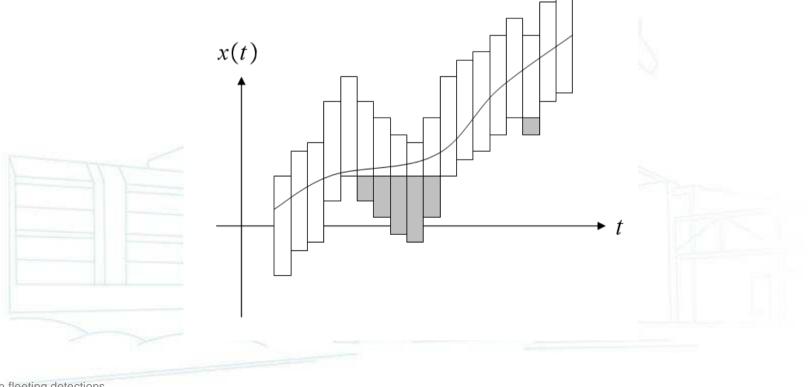
- Tubes
 - However, we cannot define the derivative of a tube in the general case, even if in our case we will have analytic expressions of derivatives:

 $[\dot{\mathbf{x}}](t) = [\mathbf{f}]([\mathbf{x}](t), [\mathbf{u}](t))$



Tubes

• Contractions with tubes: e.g. increasing function constraint

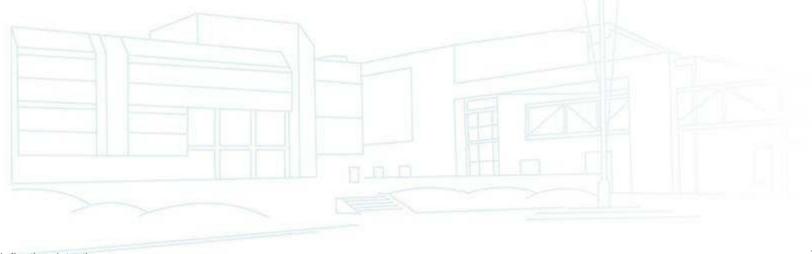


Contraction of the visibility relation

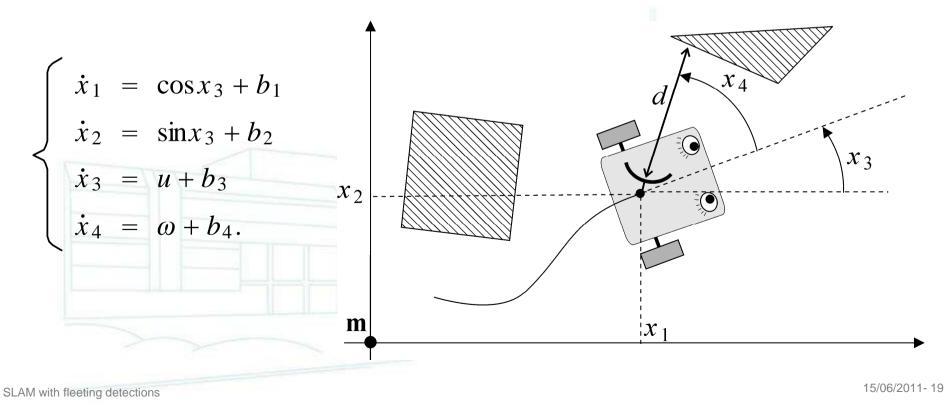
Problem: contract tubes [v](t), [y](t) with respect to a relation:

$$v(t) = 0 \Rightarrow y(t) \in \mathbb{W}(t)$$

• 2 theorems: 1 to contract [y](t) and the other for [v](t)

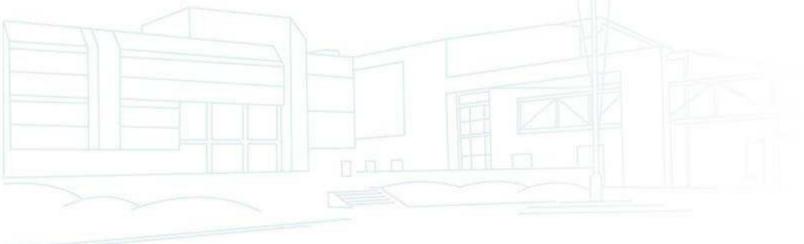


- Example 1:
 - Dynamic localization of a robot with a rotating telemeter in a plane environment with unknown moving objects hiding sometimes a punctual known mark



- Example 1
 - **m** is at (0,0)
 - Telemeter accuracy is $\pm 0.01 \text{ m}$, scope is $[s] = [s^-, s^+] = [1, 10] \text{ m}$
 - Visibility function h and observation function g are:

$$\begin{cases} h(\mathbf{x}) = x_1 \sin(x_3 + x_4) - x_2 \cos(x_3 + x_4) \\ g(\mathbf{x}) = -x_1 \cos(x_3 + x_4) - x_2 \sin(x_3 + x_4). \end{cases}$$



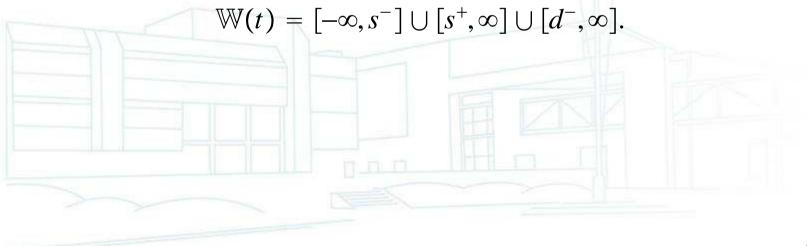
- Example 1
 - We have:

$$(h(\mathbf{x}) = 0 \text{ and } g(\mathbf{x}) \in [s] \cap [-\infty, d]) \Rightarrow d = g(\mathbf{x})$$

which translates to:

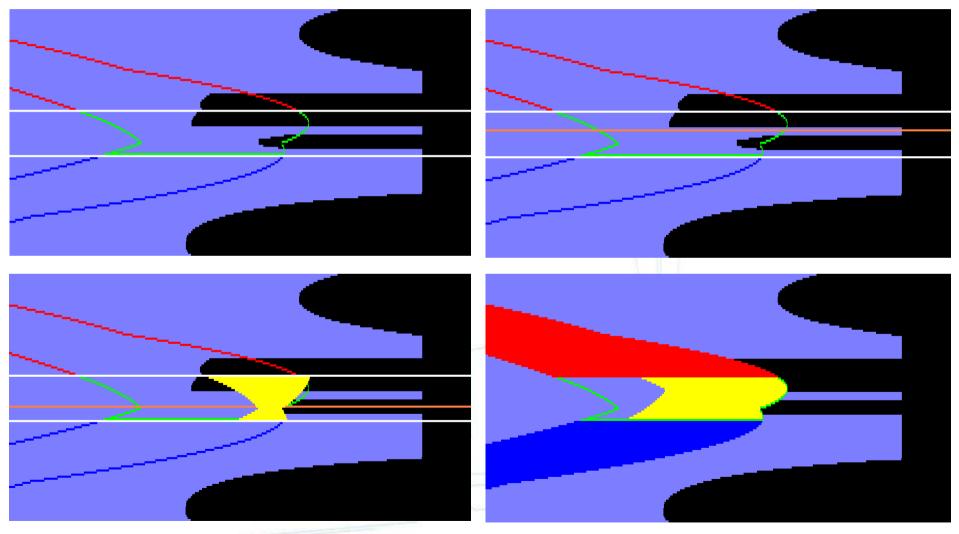
$$h(\mathbf{x}(t)) = 0 \Rightarrow g(\mathbf{x}(t)) \in \mathbb{W}(t)$$

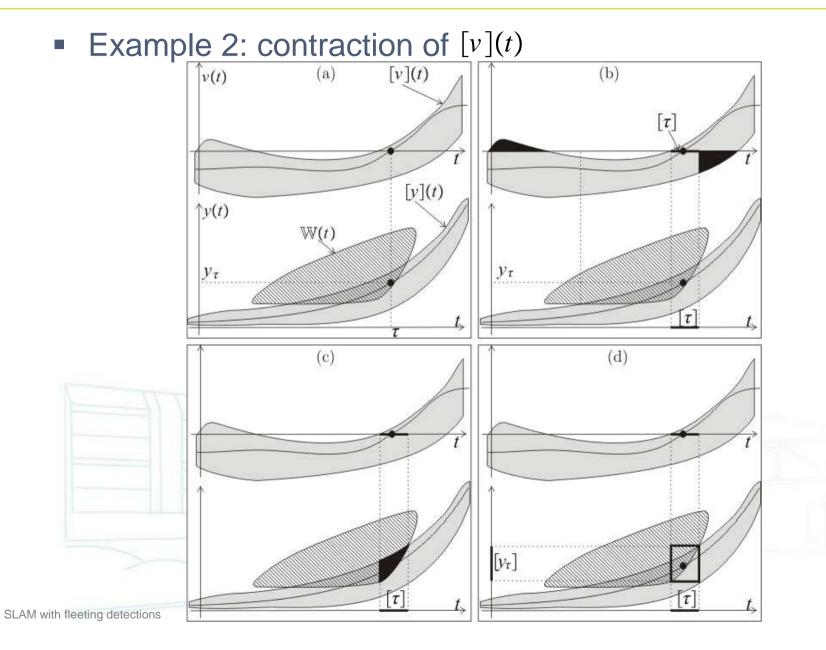
with:

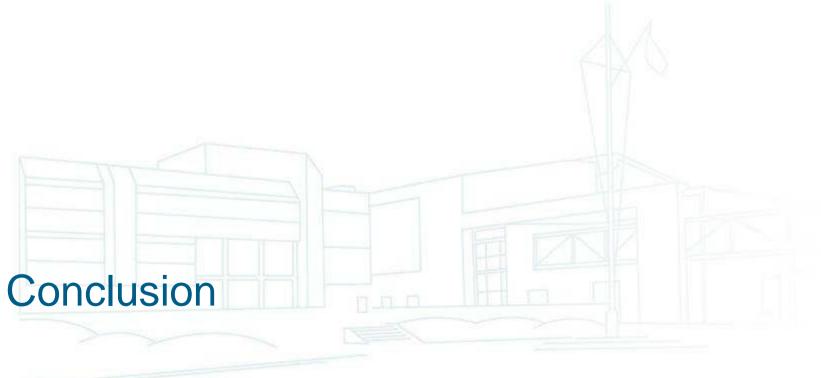


Contraction of the visibility relation

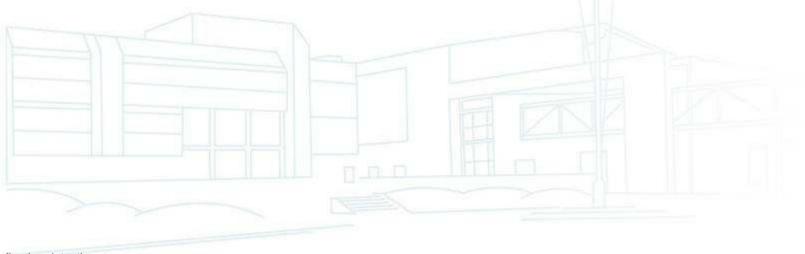
Example 1: contraction of [y](t)







- In this talk, we presented a SLAM problem with fleeting detections
- The main problem is to use the visibility relation to contract positions
- We proposed a method based on tubes contractions



Questions?

 Contacts fabrice.le_bars@ensta-bretagne.fr **ENSTA** Bretagne