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Abstract

This paper deals with offline nonlinear state estimation where measurements are available only when some given equality
conditions are satisfied. For this type of problems, which are often met in robot localization when sonar or radar are involved,
the data are qualified as fleeting because the measurements are available only at some given unknown dates. In this paper, the
first approach able to deal with nonlinear estimation with fleeting data is presented. An illustration related to offline robot
localization with a laser rangefinder will be given.
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1 Introduction

This paper deals with offline nonlinear state estimation
in a bounded-error context (see e.g., [1], [5], [11], [17],
[8], [22]), but here, we shall consider fleeting data, i.e.,
fugitive data that can appear at some given dates. More
formally, a state estimation problem with fleeting data
can be represented by a classical state equation with
some visibility conditions:

�
ẋ (t) = f (x (t) , t) + b(t)

h (x (t)) = 0⇒ g (x (t)) ∈W (t)
(1)

where t ∈ R is the time, x(t) is the state vector, b(t)
is the state noise vector which is assumed to belong
to a known box [b], f : Rn × R → R

n is the evolu-
tion function, h : Rn → R is the visibility function and
g : Rn → R is the observation function. The function
W (t), which is called a waterfall (see, e.g. [7]), is com-
posed of measured compact subsets of R and encloses
significant data only when some equality conditions are
satisfied. As an example, we can consider the situation
of a robot equipped with a laser rangefinder and a sin-
gle punctual landmarkm. The rangefinder measures the
distance d tom, only if the laser points exactly towards
m. The condition "points exactly" corresponds to an
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Fig. 1. The four fleeting data points (t, g (x (t))), represented
by the four black dots are known to belong to the waterfall
W (t). At time t, a fleeting data point is met only if the
visibility condition h (x (t)) = 0 is satisfied.

equality. If this equality is not satisfied, the rangefinder
provides a data which is not significant for localization.
We shall assume that the functions f , h, g are contin-
uous and differentiable. A fleeting data point is a pair
(t, g (x (t))) such that h (x (t)) = 0. Figure 1 illustrates
these notions. The four corresponding fleeting dates are
t1, t2, t3, t4. The existence and the location of the fleeting
data points are unknown, but can be estimated through
the waterfallW (t) and the state equations. Most of the
elements ofW (t) cannot be considered as significant. In
practice, the waterfall is obtained from sensors and can
be represented by an image (a lateral sonar image for
instance). In the waterfall of Figure 2 the two black ver-
tical segments indicate the part of the signal collected
by a lateral sonar at times t1 and t2. At time t1 the mark
is detected (it is inside the circle) and at time t2 the col-
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Fig. 2. A part of the waterfall collected by the portside lat-
eral sonar of the underwater robot Redermor built by the
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique).

lected data are not related to the mark. Another way
to understand the information provided by the image is
that the mark cannot be inside the intersection between
the black vertical segment and the grey area. As a re-
sult, with a waterfall, we do not detect the mark, we get
zones where the mark cannot be.

The state estimation problem to be considered here is to
find an envelope which encloses all state trajectories that
are consistent with Equations (1), the waterfall W (t)
and a feasible box for the initial condition. Even if state
estimation with fleeting data can be considered as fun-
damental in robot localization, to our knowledge, it has
never been studied before.

To solve our state estimation problem, we present in
Section 2 a new contractor-based approach. Contrary to
existing propagation methods where the domains are ei-
ther discrete, intervals or boxes, the domains to be con-
sidered are tubes which enclose trajectories. Section 3
introduces some theoretical tools to build contractors as-
sociated with the visibility condition. The resolution al-
gorithm is presented on Section 4. Section 5 provides an
illustrative example and Section 6 concludes the paper.

2 Constraint propagation with tubes

Many problems of estimation, control, robotics, and re-
lated fields can be represented by continuous constraint
satisfaction problems (CSP) [12,18,23]. A CSP is com-
posed of a set of variables V = {x1, . . . , xn} , a set
of constraints C = {c1, . . . , cm} and a set of domains
{[x1], . . . , [xn]} containing the xi’s. Classically, the vari-
ables xi are real numbers or vectors, the constraints are
equations between the variables (such as x3 = x1 +
exp (x2)) and the domains are intervals [20], boxes [12],
zonotopes [5] or ellipsoids [6]. The aim of propagation
techniques is to contract as much as possible the domains
for the variables without loosing any solution [4] [21].
With an interval approach, a random variable x of R is
often represented by an interval [x] which encloses the
support of its probability function. This representation
is of course poorer than that provided by its probability

density distribution, but it presents several advantages.
(i) An interval representation is well adapted to repre-
sent random variables with imprecise probability den-
sity functions. (ii) An arithmetic can be developed for
intervals [16], which makes it possible to deal with un-
certainties in a reliable and easy way, even when strong
nonlinearities occur. (iii)When the randomvariables are
related by equations, contraction operators, called con-
tractors [12], make it possible to get efficient polynomial
algorithms to compute intervals that are guaranteed to
contain all feasible values for the random variables. In
this paper, we keep the CSP formalism, but the variables
will be functions fromR toRn (or trajectories for short),
the constraints will be equations on trajectories (such
as differential equations, delay equations, etc.), and the
domains will be tubes. Briefly, a tube is an interval of
trajectories that can be represented in the computer and
easily be handled. It is very similar to intervals or boxes,
but tubes enclose trajectories instead of real numbers or
vectors. The state estimation problem to be considered
here can be represented by a CSP where the constraints
are 





ẋ (t) = f (x (t) , t) + b(t)

v (t) = h (x (t))

ẏ (t) = ∂g
∂x
(x (t)) ∗ ẋ (t)

y (t) = g (x (t))

v (t) = 0⇒ y (t) ∈W (t) .

(2)

The variables of the CSP are the trajectories x (t), ẋ (t),
b(t), y (t), ẏ (t), v (t) and the domains are interval trajec-
tories or tubes [x] (t), [ẋ] (t), [b] (t), [y] (t), [ẏ] (t), [v] (t)
containing the unknown trajectories. This CSP is equiv-
alent to the initial state estimation problem (1), but a
decomposition has been performed by introducing the
trajectories y (t) , ẏ (t) , v (t). Such a decomposition will
allow us to deal with the constraints independently and
will simplify the construction of the associated contrac-
tors.

The notion of tube we shall propose is similar to that
classically used in the bounded-error community [13],
[15]. The advantage of our definition is that it allows the
use of interval arithmetic to compute with tubes. A tube
[x] (t), with a sampling time δ > 0, is a box-valued func-
tion which is constant for all t inside intervals [kδ, kδ+δ],
k ∈ Z. The box [kδ, kδ+δ]×[x] (tk), with tk ∈ [kδ, kδ+δ]
is called the kth slice of the tube [x] (t) and will be de-
noted by [x] (k). A trajectory x (t) belongs to the tube
[x] (t) if ∀t,x (t) ∈ [x] (t). The notion of tube is illus-
trated by Figure 3 where the trajectory v (t) is enclosed
inside the tube [v] (t). This tube gives us the information
related to the trajectory v(t). For instance, from the tube
we know that v(t) has at least four roots (this is a conse-
quence of the fact that we know the signs v(t) inside the
grey slices). If we additionally had a tube [v̇] (t) for v̇(t)
sufficiently tight, we could also conclude that v (t) has
exactly four roots inside the intervals [t1], [t2], [t3], [t4].
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Fig. 3. A tube is a union of slices and encloses an uncertain
trajectory.

We can extend some classical operations we have on tra-
jectories (such as sums, multiplication, image by a func-
tion) to tubes. It suffices to perform the corresponding
interval operations for all t [16]. An arithmetic on tube
is thus a direct extension of interval arithmetic. As it is
the case for interval computation, the result of an oper-
ation on tubes contains all results of the same operation
performed on the enclosed trajectories. Define the index
correspondence function κ as follows

κ ([ta, tb]) = {k ∈ Z,∃t ∈ [ta, tb], t ∈ [kδ, kδ + δ]} .

The integral for tubes is defined by

� t

t0

[x] (τ) dτ =
�

k∈κ([t0,t])

δ ∗ [x] (k) ,

where the addition rule for boxes δ ∗ [x] (k) are provided
by interval arithmetic. It is easy to prove that

x (t) ∈ [x] (t)⇒

� t

t0

x (τ) dτ ∈

� t

t0

[x] (τ) dτ (3)

and that the quantity
� t
t0
[x] (τ) dτ defines a tube. Except

for atypical tubes, the derivative of a tube cannot be
defined. However, in a state-estimation context, the state
equations make possible to have an analytic expression
of the derivatives. For instance, since ẋ (t) = f (x (t) , t)+

b(t) and ẏ (t) = ∂g
∂x
(x (t)) ∗ ẋ (t) , tubes enclosing the

functions ẋ (t) and ẏ (t) can be obtained by the following
operations

[ẋ](t) := [f ] ([x] (t) , t) + [b] (t)

[ẏ] (t) :=
	
∂g
∂x



([x] (t)) ∗ [ẋ](t)

where [f ] ,
	
∂g
∂x



are the interval counterparts of f , ∂g

∂x
.

Tube arithmetic can be used to contract tubes with
respect to algebraic constraints on trajectories. There
exist also some techniques for the contraction of the
tube [x] (t) with respect to the differential constraint
ẋ = f(x, t) [2], [3], [17].

3 Contraction of the visibility relation

This section is devoted to the following problem. Given
three tubes [v] (t), [y] (t), [ẏ] (t) associated with the tra-
jectories v(t), y(t), ẏ(t), contract the tubes [v] (t), [y] (t)
with respect to the relation

v (t) = 0⇒ y (t) ∈W (t) . (4)

We shall give two theorems. The first theorem will be
used for the contraction of [y] (t) and the second theorem
for the contraction of [v] (t).

Theorem 1. If 0 ∈ v ([t]) then for all t,

y (t) ∈
�

τ∈[t]

�
(W (τ) ∩ [y] (τ)) +

� t

τ

[ẏ] (α) dα


. (5)

Proof. Assume that 0 ∈ v ([t]). Since v (t) is a con-
tinuous function, from the Bolzano’s theorem, ∃τ ∈
[t], v (τ) = 0. Now, from (4) and since y (τ) ∈ [y] (τ), we
have

y (τ) ∈W (τ) ∩ [y] (τ) . (6)

Since y (t) = y (τ) +
� t
τ
ẏ (α) dα, from (6) and (3), we

get y (t) ∈ (W (τ) ∩ [y] (τ))+
� t
τ
[ẏ] (α) dα. Since τ ∈ [t],

we get Equation (5). �

A direct consequence of this theorem is that if 0 ∈ v ([t])
the tube [y] (t) for y (t) can be contracted by intersect-
ing it with the tube defined on the right hand side of
Equation (5).

Corollary. If 0 ∈ v ([t]) and 0 /∈ v̇ ([t]) then there exists
a unique fleeting date in [t].

This corollary can be used to count the number of de-
tections, but is not used for tube contraction. This op-
eration requires a tube for v̇ (t) which can be obtained
thanks to the relation v̇ (t) = ∂v

∂x
(x (t))∗ẋ (t) .Note that

an extension of Theorem 1 to the case where v is a vec-
tor function can be obtained by using the mathematical
tools presented in [9].

Theorem 2. We have the following implication

∀t ∈ [t], [y] (t) ∩W (t) = ∅ ⇒ 0 /∈ v ([t]) . (7)

Proof. The proof is by contradiction. Assume that 0 ∈
v ([t]) then, from the Bolzano’s theorem, we have ∃τ ∈
[t], v (τ) = 0 and thus y (τ) ∈W (τ). Since y (τ) ∈ [y] (τ),
we have y (τ) ∈ [y] (τ)∩W (τ) which is in contradiction
with the assumption. �

A direct consequence of this theorem is that if for a given
interval [t] of R we have ∀t ∈ [t], [y] (t) ∩W (t) = ∅, the
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Fig. 4. Illustration of the contraction of tubes with respect
to the visibility constraint.

tube for v (t) can be contracted by one of the following
operations

∃t1 ∈ [t], [v] (t1) > 0, then [v] ([t]) := [v] (t) ∩R
+.

∃t2 ∈ [t], [v] (t2) < 0, then [v] ([t]) := [v] ([t]) ∩R−.

Note that the two conditions are mutually exclusive.

Example. Consider the following constraint satisfaction
problem 





v (t) = 0⇒ y (t) ∈W (t)

y(t) = yτ +
� t
τ
ẏ(α) dα

v (t) ∈ [v] (t), y (t) ∈ [y] (t)

whereW (t) and the initial tubes [v] (t), [y] (t) are given
by Figure 4 (a), below. Is also represented the unknown
fleeting data point (small black point). Let us now show
how [v] (t), [y] (t) can be contracted. From Theorem 2,
we are able to contract the tube [v] (t) by removing the
black zones represented by Subfigure (b).We also deduce
that there exists one τ ∈ [τ ] corresponding to a fleeting
data point. Since this point should belong to both the
waterfallW(t) and the tube [y] (t), it belongs to the black
zone of Subfigure (c). The box [τ ]× [yτ ] of subfigure (d)
encloses a fleeting data point. We have

yτ ∈
�

τ∈[τ ]

(W (τ) ∩ [y] (τ)) .

Equation (5) of Theorem 1 can then be used to contract
the tube [y] (t).

4 Algorithm

As for all constraint propagation algorithms, we shall
contract the domains for the variables until no more
significant contraction can be observed. Recall that here
the variables are trajectories, the domains are tubes and
the constraints are given by (2).

Initialization. The first step is the initialization of
tubes. All tubes are initialized with some prior con-
ditions about the state. For instance, if some initial
conditions are known for the state vector then the
corresponding tube [x] (t) will be contracted at time
t = 0. The waterfall W (t) is assumed to be known for
all t. Thus, we consider here an offline state estimation
problem.

Evolution contractor. Using differential interval tech-
niques, we can get [2] accurate interval enclosures [ϕδ]
for the flow ϕδ of the state equations. The contractor
associated with the constraint ẋ (t) = f (x (t) , t) + b(t)
will have the form

[x] (k + 1) := [x] (k + 1) ∩ [ϕδ] ([x] (k) , kδ))

[x] (k − 1) := [x] (k − 1) ∩
�
ϕ−δ

�
([x] (k) , kδ)) .

These statements have to be performed for all k. A for-
ward propagation followed by a backward propagation
has been demonstrated [10] to be efficient in this context.
There is no criteria able to forecast how accurate will be
the enclosure. First, the set of all feasible state vectors
can be arbitrarily large (because of the state noise or
a large initial box). Moreover, interval methods always
produce overestimation. This overestimation can be con-
trolled using bisections or high order methods, but the
computing time is increased. For treating our example, a
simple first order interval method without bisection has
been chosen.

Observation contractors. The contractions of the
tubes [x] (t) , [ẋ] (t) , [ẏ] (t) , [y] (t) , [v] (t) with respect to

the constraints v (t) = h (x (t)) , ẏ (t) = ∂g
∂x
(x (t)) ∗ ẋ (t)

and y (t) = g (x (t)) can be performed [12] using some
classical interval constraint propagation.

Visibility contractors. The relation v (t) = 0 ⇒
y (t) ∈ W (t) can be used to contract the tubes [v] (t)
and [y] (t). The contraction of the tube [y] (t) is based
on Theorem 1 and is illustrated by Figure 5. Let us now
describe the method. 1) We take two slices [v] (k1) and
[v] (k2) such that 0 ∈ [v] (k) for all k ∈ [k1 + 1, k2 − 1]
and such that [v] (k1) and [v] (k2) have opposite signs
(see subfigure (a)). 2) For each k ∈ [k1 + 1, k2 − 1], we

compute the subtube (W (τ) ∩ [y] (τ)) +
� t
τ
[ẏ] (α) dα

(see ,subfigures (b) and (c)). 3) We compute the union
of the resulting subtubes and intersect this union with
the initial tube [y] (t) (see subfigure (d)).
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Fig. 5. Contraction of the tube [y] when we know (from the
sign of v) that a visible data has been detected.

The contraction of the tube [v] (t) is based on Theorem
2. The principle is to find a subtube {[y](k1), . . . , [y](k2)}
that does not intersect W (t). Since all corresponding
trajectories v(t) should have the same sign, the subtube
{[v](k1), . . . , [v](k2)} can be contracted.

5 Test-case

Consider a robot moving on a plane and equipped with a
directive laser rotating rangefinder (see [14] and [19] for
more about this type of problem). We shall assume that
the dynamic of the robot is described by the following
state equations






ẋ1 = cosx3 + b1

ẋ2 = sinx3 + b2

ẋ3 = u+ b3

ẋ4 = ω + b4.

where, u(t) corresponds to the control. The pair (x1, x2)
corresponds to the coordinates of the robot, x3 is its
orientation and x4 is the laser angle (which rotates at
a speed of ω = 2 rad.sec−1). Figure 6 provides a rep-
resentation of the robot. The triangle and the square
are detected by the laser but their presence is initially
ignored by the robot. We shall assume that both x3
and x4 are measured with a given accuracy of ±0.01.
The initial condition is known to belong to the box
[−2m, 2m]×[−7m,−3m]×[−2rad, 2rad]×[−2rad, 2rad].
The state noises bi(t) are uniformly distributed inside
the interval [−1cm, 1cm]. A mark m is located at co-
ordinates (0m, 0m) and the distance between the robot

Fig. 6. The robot equipped with a rotating telemeter has to
localize itself. It measures the distance d to the first obstacle.
Only the location of the mark m is known.

and the mark is measured with an accuracy of ±1cm
only if the mark is exactly pointed by the laser beam
and if no obstacle lies between the robot and the mark.
The scope of the rangefinder corresponds to the interval
[s] = [s−, s+] = [1m, 10m]. Define the visibility and the
observation functions as

�
h (x) = x1 sin (x3 + x4)− x2 cos (x3 + x4)

g (x) = −x1 cos (x3 + x4)− x2 sin (x3 + x4) .

Denote by d (t) the distance of the robot to the first ob-
stacle following the direction pointed by the laser. If the
first obstacle is inside the scope of the rangefinder, it re-
turns an interval distance [d] = [d−, d+] which contains
d. The mark m is seen by the laser if (i) the line corre-
sponding to the laser beam containsm (i.e., h (x) = 0),
(ii) the distance between the robot and the mark is in-
side the range of the rangefinder (g (x) ∈ [s] = [s−, s+])
and (iii) there is no object between the robot and the
mark (¬ (d < g (x))). We thus have the relation

(h(x) = 0 ∧ g (x) ∈ [s] ∩ [−∞, d])⇒ d = g (x) .

Now, from the following logical equivalences (A ∧B ⇒ C)⇔
(A⇒ ¬B ∨C) , this implication translates into

h (x) = 0⇒ (g (x) /∈ ([s] ∩ [−∞, d]) ∨ d = g (x)) .

or equivalently

h (x) = 0⇒ g (x (t)) ∈ [−∞, s−] ∪ [s+,∞] ∪ [d,∞].

Since d− ≤ d, we get the fleeting state estimation prob-
lem (1), with

W (t) = [−∞, s−] ∪ [s+,∞] ∪ [d−,∞].

Generation of the data. Let us take a constant
control u(t) = 0.2 rad.sec−1, an initial state x0 =

(0 m, − 5 m, 0 rad, 0 rad)T , a sampling time δ = 0.02
sec and t ∈ [0 sec, 40 sec]. We have chosen a room
which is almost a square and two small obstacles mov-
ing inside the room. The mark m is represented by
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Fig. 7. Robot for different t during the mission.

the small black square at the top of the triangle at
the centre of the room. An illustration of the mission
performed by the robot is depicted on Figure 7 for
t ∈ {0 sec, 5 sec, . . . , 35 sec}. For t = 35 sec, the first
obstacle is beyond the scope of the rangefinder.

Figure 8 representsW(t) inside the frame t ∈ [0 sec, 40 sec],
d ∈ [1 m, 10 m]. The circles correspond to the fleeting
data point (t, g (x (t))). All of them belong to W (t).
When a circle corresponds to a point that is on the bot-
tom boundary ofW, it means that the mark is detected
by the laser.

Envelope of the trajectory. Recall that the robot
does neither know the map nor the existence of the mov-
ing obstacles. The only thing it knows is the location of
the mark m. When the laser rangefinder returns an in-
terval distance in the interval [d] = [4.99 m, 5.01 m], the
robot translates this information into "the markm is not
in part of the beam segment which is at a distance of the
robot inside [1 m, 4.99 m]". In fact, the robot measures
the absence of mark inside a part of the beam segment
rather than its distance to the mark. Figure 9, left pro-
vides an interval envelope (painted grey) of the trajec-

Fig. 8. The robot only knows that the fleeting data points
(t, g(x(t)) always lie inside the waterfallW(t) (painted grey)
or equivalently that no fleeting data points are inside the
white area.

Fig. 9. Left: envelope obtained by an interval integration
without using the rangefinder. Right: the information col-
lected by the rangefinder is taken into account.

tory after a simple interval propagation which does not
take into account the data collected by the rangefinder.
The length of the initial box is 4 m and 6 m for the final
box. After an interval propagation which takes into ac-
count the rangefinder, we get the trajectory of Figure 9
(right) and the precision of the localization is less than

one meter for all t. The frame boxes are [−14 m, 14 m]2

for both subfigures. The actual trajectory corresponds
to the black circle.

Constructing the map. Denote by [x] (t) the boxes
obtained after the completion of the interval propagation
and by d(t) the distance returned by the rangefinder. An
outer approximation of the set

M = { (z1, z2) ,∃t ∈ [0 sec, 40 sec],∃x ∈ [x] (t)

z1 = x1 (t) + d(t) ∗ cos (x3 (t) + x4 (t)) ,

z2 = x2 (t) + d(t) ∗ sin (x3 (t) + x4 (t)) }

can easily be computed by a simple interval evaluation.
We obtain the set of boxes depicted on Figure 10, left.
This picture gives an outer approximation of the map
of the surrounding environment of the robot. Figure 10
right represents the center of all boxes covering M.
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Fig. 10. Left: set of boxes, the union of which encloses the
map. Right: approximation of the map made with the center
of the previous boxes.

Some movies illustrating the simulation and the resolu-
tion, as well as the C++ source code of the programs
can be downloaded at

www.ensta-bretagne.fr/lebars/fleeting/

6 Conclusion

In this paper, an interval approach has been proposed
to deal with offline state estimation in the case where
fleeting data are involved. To our knowledge, existing
approaches cannot be used to deal with such estima-
tion problems. The difficulty of the problem comes from
the nature of the data that are significant only for some
given fleeting dates t that are unknown. The problem is
transformed into a constraint satisfaction problemwhere
the variables are trajectories and the domains are tubes.
This transformation made possible to use a constraint
propagation approach. The resulting method has been
illustrated on the dynamic localization of a wheeled ro-
bot in an encumbered moving environment where the
location of a single mark is known. For this problem, the
single exteroceptive sensor that is used is a rotating laser
rangefinder. The localization is then used to reconstruct
the map of the surrounding environment.
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