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Abstrad-Many design problems, e.g. in control theory, 
amount to tuning a parameter vector c so as to guarantee 
that specifications are met for all feasible values of some 
unknown perturbation vector p. A new prototype algorithm 
for solving this guaranteed-tuning problem is proposed, and 
its convergence properties are established. It applies when 
the design specifications translate into a finite number of 
(possibly nonlinear) inequalities. Three test cases taken from 
the field of control are considered, namely the design of a 
PID controller robust to structured uncertainty, the control 
of a nonlinear discrete-time model with uncertain parameters 
and initial state, and a problem of motion planning, with 
obstacles to be avoided. Copyright 0 1996 Elsevier Science 
Ltd. 

1. Introduction 
The problem to be considered is the choice of a value of 
some tuning parameter vector c in C that guarantees the 
satisfaction of a list of design specifications for all values of 
some unknown vector p in P, where P and C are prior 
feasible sets for p and c. This list of specifications is assumed 
to translate into a finite set of (possibly nonlinear) 
inequalities to be satisfied by c and p. The problem can then 
be reformulated as 

Find one c E S, = {c E C ) Vp E $, f(c, p) > O}, (I) 

where f is a vector function that can be evaluated via an 
algorithm, and the inequality is to be taken componentwise. 
Algorithms based on interval analysis for characterizing sets 
defined by inequalities can be found in Moore (1992) and 
Jauhn and Walter (1993). Problem (1) is at the same time 
more complex, because it involves a quantifier, and simpler, 
for the aim is only to find one feasible vector. This makes it 
possible to consider a larger number of tuning parameters. 

Many design problems can be cast in the form (1). As 
examples from control theory or signal processing, one may 
mention the following. 

Robust linear control. c may be the vector of the 
parameters of a controller, while p is that of the uncertain 
parameters of the process, only known to belong to some 
feasible set P. The inequalities f(c, p) > 0 to be satisfied may 
be associated with necessary and sufficient conditions for 
asymptotic stability, as provided for instance by the Routh 
criterion in the continuous-time case (Walter and Jaulin, 
1994). Any collateral requirements on the properties of the 
controlled system (such as feasible domains for damping 
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coefficients, static gain and stability margins) that can be 
expressed as a set of inequalities to be satisfied can be 
appended to f. This situation will be illustrated by a test case 
in Section 5.1. The algorithm to be presented can be used for 
design, i.e. to choose the value of c, contrary to other 
branch-and-bound algorithms, which can only be used for 
analysis (see e.g. Malan et al., 1992). 

Filtering. If H(c, jo) is the transfer matrix of a filter with 
tuning parameters c, the problem of computing a value of c 
that insures that H belongs to a given gabarit for all w in a 
given range (see e.g. Rabiner and Gold, 1975) can be written 
in the form (l), where p = w. Often, if c corresponds to the 
physical parameters of the filter, H turns out to be nonlinear 
in c, and no guaranteed method seems to be available in the 
literature to solve this problem. 

Experiment design. When estimating the parameters p of a 
model from experimental data, the quality of the estimates 
depends on the procedure used for data collection. Assume 
that the experiment can be described by a vector c (which 
may, for instance, consist of measurement times). The most 
commonly used method (see e.g. Fedorov, 1972) for 
quantifying the quality of an experiment is to compute the 
determinant of the Fisher information matrix F(c,p), which 
usually depends on the unknown parameters p. One may be 
interested in finding c such that the determinant of the Fisher 
information matrix be larger than a given value S for any 
possible value of p. i.e. in solving (1) with f(c, p) = 
det F(c, p) - 6. 

Nonlinear discrete-time control of uncertain systems. 
Driving the state of a system in m steps to a feasible set 
(characterized by inequalities) for all feasible values of some 
uncertain vector p (parameters and/or initial conditions) can 
be written in the form (l), where c is the vector of the first m 
inputs. The technique to be presented in this paper thus 
makes it possible to combine nonlinearity, structured 
uncertainty and guaranteed results, as evidenced by the 
example treated in Section 5.2. 

Motion planning. Let MO and M, be some given initial and 
final points. Let M(c, t) be a family of motions (in position 
space) such that for any c E C, M(c,O) = MO and 
M(c, 1) = MI. Assume that avoidance of the obstacles is 
characterized by g( .) >O. A feasible motion satisfies 
g(M(c, t)) >O for any t E [0, 11. Finding such a feasible 
motion amounts to solving (1) with p = t, P = [O,l] and 
f(c,p) =g(M(c,p)). An illustrative example will be con- 
sidered in Section 5.3. 

In what follows, f is assumed to be continuous. For the 
sake of simplicity of exposition, C and IFD will be taken as 
axis-aligned boxes ce and pO, but sets described by unions of 
such boxes could be considered as well. Our purpose is to 
find one value of c in the posterior feasible set for c, defined 
by 

S,={cECoIVPE~O,f(e,P)>o}={eEei,If(c,Po)>o}. 

Figure 1 evidences the fact that S, may be disconnected. 
Solving (1) can be seen as a problem of elimination of 

quantifiers, for which several formal approaches are available 
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c.p = (Cc, p) 1 UC. p) > 0) 

Fig. 1. The posterior feasible set S, for c may be disconnected. 

(see e.g. (Collins, 1975; Davenport et al., 1987). most of 
which are based on Tarski’s algorithm (Tarski, 1951). In 
practice, only the simplest problems can be considered. The 
present paper is a first attempt. towards solving (1) in a 
numerical but guaranteed way. 

This paper is organized as follows. Section 2 recaIls the 
very few basic tools of interval analysis (see e.g. Moore, 
1979) needed to understand the new algorithm to be 
proposed, and introduces the notation used, Section 3 
presents the algorithm. Section 4 analyses its convergence, 
and test cases are treated in Section 5. 

2. Interval analysis 
A box or ueccor interval x of IR” is the Cartesian product of 

n real intervals x = [xc, x:] X . . , X [xi, x,‘] = X, X . . . X ps,. 
The set of all boxes of R” will be denoted by OR”. A principal 
p/am of x is a symmetry plane of x normal to a side of 
maximum length. The notation M >O will mean that any 
component of any vector x in the box % is positive. Let 
E W-t W be a vector function, the set-valued function 
f: OR” -+ OW’ will be an inclusion function of f if and only if it 
satisfies f(x) of for any x of UK!“. It will be 
inclusion-monotonic if M c r 3 ff(x) c ff (w) and convergent if 
w(x)+O+W(R(E~))+O, where w(x) is the width of the box 
x, i.e. the length of its largest side(s). The derivation of an 
inclusion-monotonic and convergent inclusion function 
associated with any continuous function defined by an 
explicit formal expression is usually very simple. It is 
routinely performed by commercially available languages 
such as PASCAL XSC (see e.g. Klate el al., 1992). Consider, 
for instance, the function f(x,, x2) =x: + sin (x, *x2). A 
natural incIusion function for f is ff(x,, x,) = $ + sin (w, * 
x2). If x1 = [ - 1,2] and x, = [0, rr/4] then 

ff(w,,x,) = [-1,2]‘+sin([-1,2]*[0, n/4]) 
= (0.41 -t sin ([-Z/4, n/2]) 
= [O, 41 -t [-vQ2, l] 
= [-e/2,5]. 

In practice, numerical rounding must be taken into account, 
so that inclusion functions can no longer be strictly 
convergent. 

3. Algorithm 
me algorithm to be presented for solving (1) consists of 

two procedures. Its main procedure (FPS, for ‘feasible point 
searcher’) attempts to find a vector c belonging to a set S, 
included in some prior box co. It relies on the procedure CSC 
(for ‘computable sufficient conditions’) for proving that a 
vector c belongs to & or that a box c has an empty 
intersection with S,. In what follows, ff(c. p) is a convergent 
and inclusion-monotonic inclusion function of f(c, p). 

3.1. Procedure CSC. The procedure CSC attempts to 
prove either that the center of a given box c belongs to S, (in 
which case, the problem of finding a feasible c is solved) or 

that the box c does not intersect S, (in which case, this box 
can be dropped from further consideration). It is based on 
two easy-to-compute sufficient conditions. The first one is 
ff(c, po) > 0, which implies that f(c, po) >O, and therefore 
that c E 5,. The vector c is then a solution of the 
guaranteed-tuning problem. In practice, it wilt usually be 
necessary to split the box p. into several boxes, so as to 
improve the accuracy of the inclusion function by taking 
advantage of its convergence. The second sufficient condition 
is 3 ) di(c, p) ~0 for some p in po, which implies that 
3 jX(~,p) 50, and therefore that c fl S, =0. The box c 
then contains no solution of the guaranteed-tuning problem. 
These two easy-to-compute conditions are illustrated by 
Fig. 2. 

CSC uses a stack (i.e. a first-in-last-out list, think to a stack 
of plates) in which subboxes of p. are stored. The Boolean 
variable go is true only if CSC is still allowed to attempt to 
prove that center (c) E S,. The inputs for CSC are the 
feasible box p. for p and the current box c of interest for c. 
CSC is initialized as follows: 

stack := {po}, go := true, 

and its iteration is given by 

Step 1: 
Step 2: 

Step 3: 
Step 4: 
Step 5: 

Step 6: 
Step 7: 
Step 8: 

Unstack into p. 
If 3 1 ffi(c, center (p)) 5 0 then return ‘c II S, = 
0’. End. 
If ff (center (cl, p) > 0 then go to Step 6. 
If w(p) < w(c) then go := false. Go to Step 6. 
Bisect $ along a principal plane and stack the two 
resulting boxes. 
If the stack is not empty then go to Step 1. 
If go = true then return ‘center (c) E S,‘. End 
Return ‘No conclusion has been reached, c is 
indeterminate’. End. 

If CSC terminates on Step 2 then there exists p E p. such 
that f(c, p) > 0 is not satisfied for any c in c. This implies that 
6: II S, = 0. If CSC terminates on Step 7 then go = true and 
the stack is empty. It means that $,-, has been partitioned into 
boxes p that all satisfy f(center (c), p) > 0, so that center 
(c) E S,. If CSC terminates on Step 8, then go = false and 
the stack is empty; CSC has failed to reach any conclusion. 
The purpose of Step 4 is to avoid uselessly splitting p. ad 
infinitum. Since a box that satisfies w(p) < w(c) will never be 
bisected, all the subboxes p of p. generated by CSC will 
satisfy w(p) z w(c)/2. Only a finite number of nonoverlap- 
ping subboxes can thus be generated. CSC is therefore a 
finite procedure. 

3.2. Procedure FPS. The main procedure FPS organizes a 
systematic examination of the prior feasible set co for c by 
CSC. If CSC has proved that the center of the current box c 
is feasible then FPS terminates. If the current box c has been 
proved by CSC to contain no feasible point then it is 
eliminated. If no conclusion has been reached for the box c 
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Fig. 2. The two sufficient conditions used oy CSC to establish properties of the box c. 

then c will be split into two boxes, to be stored in a queue 
(i.e. a first-in-first-out list) for further consideration. Because 
of the convergence property of inclusion functions, such as 
splitting will increase the probability of reaching a conclusion 
at a later stage. FPS is initialized as 

queue := 0, c := cu, 

and its iteration is given by 

Step 1: Call CSC. If it returns ‘center (c) E 5: then 
return center (c). End. 

Step 2: If CSC returns ‘c CI S, = 0’ then go to Step 4. 
Step 3: Bisect c along a principal plane and push the two 

resulting boxes into the queue. 
Step 4: If queue # 0 then pull its first box into c and go 

to Step 1. 
Step 5: Return ‘No feasible vector exists, S, is empty’. 

Convergence results of Section 4 indicate that FPS will 
almost always terminate. If it terminates on Step 5 then the 
initial box c,, has been partitioned into a finite union of 
boxes, none of which contains any feasible vector. If it 
terminates on Step 1 then a feasible point c has been found 
at the center of the current box. Since only unfeasible boxes 
have been discarded, at each iteration the union of all boxes 
in the queue contains S,. Since a queue strategy is employed, 
it is always one of the largest boxes that is bisected, so that 
the size of all boxes in the queue tends to zero. This property 
will be very useful in proving the convergence of the 
algorithm in the next section. 

4. Convergence analysis 
The approach followed to find a feasible c is to use the 

algorithm FPS + CSC. In this section, two theorems about 
the convergence properties of this algorithm will be given. In 
their proofs, k denotes the iteration counter of FPS. 

Theorem 1. If S, # 0 then FPS + CSC will find a feasible c 
in a finite number of iterations. 

Proof This is by contradiction. If §= # 0 then there exists a 
vector ci, E S,, i.e. such that f(c+,, po) >O. The set 
S,,p = {(c, p) 1 f(c, p) > 0) = r’(0), where Q9 is the strictly 
positive orthant in the image space off, is open since it is the 
reciprocal image (in a set-theoretical sense) of an open set by 
a continuous~ function. Then there exists a box tin, with 
center q,, such that f(qn, po) >O, i.e. tin is included in S,. 
Assume that FPS + CSC never stops. Since all the boxes in 
the queue have a width tending to zero and tin is a subset of 
the union of all boxes stored in the queue, there exists a 
nested subsequence {c(m)} of the sequence of current boxes 
{c(k)}, such that all boxes of {c(m)} belong to tin. Since c(m) 
is indeterminate, there exists a box p(m) associated to c(m) 
that switched go to false during Step 4 of CSC. Let c(m) and 
p(m) be the centers of the boxes c(m) and p(m). From Step 
3 of CSC, and since c(m) E tin, the box f(c(m), p(m)) has at 
least one component that contains zero. Since ff is a 
converging inclusion function and w@(m)) tends to zero as 

m tends to infinity, f(c(m), p(m)) has at least one component 
that tends to zero. This is impossible, since f(ein, pe) >O, 
c(m) E tin and p(m) E p,,. 0 

Theorem 2. If there exists a vector E >O such that 
S,, = {c 1 f(c, po) > -E} is empty then FPS + CSC will prove 
that §c is empty in a finite number of iterations. 

Proof. This is also by contradiction. Assume that FPS + CSC 
never stops. Then there exists an infinite nested subsequence 
of boxes {c(m)} in the queue that accumulates on some 
vector c. Assume that 

3(pcpo,io1 ,..., dimf)]ffi(c,p)<O. (2) 

Since the conditions in Steps 2 and 3 of CSC cannot be 
satisfied for any c containing c and p containing p, when CSC 
is called with the argument c(m), it generates a box p(m) 
such that p E p(m) and w(p(m))<w(c(m)). Since f is 
convergent, there exists an m such that fi(c(m), 
center (p(m))) CO, and then c(m) would be eliminated 
durine Steu 2 of CSC. This is imnossible. since c is an 
accut&lation vector. Condition (2) is therefore false, i.e. c 
satisfies f(c, po) ~0. Then V’E >O, f(c, pa) > -E, so that 
e e B,,, which is inconsistent with the assumption of 
Theorem 2. 0 

Remark. If FPS + CSC never stops, then, from Theorem 1, 
sc = §,a = 0, whereas, from Theorem 2, for any E > 0, 
S,, # 0. There is therefore a nongeneric discontinuity of the 
solution set with respect to an infinitesimal enlargement of S, 
into S,,. This only happens in atypical situations where 
3c ] f(c, p,,) 2 0 but de ) f(c, po) > 0, as illustrated by Fig. 3. 

5. Test cases 
5.1. Robust linear control. Consider the uncertain system 

described by the transfer function 

‘% ‘) = (1 + Ts)(sz + 2~0~ + 0:)) ’ 

where p = (z, T, oO, K)T E pO = [0.95,1.05] X [-1.05, -0.951 
x 10.95.1.051 x 10.95.1.051. This svstem is to be asvmototi- 

caliy stabilied L by ‘a PID controller C(s, c) = (c,‘+ &s + 
c~s’)/s inserted in the forward path, with a negative unity 
feedback. The problem is therefore to find a vector 
c = (cl, c2, c~)~ that ensures the asymptotic stability of the 
controlled model for any vector p in the box p,. The 
closed-loop characteristic polynomial can be written as 

Pp.e(s) 
=s4+ (2zwo+ T-‘)s3 +(2zoOT-’ + &(l ++KT-‘))s* 

+ wg(l + c2K)Tm’s + o;Kc, T-‘. 

Using, for instance, the Routh criterion to obtain necessary 
and sufficient conditions for asymptotic stability under the 
form of inequalities, one gets the formal expression for f(c, p) 
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Fig. 3. Atypical situation where FPS + CSC would reach no conclusion. 

(Walter and Jaulin, 1994). In the prior box q, = [-lo, 1013, in 
10 s on a Compaq 386/33, the algorithm FPS + CSC finds the 
robustly stabilizing controller 

C(s) = - 
0.625 + 3.1% + 8.7’5~~ 

s 

This controller is guaranreed to stabilize all systems H(s, p) 
such that p E ptr. 

5.2. Nonlinear discrete-time control. Consider the discrete- 
time state-space model 

x,(k + 1) =x,(k)*cos(a*x,(k)*x,(k))+b(k) +u(k), 

xz(k + 1) = 3x:(k) -sin ((b(k) + u(k)) *.x?(k)), 

x(0) = XI(O) ( ) %m 
where the parameter a, input noise b(k) and initial state x(0) 
are only assumed to satisfy 

a E a = (0.95, 1.051, b(k) E b(k) = [-0.02,0.02] Vk, 

x,(O) E x,(O) = [0.98,1.02], x2(O) E x2(O) = [1.98,2.02]. 

Driving the state into the (open) box x~=]x;,x;[* = 
I-0.2, 0.2[2 in two steps amounts to solving (1) where 

c = (u(O), ~(1))~ and p = (a, b(O), b(l), x,(O), ~~(0))~. The 
function f(c, p) is computed by the pseudocode 

Fork:=0 to 1 do 

begin 

x,(k + l):=x,(k)*cos(a*x,(k)*~~(k))+b(k) +u(k); 

xz(k + 1) := 3x:(k) - sin ((b(k) + u(k)) *x2(k)); 

end; 

f(c, p) := (x,(2) - x;, x*(2) -x;, x: -x,(2), x: - x,(2))T; 

For a prior feasible domain for the controls ~0 = [-1, l]*, in 
less than 11 s, the algorithm produces the set of boxes 
presented in Fig. 4. All grey boxes have been eliminated. The 
union of all white boxes and the black box is guaranteed to 
contain S,. The center c = (u(O), ~(1))~ = (0.65625, 
-0.21875)T of the black box has been proved to solve (1). 

5.3. Motion planning. A point M in the plane is to be 
moved from M(0) = MO to M(l)= MI, where MO= (-1, 
-0.6)T and M, = (6, O)T. For any t E [0, 11, M(t) = (x, Y)~ 
must satisfy 

(x-4.8)‘+(y-l)*-l>O and y-sin(x)>O. 

M(t) is tentatively chosen as a polynomial of degree 3. It can 

Fig. 4. Set of boxes generated by the algorithm in the control space (u(O), u(l)) for the example of Section 
corresponds to the search domain [ - 1, 11’. 

5.2. The frame 
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therefore be written as a linear combination of the four 
Bernstein polynomials of degree 3 (see e.g., Lorentz, 1953) 

B:, = (1 - t)‘, B: = 3t(1 - f)Z, B: = 3?(1 - I), B; = t? 

Bernstein polynomials have been chosen here because they 
are known to lead to a better conditioning of interpolation 
problems than the canonical basis for polynomials. This has 
been confirmed by numerical experimentation. Taking the 
initial and final positions into account, one gets 

M(r) = M&(r) + AB;(t) + B@(t) + M, B::(f), 

where A = (a,, a,,)’ and B = (b,, b,v)T are two control points 
to be found. This problem has the form (1). with $ = [O. l] 
and f(c,p) computed by the followng pseudocode, with p = t 
and c = (ax, a,“, b,, by)T: 

x := x,,B&) + a&(t) + b,@(t) + x, B:(f); 

y := y&(t) + Q:(r) + b&(t) + y, B_:(t); 

f(c,p):= ((x - 4.8)2+ (y - 1)2 - 1, y -sin (x))~. 

For G = [ - 10, 1014, the algorithm finds, in 101 s, A = 
(2.5. 7.5)T and B = (2.5. -2.5)T. which correspond to the 
trajectory M,M, indicated in Fig. 5, together wiih the control 
points A and B. In Step 4 of CSC, w(p) < w(c) was replaced 
by w(p) <0.005 w(c), to favor the analysis of the 
one-dimensional p space over that of the four-dimensional c 
space. This reduced the computing time by an order of 
magnitude. Note that if no feasible third-degree polynomial 
had been found, one might have increased the order so as to 
get more degrees of freedom. 

Fig. 5. Solution trajectory for the motion-planning problem 
of Section 5.3. The frame corresponds to [-5, lo] x [-3,8]. 

6. Conclusions 
Many design problems, including control and signal 

processing problems, can be formulated in the framework of 
guaranteed tuning, a special class of problems combining 
inequalities and quantifiers. Contrary to the formal 
approaches based on computer algebra usually used in this 
context, a prototype numerical algorithm based on interval 
analysis has been proposed to solve such problems in a 
guaranteed way. Under quite general conditions, it has been 
shown either to find a feasible tuning or to prove that none 
existed in a finite number of steps. The worst-case complexity 
of this algorithm should be exponential in dime and dimp, 
but a detailed analysis remains to be carried out. More 
efficient algorithms based on the same principles are 
presently under study. 

Guaranteed tuning is but one example of a general class of 
problems of set characterization involving optimization, 
nonlinear inequalities and quantifiers, for which interval 
analysis should be much helpful because of its ability to 
produce guaranteed results even in a nonlinear context. 
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