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The Lorenz equations
Introduced in 1963 by Edward Lorenz as a simplified model for

convection:
1 = —ox1+o0xo

Ty = QT1— T2 — T1T3

T3 = —Px3+x129,
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The Lorenz equations
Introduced in 1963 by Edward Lorenz as a simplified model for
convection:

1 = —ox1+o0xo
Ty = QT1— T2 — T1T3
3 = —fwx3+z120,

Classical parameters: o = 10, 8 = 8/3, o = 28.
Symmetry: S(z1,z2,23) = (—21, —T2,23).
Three fixed points: the origin and

C* = (£y/Blo—1),£y/Ble—1),0—1).

Stability: The origin is a saddle point with eigenvalues

0< —=A3 <\ < =)o

The two symmetric fixed points C* are unstable spirals.
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The Lorenz equations...
Thus, the stable manifold of the origin W#(0) is two-dimensional,
and the unstable manifold of the origin W*(0) is one-dimensional.
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0ty Oty  Oj

The volume of a solid at time ¢ can be expressed as
V(t) = V(0)e ol & v (0)e 3T

for the classical parameter values.
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The Lorenz equations...

Thus, the stable manifold of the origin W#(0) is two-dimensional,
and the unstable manifold of the origin W*(0) is one-dimensional.
Constant divergence:

0y iy Oy

The volume of a solid at time ¢ can be expressed as
V(t) = V(0)e ol & v (0)e 3T

for the classical parameter values.
Absorbing region: U containing the origin.
Maximal invariant set:

A= ﬂ o(U,t).

t>0

A must have zero volume, and W*(0) C A.




The Lorenz eaquations

Lorenz observed:
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The geometric model:

Introduced by Guckenheimer and Williams (1979)
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The geometric model:

Introduced by Guckenheimer and Williams (1979)

Return map: R: ¥\T' — X.

The return plane X is foliated by stable leaves.
Projecting along these leaves gives a 1-d function

f:[-1,1] = [-1,1]

LA
UNIVERSITET

DA



\

NI

A

A

UPPSALA
UNIVERSITET



\

NS

A

¢

I

A

Properties: The function f: [—1,1] — [—1, 1] satisfies:
[1] f(=z)=—f(2);

[2] Tim, 0 f'(x) = +00

[3] f"(z) <0on (0,1];

4] f'@) > V2
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Properties: The function f: [—1,1] — [—1, 1] satisfies:
[1] f(=z)=—f(2);

[2] lim,_o f'(z) = +o0;

[3] f"(x) <0on (0,1];

4] f'@) > V2

Theorem: [1] - [4] = f is topologically transitive on [—1,1].
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The real attractor seen from above X.
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More history:

1989 C. Robinson; M. Rychlik

Constructed explicit families of ODEs with geometric Lorenz
attractors.

[*] Extra terms of degree 3 were needed,

[*] Arbitrarily small unfoldings,

[¥] Lorenz equation not in the families.
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More history:

1989 C. Robinson; M. Rychlik

Constructed explicit families of ODEs with geometric Lorenz
attractors.

[*] Extra terms of degree 3 were needed,

[*] Arbitrarily small unfoldings,

[¥] Lorenz equation not in the families.

1992 S.P. Hastings & W.C. Troy
Computer-aided proof = homoclinic orbit.

1995 K. Mischaikow & M. Mrozek

Computer-aided proof = horseshoe.
[*] Non-classical parameter values,
[*] Objects have measure zero,

[¥] Objects are not attracting.




What is a strange attractor?
We need to prove:

(1) There exists a compact N C X, such that

R(N\T) C N.
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What is a strange attractor?
We need to prove:

(1) There exists a compact N C X, such that

R(N\T) C N.

(2) On N, there exists a cone field € such that for all x € N,

DR(x) - €(x) C €(R(x)).

(3) There exists C' > 0 and A > 1 such that for all v € €(x),
x € N, we have

|DR"(z)v| > CA"|v|, n > 0.

Open conditions - Perfect for interval methods!




How do we use these results?

(1) proves the existence of an attracting set. This could be a
single stable periodic orbit.
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How do we use these results?

(1) proves the existence of an attracting set. This could be a
single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable
periodic orbit.

Strong enough expansion = topological transitivity.

R area contracting + expansion in €(x) = stable foliation.

Theorem: For the classical parameter values, the Lorenz equations
support a robust strange attractor A — the Lorenz attractor!

By robust, we mean that a strange attractor exists in an open
neighbourhood of the classical parameter values.
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Strategy:

@ Difficult to obtain global info about the flow. This is needed
to define the Poincaré map and its derivative.
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Strategy:

Difficult to obtain global info about the flow. This is needed
to define the Poincaré map and its derivative.

Develop a rigorous numerical tool that provides us with good
estimates for R and DR.

All numerical algorithms break down near the origin.

Use analytic methods near the origin. Compare the flow to its
linear counterpart.

The linearizing process is very sensitive to changes in
parameters.

Don't linearize, but make the flow closer to linear (normal
form).
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The flowing process

Let N = UleNi, and flow each initial rectangle IN; between
several codimension-1 surfaces.
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The flowing process
Let N = UleNi, and flow each initial rectangle IN; between
several codimension-1 surfaces.

The return of N; is given by composing several distance-d maps:

R(N;) C mED) 5. ..o H(O)(Ni). &
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The flowing process...
Use the fact that TI*) — the “distance-d map” — often is
monotone. This allows us to shrink the flow regions.




The flowing process...
Use the fact that TI*) — the “distance-d map” — often is
monotone. This allows us to shrink the flow regions.

Flowing one step (seen from above):




The partitioning process
Idea: Dynamically split large images into smaller rectangles, and
flow them separately.
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The partitioning process
Idea: Dynamically split large images into smaller rectangles, and
flow them separately.

After k steps the image of IV; C 3 is enclosed by the union of
many smaller rectangles:
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Finding the invariant set
At the return to X we have information of the type
n(i) m(7)
RNy cJ@izc U N
j=1 j=1
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Finding the invariant set
At the return to X we have information of the type
n(i) m(7)
RNy cJ@izc U N
j=1 j=1

Verify the cone condition:
Qij NN # 0 = &(Qi7) C E(Ng).




Local theory and normal forms
Notation:

— n __ ny n2 _ns3
r = (z1,22,23), " =az7'x5%zsy®.

|z| = max{|z;|: i = 1,2,3}, [ f[l» = max{|f(x)]: |z < r}.




Local theory and normal forms

Notation:
x = (r1,m2,73), 2" =2 ry w5’
[ = max{|z|: i = 1,2,3}, [[f[lr = max{|f(2)]: «] <7}

Flatness of order p:
" € OP(x1) N OP(z9, x3)

ian[Updéf{nENg’:nl > p and ng + n3 > p}.




Local theory and normal forms

Notation:
= (z1,22,23), " =] zy’xy®.
|z| = max{|z;|: i = 1,2,3}, £l = max{[f(x)|: |z] <7}

Flatness of order p:
" € OP(x1) N OP(xo,x3)

ifnel,® {n€N3 ny > p and ng +ng > p}.

Change of variables:

&= Ax + F(x) =) y=Ay+ G(y)
—_——— —_—
original Lorenz normal form

where G(y) € O¥(y1) N O*(ys,y3). G is almost linear.
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Local theory and normal forms...
We find ¢(y) = > any™ by a simple power series substitution:

Lad(y) ={F(y+ oy)}vio,
where V1o = N3\ Uy, and

divisor

n n
Lai(ainy™) = (A= \) ainy™.

LA
UNIVERSITET



Local theory and normal forms...
We find ¢(y) = > any™ by a simple power series substitution:

Lag(y) ={F(y+ o))}y,
where V1o = N3\ Uy, and
divisor
n n
Lai(ainy™) = (nA = N) a;iny™.

Can we formally solve for the coefficients?
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The proof requires the computation of the 19.386 first divisors
(using interval arithmetic).




Local theory and normal forms...
We find ¢(y) = > any™ by a simple power series substitution:

Lad(y) ={F(y+ oy)}vio,
where V1o = N3\ Uy, and

divisor

n n
Lai(ainy™) = (nA = N) a;iny™.

Can we formally solve for the coefficients?
Existence of a formal ¢:

Lemma: Let n € Vyg. Then, for |n| € [2,57], we have

[nA — A;| > 0.0112. For |n| > 58, we have [nA — \;| > S|n|.
The proof requires the computation of the 19.386 first divisors
(using interval arithmetic).

OK, what about convergence of ¢?




Convergence of ¢:
Majorants: Find a F': R — R such that |F;(r,r,r)| < F(r), and let

Qk) = |H‘nn mln{|n)\ Ail:m e Vit

Then ¢ converges whenever ¥(r) = 3 cxr* does, where

1. k=1
k= W[F(T + chr])]
=2




Convergence of ¢:
Majorants: Find a F': R — R such that |F;(r,r,r)| < F(r), and let

Q(k) = min min{|nA — A\;|: n € Vio}.

Inl=k i

Then ¢ converges whenever ¥(r) = 3 cxr* does, where

k—1
1 . .
cp = 0] [F(r+ ]222 1)) -
Proposition: The change of variables satisfies

2
,
el <% <1,

and the normal form satisfies

20
r 1
) r< -,

G|, <7-10"
IG1l- < 1—3r 3

For the proof we need the 186.576 first coefficients.of ¢.
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In retrospect

@ | should have been aware of the theory of interval arithmetic
and validated numerics

@ | am glad that | found the articles of Hastings & Troy, and
Mischaikow & Mrozek. This really changed my line of thought.

@ | am still not sure why the fixed point is such a problem

@ | have still not got around to implementing a general purpose
partitioning process. This is a must for flowing large sets.

@ | would like to redo the proof, using today's state-of-the-art
software. This should be a quite short (and fast) proof.

@ | am very grateful to Jacob Palis and Lennart Carleson for

suggesting this problem to me.
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