
Interval arithmetic
and numerical reproducibility issues

Nathalie Revol1 Philippe Théveny2

1INRIA – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

2ENS Lyon – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

SWIM – June 2013

Schedule

1. the Bad

2. the Good

3. the Ugly

Floating-point computations

Numerical results may be different when the same computation is
performed twice.

I on the same machine

I on different machines

round-off errors or bug?

Software engineering problem

Q: how to verify program?

A: require the same bit-to-bit result (reproducibility)

Why is reproducibility not guaranteed?

Lack of specification in programming languages

f l o a t a , b , c , d , x ;
x = a + b + c + d ;

C does not specify the precision of intermediate calculations

Why is reproducibility not guaranteed?

Lack of specification in programming languages

r e a l : : a , b , c , d , x ;
x = a + b + c + d ;

FORTRAN does not specify the order of evaluation

Multithreaded programs

Floating-point addition/multiplication are non-associative
+

Non-deterministic scheduling
=

multithreaded reductions (+/∗) may yield different results

How to enforce numerical reproducibility?

solution 1 Require correct rounding

I provided by IEEE-754 compliant processors for arithmetic
operations

I hard to obtain and expensive for compound expressions

How to enforce numerical reproducibility?

solution 2 Use specific algorithms
Example: reproducible sums (Demmel and Nguyen
2013), sum the following data in 6 decimal digits
precision

1.23456× 107

+9.87654× 101

−1.00001× 105

+1.21215× 107

−4.44444× 102

+3.33333× 105

Σ

1234 5600 0000
+0000 +0098 +7654
−0010 −0001 −0000
+1212 +1500 +0000
−0000 −0444 −4440
+0033 +3333 +0000

2479 10086 3210

We have Σ ≈ 2479× 104 with no guarantee about
accuracy

How to enforce numerical reproducibility?

solution 3 Serialize reductions Intel MKL CNR

I calls to Intel MKL occur in a single executable
I input and output arrays in function calls are

properly aligned
I the number of computational threads used by

the library does not change in the run

cost: run-time +100%

Verified computing

Interval computations

I take round-off errors into account

I are subject to overestimation

Software engineering problem

Q: how to verify program?

A: compute an interval result
the result must

1. intersect the expected result
2. have a small enough width

Certified results

we compute 〈m̂, r̂〉
we know that

x ∈ 〈m̂, r̂〉

or
y ⊂ 〈m̂, r̂〉

Is x > 0? or y > 0? 0 m

r

〈1, 5〉

〈4, 1〉〈−10, 1〉

r
=
−
m r

=
m

Different results on different runs

Compatible results

run1 says “I don’t
know”

run2 says “Yes!”

Why?
0 m

r

〈1, 5〉

〈4, 1〉

r
=
−
m r

=
m

Different intermediate precisions

machine 2 uses more precision for intermediate calculation
try to add some iterative refinement steps

Different order of operations

SIMD identical alignment and vector length

multithread indeterminism

I reductions depend on scheduling
I list insertions depend on timing

Solution : log and replay

Different results on different runs

Incompatible results

run1 says “No!

run2 says “Yes!”

bug!

0 m

r

〈4, 1〉〈−10, 1〉

r
=
−
m r

=
m

Inclusion property is not satisfied

Compilers do not respect rounding modes other than default
GCC Bug #34678 (2008)

v o i d
i n t e r v a l d i v (d o u b l e ∗ l e f t , d o u b l e ∗ r i g h t ,

d o u b l e x , d o u b l e y) {
#pragma STDC FENV ACCESS ON
f e s e t r o u n d (FE DOWNWARD) ;
∗ l e f t = x / y ;
f e s e t r o u n d (FE UPWARD) ;
∗ r i g h t = x / y ;

}

Inclusion property is not satisfied

math libraries do not respect rounding modes other than default
example (Rump 1999):

Input: A = [A,A],B = [B,B]

Output: C ⊇ A · B
1: 〈MA,RA〉 ← InfsupToMidrad(A)

2: 〈MB,RB〉 ← InfsupToMidrad(B)

3: RC ← RU(|MA| · RB + RA · (|MB|+ RB))

4: C ← RU(MA ·MB + RC)

5: C ← RD(MA ·MB − RC)

6: return [C ,C]

Inclusion property is not satisfied

thread managers do not respect rounding modes
from OpenMP API Version 4.0 - RC 1 - November 2012:
“This OpenMP API specification refers to ISO/IEC 1539-1:2004 as
Fortran 2003. The following features are not supported:

I IEEE Arithmetic issues covered in Fortran 2003 Section 14

I . . . ”

Order of operation matters

Theorem (Rump 2012)

Let A ∈ Fm×k and B ∈ Fk×n with 2(k + 2)u ≤ 1 be given, and let
C = RN(A× B) and Γ = RN(|A| × |B|). Here C may be
computed in any order, and we assume that Γ is computed in the
same order. Then

|RN(A× B)− A× B| ≤ RN

(
k + 2

2
ulp(Γ) +

1

2
u−1η

)

Conclusion

Any good reason to require bit-to-bit identity with a
who-knows-to-what-accuracy approximation?
Any real difficulty in implementing a compiler that respect the
changes of rounding mode?

	Numerical reproducibility of floating-point computations
	Verified computing
	Errors in interval computations

