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Chemical process design

Chemical process design is concerned with establishing
equipment parameters and operating conditions for the structure
of the process.
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Chemical process design (continued)

Dynamic simulation is a useful tool for chemical process
design as it give us valuable information to determine what
actions should be taken to achieve the desired outcome.
CA'(t) = —ky, * CA(t)
CB'(t) =k, xCA—k, * CB
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Problems arising in chemical process design

 When uncertain parameters or initial conditions arise in dynamic process
models it becomes challenging to rigorously obtain the output.

» Ordinary numerical solvers can fail.

e Guaranteeing bounded performance across the whole trajectory of complex
chemical systems remains a challenge.



CA'(t) = —k, * CA(t)
CB'(t) =k, *CA— k, + CB

Initial conditions
tp =0
CA(ty) = [0.7,0.9]
CB(ty) =0
Parameters
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k, =[0.95,1.05]day ™"  Uncertain
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Interval based dynamic simulations
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Mathematical description of the problem

Mathematical problem
y'()=fu),
y(to) = [yo]
Reformulation into integral equation

t
Py(t) =y; + j fy(s))ds
tj
Taylor series
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Mathematical description of the problem
(continued)

Mean-value evaluation

o =J’f}-+if‘(?j)h}+f"([5f}])h}‘+{Hil(f":[yj])h}}([yf] -9)

The methods used are mainly focused on how to reduce the wrapping effect




Interval initial value problem solvers used

 The methods that have been used were developed by Moore, Eijenraam and
Lohner.

 They are focused on giving a solution for the reformulated initial value problem

» Different reformulation to avoid wrapping effect.



Interval initial value problem solvers used
(continued)

 Chemical engineering test problems were solved with an initial value problem
solver.

e Uncertainty was taken into account

» A disturbance was generated at time t in the model



Case studies
e First order reactor
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Simulation of first order reactor with
uncertain parameters



Case studies
e Bioreactor

dX Interval parameters
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Simulation of the process with uncertain
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Case studies
e First order reversible reactor

dC,

—7 = ~kiCa—k_1Cp ki = [3.8,4.2]day "
dCp k_, = [18,22]day !
—r = KaCa— (kg +kp)Cp + k(1= Cy = Cp) C4(0) = [0.75,0.85]kg/m?3
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Simulation of first order reactor with
uncertain parameters



Case studies
e Glucagon receptor model

dR,
T = ko1LRy = L(OKi Ry — kgRy + ki R
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dt
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Case studies

* Glucagon receptor model (continued)
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Simulation of the glucagon receptor model with an uncertain parameter



Case studies
 Reactor-separator model

L =[1.703,1.705]kg/m?

dx; F+B
dt T (xp — x1) + kx (1 — xq)
_ Fxpo + Bx,
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Case studies

 Reactor separator model (continued)
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Simulation of the reactor separator model with an uncertain parameter



Conclusions

* Interval methods are very useful to obtain the
bounded performance of chemical processes of

Interest.

e Obtaining bounds for more complex systems
across the whole trajectory remains a challenge.



Future work

« Reformulation techniques to avoid the dependency problem.

 Implementation of QR factorization enclosure methods and Taylor
Models.

 Increase the variety of Chemical Engineering problems, increase
dimensionality and include events.

* Implementation of Global Optimisation algorithms to determine optimal
robust trajectories.
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