

Interval based dynamic simulations in chemical process design

By C. Perez-Galvan and I. D. L. Bogle

Centre for Process Systems Engineering Department of Chemical Engineering University College London, Torrington Place, London WC1E 7JE. United Kingdom

6th Small Workshop on Interval Methods 5-7 June 2013

Outline

- CHEMICAL PROCESS DESIGN
- PROBLEMS ARISING IN CHEMICAL PROCESS DESIGN
- INTERVAL BASED DYNAMIC SIMULATIONS
- MATHEMATICAL DESCRIPTION OF THE PROBLEM
- INTERVAL INITIAL VALUE PROBLEM SOLVERS USED
- CASE STUDIES
- CONCLUSIONS
- FUTURE WORK
- ACKNOWLEDGEMENTS

Chemical process design

Chemical process design is concerned with establishing equipment parameters and operating conditions for the structure of the process.

Chemical process design (continued)

Dynamic simulation is a useful tool for chemical process design as it give us valuable information to determine what actions should be taken to achieve the desired outcome.

Problems arising in chemical process design

- When uncertain parameters or initial conditions arise in dynamic process models it becomes challenging to rigorously obtain the output.
- Ordinary numerical solvers can fail.
- Guaranteeing bounded performance across the whole trajectory of complex chemical systems remains a challenge.

Interval based dynamic simulations

Mathematical description of the problem

Mathematical problem

$$y'(t) = f(y),$$

 $y(t_0) = [y_0]$

Reformulation into integral equation

$$Py(t) = y_j + \int_{t_j}^t f(y(s))ds$$

Taylor series

$$[y(t)] = [y_j] + \sum_{i=1}^{k-1} f^i([y_j])(t - t_j)^i + f^k([\tilde{y}_j])(t - t_j)^k$$
$$[y_{j+1}] = [y_j] + \sum_{i=1}^{k-1} f^i([y_j])h_j^i + f^k([\tilde{y}_j])h_j^k$$

Mathematical description of the problem (continued)

Mean-value evaluation

$$[y_{j+1}] = \hat{y}_j + \sum_{i=1}^{k-1} f^i(\hat{y}_j)h_j^i + f^k([\tilde{y}_j])h_j^k + \left\{I + \sum_{i=1}^{k-1} J(f^i; [y_j])h_j^i\right\}([y_j] - \hat{y}_j)$$

The methods used are mainly focused on how to reduce the wrapping effect

Interval initial value problem solvers used

- The methods that have been used were developed by Moore, Eijenraam and Lohner.
- They are focused on giving a solution for the reformulated initial value problem
- Different reformulation to avoid wrapping effect.

Interval initial value problem solvers used (continued)

- Chemical engineering test problems were solved with an initial value problem solver.
- Uncertainty was taken into account
- A disturbance was generated at time *t* in the model

UCL

Case studies

• First order reactor

Simulation of first order reactor with uncertain parameters

UC

Case studies

Bioreactor •

parameters

UCL

Case studies

• First order reversible reactor

uncertain parameters

UCL

Case studies

• Glucagon receptor model

$$\begin{aligned} \frac{dR_r}{dt} &= k_{-1}LR_u - L(t)k_1R_r - k_sR_r + k_rR_s \\ \frac{dR_s}{dt} &= k_{sp}LR_p + G_iK_{2s}LR_u + k_s(LR_u + R_r) - k_rR_s \\ \frac{dG_i}{dt} &= -G_iK_{23}LR_u + G_* \left(k_h + \frac{Ca(t)k_{Gdeg,Cal}}{K_{Gdeg,Cal} + G_*} + \frac{PLC_*k_{Gdeg,PLC}}{K_{Gdeg,PLC} + G_*}\right) \\ G_* &= G_0 - G_i \\ \frac{dLR_p}{dt} &= -k_{sp}LR_p + k_p \left(1 + \frac{A_0}{1 + B_1G_*^{-n_1}}\right) \left(\frac{LR_u}{LR_u + B_2}\right) \\ R_0 &= R_r + R_s + LR_u + LR_p \\ \frac{dPLC_*}{dt} &= k_{PC}G_* - \frac{PLC_*k_{PC,deg}}{K_{PC,deg} + PLC_*} \end{aligned}$$

 $R_0 = [126475, 126525]$ cell⁻¹

Case studies

Glucagon receptor model (continued)

Simulation of the glucagon receptor model with an uncertain parameter

Case studies

Reactor-separator model

 $\frac{dx_1}{dt} = \frac{F+B}{H}(x_F - x_1) + kx_1(1 - x_1)$ $x_F = \frac{Fx_{F0} + Bx_2}{F + B}$ $y_i = \frac{\alpha \dot{x}_i}{1 + (\alpha - 1)x_1}$ $\frac{dx_2}{dt} = (L+F+B)x_3 - Bx_2 - Vy_2$ $\frac{dx_3}{dt} = (L + F + B)(x_4 - x_3) + V(y_2 - y_3)$ $\frac{dx_4}{dt} = (F+B)x_1 + Lx_5 - (L+F+B)x_4$ $\frac{dx_5}{dt} = L(x_6 - x_5) + V(y_4 - y_3)$ $\frac{dx_6}{dt} = -(L + D)x_6 + Vy_5$

 $L = [1.703, 1.705] \text{kg/m}^3$

UCL

Case studies

• Reactor separator model (continued)

Simulation of the reactor separator model with an uncertain parameter

Conclusions

- Interval methods are very useful to obtain the bounded performance of chemical processes of interest.
- Obtaining bounds for more complex systems across the whole trajectory remains a challenge.

Future work

- Reformulation techniques to avoid the dependency problem.
- Implementation of QR factorization enclosure methods and Taylor Models.
- Increase the variety of Chemical Engineering problems, increase dimensionality and include events.
- Implementation of Global Optimisation algorithms to determine optimal robust trajectories.

Acknowledements

Prof. David Bogle

Thank you for your attention!