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Introduction

We consider global optimization of Mixed Integer Non Linear
Programming problems in a deterministic and reliable way.

Problem
min

x ,y∈X×Y⊂Rn×Zm
f (x , y)

s.t. gl(x , y) ≤ 0 , ∀l ∈ {1, ..., p},
hk(x , y) = 0 , ∀k ∈ {1, ..., q}.

• Comparison and Combining different kinds of reliable linear
relaxation method.

=⇒ Accelerate resolution of a Branch and Bound Algorithm based
on Interval Analysis
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Branch and Bound Algorithm based on Interval Analysis

Each iteration:

• Choice and Subdivision of the box X (into 2 boxes),
=⇒ L list of possible solutions

• Reduction of sub-boxes,
=⇒ Constraint Propagations, Relaxation Techniques, ...

• Computation of lower bounds
=⇒ Interval Arithmetic, Relaxation Techniques,...

• Elimination of boxes that cannot contain the global optimum
=⇒ Elts which do not satisfy constraints, lower bound > f̃ ,..
Else: Store in L

• STOP =⇒ max
(Z,fz )∈L

wid(Z) ≤ εL

=⇒ f̃ − min
(Z,fz )∈L

fz ≤ εf
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Principle

Linear Relaxation Techniques
min
x∈[x]

f (x)

s.t. gl(x) ≤ 0,
hk(x) = 0.

⇒

{
min
y∈[y]

cT y ,

s.t. Ay ≤ b.
⇒
∀(y , z) ∈ [y]× [lb, best sol ],{

z = cT y ,
Ay ≤ b.

C ([x]× [lb, best sol ])→
• Contract the hypercube with the polyhedral feasibility domain,

• Contract the gap between the best known solution and the
lower bound.

Certification the result of the LP solver

• Linear Interval Program ⇒ linear interval solver (LURUPA)

• Reliable Linear Program ⇒ Computing the residual of the
dual by Interval Arithmetic
(A. Neumaier, O. Shcherbina, Math. Program., Ser. A 99: 283–296, 2004)
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Gradient-based Method

Contents

1 Reformulation Method
Principle
Gradient-based Method
Affine Reformulation Technique
Reformulation-Linearization-Techniques

2 Numerical Results

Jordan Ninin Linear Relaxations in Global Optimization May 8, 2013 7 / 24



Introduction Reformulation Method Numerical Results Conclusion

Gradient-based Method

Inclusion Functions based on Taylor’s Expansions

Let f be a univariate differentiable function, and x , y and ξ, 3
variables of X an interval of R.

f (x) = f (y)+(x−y)f ′(y)+
(x − y)2

2
f ′′(y)+ . . .+

(x − y)n

n!
f (n)(ξ)

Let denote F (n)(X ) an enclosure of f (n)(ξ) over X (computed with
an interval automatic differentiation tool).

Hence,

f (x) ∈ f (y)+(x−y)f ′(y)+
(x − y)2

2
f ′′(y)+. . .+

(x − y)n

n!
F (n)(X ),∀y ∈ X , and ∀n.

=⇒ Inclusion functions:

T1(y ,X ) = f (y) + (X − y)F ′(X )
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Gradient-based Method

Representation of the Taylor Inclusion Function

f’

f’

f’

f’

x x

f(m([x]))+f'.(x-m([x]))

f(m([x]))+f'.(x-m([x])) f(x)+f'.(x-x)

f(x)+f'.(x-x)f(x) f(x)
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Gradient-based Method

X-Newton Method: I.Araya, G. Trombetonni, B.Neveu

• Choose several point among the 2n corner of the hypercube:
⇒ Different heuristics could be used.

• Compute the linear relaxation associated to each chosen
corner.

• Generate the linear program and Solve it.

• Validate the result with the Neumaier-Shcherbina’s criteria.
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Affine Reformulation Technique
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Affine Reformulation Technique

Affine Arithmetic: J.L.D. Comba, J. Stolfi (1993)

Definition

Each quantity is represented by an affine form x̂

x̂ = x0 +
n∑

i=1

xiεi ,

with ∀i ∈ [0, n], xi ∈ R and εi = [−1, 1].

• Example: A = [1, 3] and B = [−2, 0],

Â → 2 + ε1,

B̂ → −1 + ε2,

1 + Â = 3 + ε1,

5× B̂ = −5 + 5ε2,

Â + B̂ = 1 + ε1 + ε2.
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Â → 2 + ε1,

B̂ → −1 + ε2,
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Affine Reformulation Technique

Non-Affine Operator

Multiplication

x̂ × ŷ = (x0 +
n+1∑
i=1

xiεi )× (y0 +
n+1∑
i=1

yiεi ),

= x0y0 +
n∑

i=1

(x0yi + xiy0)εi+(
x0yn+1 + xn+1y0 +

(
n+1∑
i=1

| xi | ×
n+1∑
i=1

| yi |

))
ε±.

Log, exp,
√

, power, cos,...

f̂ (x̂) = ζ + αx̂ + δε±,

with α, δ, ζ ∈ R and x̂ = x0 +
n∑

i=1

xiεi .
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Affine Reformulation Technique

Visualization of AA by expression tree

∀x ∈ [1, 2]×[2, 6], f (x) = x1x2
2−exp(x1+x2)

∈ [−2940.9579,−12.0855]

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

A
A

�
��
� HH

HH

�
�

A
A

X1

X1 X2

+

exp

X2

x2

−

×

16 + 16ε2 + 4ε±

1500.52 + 10.04ε1 + 40.17ε2 + 1430.22ε±

5.5 + 0.5ε1 + 2ε2

24 + 8ε1 + 24ε2 + 16ε±

4 + 2ε2

1.5 + 0.5ε1

1.5 + 0.5ε1

4 + 2ε2

−1476.52−2.04ε1 − 16.17ε2 + 14446.22ε±−1476.52−2.04ε1 − 16.17ε2 + 14446.22ε±
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Affine Reformulation Technique: J.Ninin, F.Messine,
P.Hansen

AF1 and AF2 ⇒ automated way to linearize every function.

n fixed ⇒ affine transformation T between
x ∈ X ⊂ Rn and z ∈ ε = [−1, 1]n.

Error Error

f̂ (x) = + + .
Linear Approximation

∀x ∈ X , z = T (x), f (x)−
n∑

i=1

fizi ∈ [f0 − f±, f0 + f±]
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Affine Reformulation Technique

Reformulation of a NLP problem


min
x∈X

f (x)

s. t. gl(x) ≤ 0 , ∀l ∈ {1, ..., p},
hk(x) = 0 , ∀k ∈ {1, ..., q}.

⇒ Reformulate each equation with Affine Arithmetic⇒


min

z∈[−1,1]n

n∑
i=1

fizi

s. t.
∑n

i=1(gl)izi ≤ (gl)± − (gl)0 , ∀l ∈ {1, ..., p},∑n
i=1(hk)izi ≤ (hk)± − (hk)0 , ∀k ∈ {1, ..., q},

−
∑n

i=1(hk)izi ≤ (hk)± + (hk)0 , ∀k ∈ {1, ..., q}.
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Reformulation-Linearization-Techniques
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Reformulation-Linearization-Techniques


min
x,y

f (x , y)

s.t. gl(x , y) ≤ 0,
hk(x , y) = 0.

⇒



min
x,y ,w

wk0

s.t. wk1 = x1y1,
wk2 = exp(x5),
wk3 = wk1 wk2 ,
wk3 = y4/wk3 ,
...

⇒

{
min
x,y ,w

wk0

linear relaxation

1 E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs. Computers &
Chemical Engineering, 23:457–478, 1999.

2 W.P. Adams and H.D. Sherali, A reformulation-linearization technique for
solving discrete and continuous nonconvex problems, Nonconvex Optimization
and Its Applications , Vol. 31, Kluwer Academic Publishers, 1998.
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Integration in IBEX: G.Chabert et al.

IBEX is a library containing a deterministic global optimization
algorithm based on Interval Arithmetic.

• Compare XNewton reformulation, ART and a combination,

• Improve only the lower bound or Contract the domain of each
variable.

161 problems from the COCONUT database
(a library of global optimization test problems)

less than 50 variables
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Comparison: Contracting the box

Nb of Nb Success Time Time only
success only by if success

ART 128 3 140.67 s 24.44 s

XNewton 128 3 143.06 s 28.35 s

Combining 131 - 132.03 s 29.16 s
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Performance Profiles
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Conclusion

Preliminary results:
• Gradient-based Method and Affine Arithmetic-based method

seem to be equivalent.

• The combination slows down the performance, but we need to
test the merge of the two linearizations into one LP.

IBEX
http://www.emn.fr/z-info/ibex/
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