Linear Relaxations in Global Optimization: Gradient-based Method and Affine Reformulation Technique.

Jordan Ninin

LAB-STICC / ENSTA-Bretagne Brest, France

May 8, 2013

We consider global optimization of Mixed Integer Non Linear Programming problems in a deterministic and reliable way.

Problem

ſ	$\min_{\substack{x,y\in X\times Y\subset \mathbb{R}^n\times \mathbb{Z}^m}}$	f(x,y)
ſ	s.t.	$g_l(x, y) \leq 0 , \forall l \in \{1,, p\},$ $b_l(x, y) = 0 \forall k \in \{1,, p\},$
U U		$M_k(x, y) \equiv 0$, $\forall k \in \{1,, q\}.$

We consider global optimization of Mixed Integer Non Linear Programming problems in a deterministic and reliable way.

Problem

$$egin{aligned} & \min_{x,y\in X imes Y\subset \mathbb{R}^n imes \mathbb{Z}^m} & f(x,y)\ & s.t. & g_l(x,y)\leq 0 \ , \ orall l\in\{1,...,p\},\ & h_k(x,y)=0 \ , \ orall k\in\{1,...,q\}. \end{aligned}$$

• Comparison and Combining different kinds of reliable linear relaxation method.

 \Longrightarrow Accelerate resolution of a Branch and Bound Algorithm based on Interval Analysis

Each iteration:

Each iteration:

• Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions

Each iteration:

- Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions
- Reduction of sub-boxes,
 - \implies Constraint Propagations, Relaxation Techniques, ...

Each iteration:

- Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions
- Reduction of sub-boxes,
 - \implies Constraint Propagations, Relaxation Techniques, ...
- Computation of lower bounds
 - \implies Interval Arithmetic, Relaxation Techniques,...

Each iteration:

- Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions
- Reduction of sub-boxes,

 \implies Constraint Propagations, Relaxation Techniques, ...

• Computation of lower bounds

 \implies Interval Arithmetic, Relaxation Techniques,...

• Elimination of boxes that cannot contain the global optimum \implies Elts which do not satisfy constraints, lower bound $> \tilde{f},..$ Else: Store in \mathcal{L}

Each iteration:

- Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions
- Reduction of sub-boxes,

 \implies Constraint Propagations, Relaxation Techniques, ...

• Computation of lower bounds

 \implies Interval Arithmetic, Relaxation Techniques,...

• Elimination of boxes that cannot contain the global optimum \implies Elts which do not satisfy constraints, lower bound $> \tilde{f},..$ Else: Store in \mathcal{L}

• STOP
$$\Longrightarrow \max_{(\mathbf{Z}, f_z) \in \mathcal{L}} wid(\mathbf{Z}) \le \epsilon_L$$

 $\Longrightarrow \widetilde{f} - \min_{(\mathbf{Z}, f_z) \in \mathcal{L}} f_z \le \epsilon_f$

Each iteration:

- Choice and Subdivision of the box X (into 2 boxes), $\implies \mathcal{L}$ list of possible solutions
- Reduction of sub-boxes,

 \implies Constraint Propagations, Relaxation Techniques, ...

• Computation of lower bounds

 \implies Interval Arithmetic, Relaxation Techniques,...

• Elimination of boxes that cannot contain the global optimum \implies Elts which do not satisfy constraints, lower bound $> \tilde{f},...$ Else: Store in \mathcal{L}

• STOP
$$\Longrightarrow \max_{(\mathbf{Z}, f_z) \in \mathcal{L}} wid(\mathbf{Z}) \le \epsilon_L$$

 $\Longrightarrow \widetilde{f} - \min_{(\mathbf{Z}, f_z) \in \mathcal{L}} f_z \le \epsilon_f$

Contents

1 Reformulation Method

Principle Gradient-based Method Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Reformulation Method

Numerical Results

Conclusion

Principle

Contents

1 Reformulation Method

Principle

Gradient-based Method Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Principle

1

.

Linear Relaxation Techniques

$$\begin{cases} \min_{x \in [\mathbf{x}]} & f(x) \\ \text{s.t.} & g_l(x) \leq 0, \\ & h_k(x) = 0. \end{cases} \Rightarrow \begin{cases} \min_{y \in [\mathbf{y}]} & c^T y, \\ y \in [\mathbf{y}] & x \in [\mathbf{y}] \\ \text{s.t.} & Ay \leq b. \end{cases} \Rightarrow \begin{cases} z = c^T y, \\ Ay \leq b. \end{cases}$$

Numerical Results

Principle

Linear Relaxation Techniques

$$\begin{array}{ccc} \min_{x \in [\mathbf{x}]} & f(x) \\ \text{s.t.} & g_l(x) \leq 0, \\ & h_k(x) = 0. \end{array} & \Rightarrow \begin{cases} \min_{y \in [\mathbf{y}]} & c^T y, \\ y \in [\mathbf{y}] & c^T y, \\ \text{s.t.} & Ay \leq b. \end{cases} & \Rightarrow \begin{cases} z = c^T y, \\ Ay \leq b. \end{cases}$$

$C([\mathbf{x}] \times [lb, best_sol]) \rightarrow$

c (

- Contract the hypercube with the polyhedral feasibility domain,
- Contract the gap between the best known solution and the lower bound.

Numerical Results

Principle

Linear Relaxation Techniques

$$\begin{array}{ccc} \min_{x \in [\mathbf{x}]} & f(x) \\ \text{s.t.} & g_l(x) \leq 0, \\ & h_k(x) = 0. \end{array} & \Rightarrow \begin{cases} \min_{y \in [\mathbf{y}]} & c^T y, \\ y \in [\mathbf{y}] & & \Rightarrow \\ \text{s.t.} & Ay \leq b. \end{cases} & \Rightarrow \begin{cases} z = c^T y, \\ Ay \leq b. \end{cases}$$

$C([\mathbf{x}] \times [lb, best_sol]) \rightarrow$

c/)

- Contract the hypercube with the polyhedral feasibility domain,
- Contract the gap between the best known solution and the lower bound.

Certification the result of the LP solver

Numerical Results

Principle

Linear Relaxation Techniques

$$\begin{array}{ccc} \min_{x \in [\mathbf{x}]} & f(x) \\ \text{s.t.} & g_l(x) \leq 0, \\ & h_k(x) = 0. \end{array} & \Rightarrow \begin{cases} \min_{y \in [\mathbf{y}]} & c^T y, \\ y \in [\mathbf{y}] & & \Rightarrow \\ \text{s.t.} & Ay \leq b. \end{cases} & \Rightarrow \begin{cases} z = c^T y, \\ Ay \leq b. \end{cases}$$

$C([\mathbf{x}] \times [lb, best_sol]) \rightarrow$

c/)

- Contract the hypercube with the polyhedral feasibility domain,
- Contract the gap between the best known solution and the lower bound.

Certification the result of the LP solver

• Linear Interval Program \Rightarrow linear interval solver (LURUPA)

Numerical Results

Principle

Linear Relaxation Techniques

$$\begin{array}{ccc} \min_{x \in [\mathbf{x}]} & f(x) \\ \text{s.t.} & g_l(x) \le 0, \\ & h_k(x) = 0. \end{array} & \Rightarrow \begin{cases} \min_{y \in [\mathbf{y}]} & c^T y, \\ y \in [\mathbf{y}] & \vdots \\ \text{s.t.} & Ay \le b. \end{cases} & \Rightarrow \begin{cases} z = c^T y, \\ Ay \le b. \end{cases}$$

$C([\mathbf{x}] \times [lb, best_sol]) \rightarrow$

- Contract the hypercube with the polyhedral feasibility domain,
- Contract the gap between the best known solution and the lower bound.

Certification the result of the LP solver

- Linear Interval Program \Rightarrow linear interval solver (LURUPA)
- Reliable Linear Program \Rightarrow Computing the residual of the dual by Interval Arithmetic

(A. Neumaier, O. Shcherbina, Math. Program., Ser. A 99: 283–296, 2004)

Reformulation Method

Numerical Results

Conclusion

Gradient-based Method

Contents

1 Reformulation Method

Principle Gradient-based Method

Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Numerical Results

Conclusion

Gradient-based Method

Inclusion Functions based on Taylor's Expansions

Let f be a univariate differentiable function, and x, y and ξ , 3 variables of X an interval of \mathbb{R} .

$$f(x) = f(y) + (x - y)f'(y) + \frac{(x - y)^2}{2}f''(y) + \ldots + \frac{(x - y)^n}{n!}f^{(n)}(\xi)$$

Inclusion Functions based on Taylor's Expansions

Let f be a univariate differentiable function, and x, y and ξ , 3 variables of X an interval of \mathbb{R} .

$$f(x) = f(y) + (x - y)f'(y) + \frac{(x - y)^2}{2}f''(y) + \ldots + \frac{(x - y)^n}{n!}f^{(n)}(\xi)$$

Let denote $F^{(n)}(X)$ an enclosure of $f^{(n)}(\xi)$ over X (computed with an interval automatic differentiation tool).

Hence,

$$f(x) \in f(y) + (x-y)f'(y) + \frac{(x-y)^2}{2}f''(y) + \ldots + \frac{(x-y)^n}{n!}F^{(n)}(X), \forall y \in X,$$

Inclusion Functions based on Taylor's Expansions

Let f be a univariate differentiable function, and x, y and ξ , 3 variables of X an interval of \mathbb{R} .

$$f(x) = f(y) + (x - y)f'(y) + \frac{(x - y)^2}{2}f''(y) + \ldots + \frac{(x - y)^n}{n!}f^{(n)}(\xi)$$

Let denote $F^{(n)}(X)$ an enclosure of $f^{(n)}(\xi)$ over X (computed with an interval automatic differentiation tool).

Hence,

$$f(x) \in f(y) + (x-y)f'(y) + \frac{(x-y)^2}{2}f''(y) + \ldots + \frac{(x-y)^n}{n!}F^{(n)}(X), \forall y \in X,$$

 \implies Inclusion functions:

$$T_1(y, X) = f(y) + (X - y)F'(X)$$

Numerical Results

Conclusion

Gradient-based Method

Representation of the Taylor Inclusion Function

X-Newton Method: I.Araya, G. Trombetonni, B.Neveu

Choose several point among the 2ⁿ corner of the hypercube:
 ⇒ Different heuristics could be used.

X-Newton Method: I.Araya, G. Trombetonni, B.Neveu

- Choose several point among the 2ⁿ corner of the hypercube:
 ⇒ Different heuristics could be used.
- Compute the linear relaxation associated to each chosen corner.

X-Newton Method: I.Araya, G. Trombetonni, B.Neveu

- Choose several point among the 2ⁿ corner of the hypercube:
 ⇒ Different heuristics could be used.
- Compute the linear relaxation associated to each chosen corner.
- Generate the linear program and Solve it.

X-Newton Method: I.Araya, G. Trombetonni, B.Neveu

- Choose several point among the 2ⁿ corner of the hypercube:
 ⇒ Different heuristics could be used.
- Compute the linear relaxation associated to each chosen corner.
- Generate the linear program and Solve it.
- Validate the result with the Neumaier-Shcherbina's criteria.

Numerical Results

Affine Reformulation Technique

Contents

1 Reformulation Method

Principle Gradient-based Method Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Conclusion

Affine Reformulation Technique

Affine Arithmetic: J.L.D. Comba, J. Stolfi (1993)

Definition

Each quantity is represented by an affine form \widehat{x}

$$\widehat{x} = x_0 + \sum_{i=1}^n x_i \epsilon_i,$$
with $\forall i \in [0, n], x_i \in \mathbb{R}$ and $\epsilon_i = [-1, 1].$

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Arithmetic: J.L.D. Comba, J. Stolfi (1993)

Definition

Each quantity is represented by an affine form \widehat{x}

$$\widehat{x} = x_0 + \sum_{i=1}^n x_i \epsilon_i,$$

with $\forall i \in [0, n], x_i \in \mathbb{R}$ and $\epsilon_i = [-1, 1].$

• Example:
$$A = [1,3]$$
 and $B = [-2,0]$,
 $\widehat{A} \rightarrow 2 + \epsilon_1,$
 $\widehat{B} \rightarrow -1 + \epsilon_2.$

Affine Reformulation Technique

Affine Arithmetic: J.L.D. Comba, J. Stolfi (1993)

Definition

Each quantity is represented by an affine form \widehat{x}

$$\widehat{x} = x_0 + \sum_{i=1}^n x_i \epsilon_i,$$

with $\forall i \in [0, n], x_i \in \mathbb{R}$ and $\epsilon_i = [-1, 1].$

• Example: A = [1, 3] and B = [-2, 0],

$$\begin{array}{rcl} \widehat{A} & \rightarrow & 2+\epsilon_1, \\ \widehat{B} & \rightarrow & -1+\epsilon_2, \\ 1+\widehat{A} & = & 3+\epsilon_1, \\ 5\times \widehat{B} & = & -5+5\epsilon_2, \\ \widehat{A}+\widehat{B} & = & 1+\epsilon_1+\epsilon_2. \end{array}$$

Jordan Ninin

Numerical Results

Affine Reformulation Technique

Non-Affine Operator

Multiplication

$$\hat{x} \times \hat{y} = (x_0 + \sum_{i=1}^{n+1} x_i \epsilon_i) \times (y_0 + \sum_{i=1}^{n+1} y_i \epsilon_i), = x_0 y_0 + \sum_{i=1}^{n} (x_0 y_i + x_i y_0) \epsilon_i + \left(x_0 y_{n+1} + x_{n+1} y_0 + \left(\sum_{i=1}^{n+1} |x_i| \times \sum_{i=1}^{n+1} |y_i| \right) \right) \epsilon_{\pm}.$$

Log, exp, $\sqrt{-}$, power, cos,...

$$\widehat{f}(\widehat{x}) = \zeta + \alpha \widehat{x} + \delta \epsilon_{\pm},$$

with $\alpha, \delta, \zeta \in \mathbb{R}$ and $\widehat{x} = x_0 + \sum_{i=1}^n x_i \epsilon_i$

Jordan Ninin

Linear Relaxations in Global Optimization

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

$$\forall x \in [1,2] \times [2,6], f(x) = x_1 x_2^2 - \exp(x_1 + x_2)$$

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

$$\forall x \in [1,2] \times [2,6], f(x) = x_1 x_2^2 - \exp(x_1 + x_2)$$

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Visualization of AA by expression tree

 $\forall x \in [1,2] \times [2,6], f(x) = x_1 x_2^2 - \exp(x_1 + x_2) \in [-2940.9579, -12.0855]$

Numerical Results

Conclusion

Affine Reformulation Technique

Graphical Representation

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

n **fixed** \Rightarrow affine transformation \mathcal{T} between $x \in X \subset \mathbb{R}^n$ and $z \in \epsilon = [-1, 1]^n$.

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

$$f(x) = x \in X \subset \mathbb{R}^n$$
 and $z \in \epsilon = [-1, 1]^n$.

$$\widehat{f}(x) = f_0 + \sum_{i=1}^n f_i \epsilon_i + f_{\pm} \epsilon_{\pm}.$$

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

1

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

$$n \text{ fixed} \Rightarrow ext{affine transformation } \mathcal{T} ext{ between } x \in X \subset \mathbb{R}^n ext{ and } z \in \epsilon = [-1, 1]^n.$$

$$\widehat{f}(x) = f_0 + \sum_{i=1}^{n} f_i z_i + f_{\pm} \epsilon_{\pm}.$$
Linear Approximation

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

 $n \text{ fixed} \Rightarrow \text{affine transformation } \mathcal{T} \text{ between}$ $x \in X \subset \mathbb{R}^n \text{ and } z \in \epsilon = [-1, 1]^n.$

Reformulation Method

Numerical Results

Conclusion

Affine Reformulation Technique

Affine Reformulation Technique: J.Ninin, F.Messine, P.Hansen

AF1 and AF2 \Rightarrow automated way to linearize every function.

 $n \text{ fixed} \Rightarrow \text{affine transformation } \mathcal{T} \text{ between}$ $x \in X \subset \mathbb{R}^n \text{ and } z \in \epsilon = [-1, 1]^n.$

Numerical Results

Conclusion

Affine Reformulation Technique

Reformulation of a NLP problem

$$egin{array}{ccc} \min_{x\in X} & f(x) \ s. t. & g_l(x) \leq 0 \ , \ orall l \in \{1,...,p\}, \ h_k(x) = 0 \ , \ orall k \in \{1,...,q\}. \end{array}$$

Affine Reformulation Technique

Reformulation of a NLP problem

$$\begin{array}{ll} \min_{x \in X} & f(x) \\ s. \ t. & g_l(x) \leq 0 \ , \ \forall l \in \{1,...,p\}, \\ & h_k(x) = 0 \ , \ \forall k \in \{1,...,q\}. \end{array}$$

 \Rightarrow Reformulate each equation with Affine Arithmetic \Rightarrow

Numerical Results

Conclusion

Affine Reformulation Technique

Reformulation of a NLP problem

$$\begin{array}{ll} \min_{x \in X} & f(x) \\ s. \ t. & g_l(x) \leq 0 \ , \ \forall l \in \{1,...,p\}, \\ & h_k(x) = 0 \ , \ \forall k \in \{1,...,q\}. \end{array}$$

 \Rightarrow Reformulate each equation with Affine Arithmetic \Rightarrow

$$\begin{cases} \min_{z \in [-1,1]^n} & \sum_{i=1}^n f_i z_i \\ s. t. & \sum_{i=1}^n (g_i)_i z_i \le (g_l)_{\pm} - (g_l)_0 , & \forall l \in \{1,...,p\}, \\ & \sum_{i=1}^n (h_k)_i z_i \le (h_k)_{\pm} - (h_k)_0 , & \forall k \in \{1,...,q\}, \\ & -\sum_{i=1}^n (h_k)_i z_i \le (h_k)_{\pm} + (h_k)_0 , & \forall k \in \{1,...,q\}. \end{cases}$$

Numerical Results

Reformulation-Linearization-Techniques

1 Reformulation Method

Principle Gradient-based Method Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Reformulation Method

Numerical Results

Conclusion

Reformulation-Linearization-Techniques

Reformulation-Linearization-Techniques

$$\begin{cases} \min_{\substack{x,y \\ s.t. \\ h_k(x,y) \leq 0, \\ h_k(x,y) = 0. \end{cases}} f(x,y) \leq 0, \end{cases}$$

Numerical Results

Conclusion

Reformulation-Linearization-Techniques

Reformulation-Linearization-Techniques

$$\begin{cases} \min_{x,y} f(x,y) \\ \text{s.t.} g_l(x,y) \le 0, \\ h_k(x,y) = 0. \end{cases} \Rightarrow \begin{cases} \min_{x,y,w} w_{k_0} \\ \text{s.t.} w_{k_1} = x_1 y_1, \\ w_{k_2} = \exp(x_5), \\ w_{k_3} = w_{k_1} w_{k_2}, \\ w_{k_3} = y_4 / w_{k_3}, \\ \vdots \end{cases}$$

E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering, 23:457–478, 1999.

Numerical Results

Conclusion

Reformulation-Linearization-Techniques

Reformulation-Linearization-Techniques

$$\begin{cases} \min_{\substack{x,y \\ x,y \\ s.t. \\ h_k(x,y) = 0. \end{cases}} f(x,y) \leq 0, \qquad \Rightarrow \begin{cases} \min_{\substack{x,y,w \\ s.t. \\ h_k(x,y) = 0. \end{array}} w_{k_1} = x_1 y_1, \\ w_{k_2} = \exp(x_5), \\ w_{k_3} = w_{k_1} w_{k_2}, \\ w_{k_3} = y_4 / w_{k_3}, \\ \vdots \end{cases} \Rightarrow \begin{cases} \min_{\substack{x,y,w \\ x,y,w \\ linear relaxation \\ \vdots \\ \vdots \end{cases}} \end{cases}$$

- E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering, 23:457–478, 1999.
- W.P. Adams and H.D. Sherali, A reformulation-linearization technique for solving discrete and continuous nonconvex problems, *Nonconvex Optimization* and Its Applications, Vol. 31, Kluwer Academic Publishers, 1998.

Contents

Reformulation Method

Principle Gradient-based Method Affine Reformulation Technique Reformulation-Linearization-Techniques

2 Numerical Results

Integration in IBEX: G.Chabert et al.

IBEX is a library containing a deterministic global optimization algorithm based on Interval Arithmetic.

- Compare XNewton reformulation, ART and a combination,
- Improve only the lower bound or Contract the domain of each variable.

Integration in IBEX: G.Chabert et al.

IBEX is a library containing a deterministic global optimization algorithm based on Interval Arithmetic.

- Compare XNewton reformulation, ART and a combination,
- Improve only the lower bound or Contract the domain of each variable.

161 problems from the COCONUT database (a library of global optimization test problems)

less than 50 variables

Numerical Results

Conclusion

Comparison: Contracting the box

	Nb of	Nb Success	Time	Time only
	success	only by		if success
ART	128	3	140.67 s	24.44 s
XNewton	128	3	143.06 s	28.35 s
Combining	131	-	132.03 s	29.16 s

Numerical Results

Conclusion

Performance Profiles

Conclusion

Preliminary results:

- Gradient-based Method and Affine Arithmetic-based method seem to be equivalent.
- The combination slows down the performance, but we need to test the merge of the two linearizations into one LP.

IBEX http://www.emn.fr/z-info/ibex/