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AIM OF WORK:

» Extension and development of existing model order reduction techniques
using interval systems

» Controller design based on interval systems reduced model.

» To develop algorithms for controller reduction of interval systems.
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INTRODUCTION:

Model Order ReductiofMOR) is a branch of systems and control theonjictvistudies
the properties aflynamical systemsin application foreducing their complexity,
while preserving their input-output behavior.

Interval systemsmany systems the coefficients are constant begrigin within a
finite range. Such systems are classified as iatesystems.

B. Bandyopadhyay, O. Ismail, and R. Gorez, “Rowdd?approximation for interval systemHEEE Trans. Autom. Contrpl
vol. 39, pp. 2454-2456, Dec1994.

Dolgin, Y., and Zeheb, E., ‘On Routh Pade modeliotidn of interval systemsIEEE Trans. Autom. Controf8 (9), 1610-1612, 2003.
Shih-Feng Yang,'Comments on the computation ofualeRouth approximantslEEE Trans. Autom. Controb0 (2), 273-274, 2005.

Dolgin, Y., ‘Author’s Reply,”IEEE Trans. Autom. Contrdb0 (2), 274-275, 2005




PROBLEM STATEMENT

Let the transfer function of a higher order intésysstems

n-1
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The reduced order model of a transfer function be

N, (s)
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ARITHMETIC RULES

The rules of interval arithmetic are
Let[e, fland [g, h] be two intervals

Addition:
le,fl+[g, h]=[e +g, f+h]

Subtraction
le,fl-[g,h]=[e-h,f -g]

Multiplication
[e,f]x[g,h]=[Min (eg, eh, fg, fh), Max ¢e, eh, fg , th)]
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PROPOSED EXTENTION OF AVAILABLE METHODS:

Proposed extensions are as follows

» Differentiation method and Pade approximation, &iadivision , Cauer

second form.

» The stability of these methods had been verifie&hgritnov thereom

From these methods it has been shown that the use ofixed methods

superior to the use of simplified methods.

« D. Kranthi Kumar, S. K. Nagar and J.P. Tiwari, “Nabgorithm for model order reduction of intervalssyms”,
Bonfring International Journal of Data Mininy/ol. 3, No. 1, pp. 6-11, March 2013




DIFFERENTIATION METHOD

Differentiation method: (Algorithm)
1) High order transfer function.

2) Reciprocal transformation

3) Differentiate the transfer function
4) Second reciprocal transformation

5) Reduced order transfer function.

The iteration of differentiation depends upon (n-k)




PADE APPROXIMATION

Case?2: Pade approximation

Determination of the numerator polynomial of thedueed model by Pade
approximation.

n-1 k-1
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Rewriting the above equation
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PADE APPROXIMATION (CONT....)

Equating the coefficients of the above equation
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FACTOR DIVISION METHOD

CASE 3:

Determination of the numerator coefficients of theler reduced model by using
factor division method:

Any method of reduction which relies upon calculgtthe reduced denominator
first and then the numerator, where has alreadw balculated

N(s D(9







FRACTION DIVISION METHOD (CONT....)
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The reduced transfer function is
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CAUER SECOND FORM

CASE 4: Determination of numerator coefficients of reduoceder model by using
Cauer second form

Coefficient values from Cauer second fo{rh]‘, h*]

(i=1,2,.... k) are evaluated by formRqguth array as

b= [c{l,c]}] <";cl_1,C ]_[clz, o ] ..... L

Ca1: Cay \_02_1’C21 C22,C .....

- +
I ), c22_ .....




CAUER SECOND FORM (CONT ....)

The first two rows are copied from the originalteys numerator and denominator
coefficients and rest of the elements are calcdilbyeusing well known Routh
approximation.

ISR S - [ P Y T

Where i=34,.... andj=1,2, ....

The inverse Routh array is constructed as

|:di11,1’ q-:-l,li| -




CAUER SECOND FORM (CONT ....)

Wherei=1, 2, ... ., kandxkn.
Also

- + |:dl_j +17 q-: +1:| _[q:-Zj, ) dl— 3, :|
d'+1j+11 +1j +1 = - Lt
e =




INTEGRAL SQUARIE ERROR

The integral square error (ISE) between the tramsesponse of higher order system
(HOS) and lower order system (LOS) is determined ctompare different

approaches of model reduction.

ISE=[[¥9- y(3] d

Where, y(t) andr (t)

are the unit step responses of original systenreahaced order system.




NUMERICAL EXAMPLE
Example: Consider a third order system described by the arfghction
[13]

[2,3¢° +[17.5,18.ps+| 15,16
[2,3°+[17,185 +[ 35,3ps+[ 20.5,2].

G(9=

Method 1: Reduction by using Differentiation method

For getting second order model, number of times tdiftberentiated is n-k=
3-2=1

D,(s)=[4.25,4.3< +[ 17,1Bs+[ 15.375,16.1}

e N,(9=[5.8333,6.1667s+| 10.0005,10.6476




NUMERICAL EXAMPLE (CONT...)

The reduced second order model is

(3= 5.8333,6.166[&+| 10.0005,10.667!
* [4.25,4.55 +[ 17,1ps+[ 15.375,16.1;

Step Response
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. Step Response of original model and redumeedel using Differentiation



NUMERICAL EXAMPLE (CONT...)

Method 2:
Reduction by using Differentiation and Pade appration

D,(s) =[4.25,4.35 +[ 17,1Bs+[ 15.375,16.1}

Numerator is reduced by Pade approximation

[dgl,dgl} =[10.7267,12.5851

[dz‘z,dgz} = [3.3018,10.286 7

The reduced transfer function is

(3= [3.3018,10.286&+| 10.7267,12.58~
i  [4.25,45¢ +[ 17,1ps+[ 15.375,16.1;




Method 3:
Reduction by using Differentiation and Factor dmmsmethod

D,(s) =[4.25,4.9¢ +[ 17,1Bs+[ 15.375,16.1}
Numerator is reduced by Factor division method

N(9) D.(9 _ [230.625,25B+| 531.0562,586.3185

D(s) [20.5,21.5+[ 35,3ps+ ...
N,(s) =[3.4809,10.7884s+| 10.7267,12.5§54

The reduced transfer function is

[3.4809,10.788}s+[ 10.7267,12.58p

R,(s) = [4_25,4_352 + [ 17,1§3s+[ 15.375,16.1?}
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Fig. 2. Step Response of original model and reducedel using
Differentiation method and Factor division method




Method 4: Reduction by using differentiation method and Casmond form
Numerator is reduced by Cauer second form

h . h'|=[1.2812,1.4333]

'h,,h; |=[1.1046,1.8859]
d,,,d;,[=[10.7271,12.5856]
d,,.d;,|=[4.2604,9.6099]
N,(s)=[4.2604,9.6099s+[ 10.7271,12.58}

Denominator is reduced by differentiation method

o D,(9=[4.2544¢ +[ 17,1Bs+[ 15.375,16.1]




The reduced order transfer function

[4.2604,9.609ps +[ 10.7271,12.585¢
[4.25,4.9s” +[ 17,1Bs+[ 15.375,16.1p

R, (9 =

Step Response
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. Flg 3: Step Response of original model and redueedel using Differentiation method




Comparison of Reduced Order Models

Method of Order reduction | SE for lower limit ISE for upper limit
errL errU
Differentiation 0.0531 0.0617
Differentiation and Pade approximation 0.0094 0.0105
Differentiation and factor division 0.0094 0.0074
Differentiation and Cauer second form 0.0094 0.0073
G.V.K. Sastry [14] 0.2256 0.0095




CONCLUSIONS:

« In this report differentiation method is mixed wifhade approximation, Factor
division method and Cauer second form are empldypearder reduction.

+ The proposed method guarantees the stability oficesdl model if the original

system is stable. This proposed method is conciypsimple and comparable with

other available methods.
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