Polyhedral Relaxations for Constraint Satisfaction Problems

Milan Hladík Jaroslav Horáček

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

> SWIM 2013, Brest June 5–7

Problem formulation

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The midpoint and radius matrices

$$A_c := rac{1}{2}(\overline{A} + \underline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

Problem formulation

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The midpoint and radius matrices

$$A_c := rac{1}{2}(\overline{A} + \underline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

Constraint programming problem

Enclose the set $\mathcal S$ described by

$$\begin{aligned} f_i(x_1, \dots, x_n) &= 0, \quad i = 1, \dots, m, \\ g_j(x_1, \dots, x_n) &\leq 0, \quad j = 1, \dots, \ell, \end{aligned} (\begin{array}{c} f(x) &= 0 \\ (g(x) &\leq 0 \end{array}) \end{aligned}$$

on a box x.

M. Hladík (CUNI)

Our approach

- linearize constraints,
- compute new bounds and iterate.

Our approach

- linearize constraints,
- compute new bounds and iterate.

Our approach

- linearize constraints,
- compute new bounds and iterate.

Our approach

- linearize constraints,
- compute new bounds and iterate.

Our approach

- linearize constraints,
- compute new bounds and iterate.

Interval linearization

Let $x^0 \in \mathbf{x}$, called the center. Suppose that a function $h : \mathbb{R}^n \mapsto \mathbb{R}^s$ satisfies

$$h(x) \subseteq S_h(\mathbf{x}, x^0)(x - x^0) + h(x^0), \quad \forall x \in \mathbf{x}$$

for a suitable interval-valued function $S_h : \mathbb{IR}^n \times \mathbb{R}^n \mapsto \mathbb{IR}^{s \times n}$.

Interval linearization

Let $x^0 \in \mathbf{x}$, called the center. Suppose that a function $h : \mathbb{R}^n \mapsto \mathbb{R}^s$ satisfies

$$h(x) \subseteq S_h(\mathbf{x}, x^0)(x - x^0) + h(x^0), \quad \forall x \in \mathbf{x}$$

for a suitable interval-valued function $S_h : \mathbb{IR}^n \times \mathbb{R}^n \mapsto \mathbb{IR}^{s \times n}$.

Techniques

- mean value form
- slopes
- special structure analysis (McCorming-like linearizations ...)

Interval linear programming formulation

Now, the set ${\mathcal S}$ is enclosed by a set described by

$$A(x - x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x - x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

for some interval matrices **A** and **B**.

Interval linear programming formulation

Now, the set ${\mathcal S}$ is enclosed by a set described by

$$A(x - x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x - x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

for some interval matrices A and B.

What remains to do

• Solve the interval linear program

• choose $x^0 \in \mathbf{x}$

Vertex selection of x^0

Case $x^0 := \underline{x}$

Let $x^0 := \underline{x}$. Since $x - \underline{x}$ is non-negative, the solution set to

$$A(x-x^0)+f(x^0)=0, \quad ext{for some } A\in \mathbf{A}, \ B(x-x^0)+g(x^0)\leq 0, \quad ext{for some } B\in \mathbf{B},$$

is described by

$$\underline{A}x \leq \underline{A}\underline{x} - f(\underline{x}), \quad \overline{A}x \geq \overline{A}\underline{x} - f(\underline{x}),$$

$$\underline{B}x \leq \underline{B}\underline{x} - g(\underline{x}).$$

Vertex selection of x^0

Case $x^0 := \underline{x}$

Let $x^0 := \underline{x}$. Since $x - \underline{x}$ is non-negative, the solution set to

$$A(x-x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x-x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

is described by

$$\underline{A}x \leq \underline{A}\underline{x} - f(\underline{x}), \quad \overline{A}x \geq \overline{A}\underline{x} - f(\underline{x}),$$

$$\underline{B}x \leq \underline{B}\underline{x} - g(\underline{x}).$$

• Similarly if x⁰ is any other vertex of **x**

Vertex selection of x^0

Case $x^0 := \underline{x}$

Let $x^0 := \underline{x}$. Since $x - \underline{x}$ is non-negative, the solution set to

$$A(x-x^0)+f(x^0)=0, \quad ext{for some } A\in \mathbf{A}, \ B(x-x^0)+g(x^0)\leq 0, \quad ext{for some } B\in \mathbf{B},$$

is described by

$$\underline{A}x \leq \underline{A}\underline{x} - f(\underline{x}), \quad \overline{A}x \geq \overline{A}\underline{x} - f(\underline{x}),$$

$$\underline{B}x \leq \underline{B}\underline{x} - g(\underline{x}).$$

• Similarly if x^0 is any other vertex of **x**

• Araya, Trombettoni & Neveu (2012) recommend two opposite corners

General case

Let $x^0 \in \mathbf{x}$. The solution set to

$$A(x - x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x - x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

is described by

$$egin{aligned} |A_c(x-x^0)+f(x^0)| &\leq A_\Delta |x-x^0|, \ B_c(x-x^0) &\leq B_\Delta |x-x^0|-g(x^0). \end{aligned}$$

3

General case

Let $x^0 \in \mathbf{x}$. The solution set to

$$A(x - x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x - x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

is described by

$$egin{aligned} |A_c(x-x^0)+f(x^0)| &\leq A_\Delta |x-x^0|, \ B_c(x-x^0) &\leq B_\Delta |x-x^0| - g(x^0). \end{aligned}$$

• Non-linear description due to the absolute values.

General case

Let $x^0 \in \mathbf{x}$. The solution set to

$$A(x-x^0) + f(x^0) = 0$$
, for some $A \in \mathbf{A}$,
 $B(x-x^0) + g(x^0) \le 0$, for some $B \in \mathbf{B}$,

is described by

$$egin{aligned} |A_c(x-x^0)+f(x^0)| &\leq A_\Delta |x-x^0|, \ B_c(x-x^0) &\leq B_\Delta |x-x^0| - g(x^0). \end{aligned}$$

- Non-linear description due to the absolute values.
- How to get rid of them?

Solution

Linearize the absolute values.

Solution

Linearize the absolute values.

Theorem (Beaumont, 1998)

For every $y \in \mathbf{y} \subset \mathbb{R}$ with $\underline{y} < \overline{y}$ one has

$$|\mathbf{y}| \le \alpha \mathbf{y} + \beta, \tag{(*)}$$

where

$$\alpha = \frac{|\overline{y}| - |\underline{y}|}{\overline{y} - \underline{y}} \text{ and } \beta = \frac{\overline{y}|\underline{y}| - \underline{y}|\overline{y}|}{\overline{y} - \underline{y}}$$

Moreover, if $\underline{y} \ge 0$ or $\overline{y} \le 0$ then (*) holds as equation.

Let $x^0 \in \mathbf{x}$. Suppose that **A** and **B** do not depend on a selection of x^0 .

Let x⁰ ∈ x. Suppose that A and B do not depend on a selection of x⁰.
If f_i(x) are convex, then the half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.

Let $x^0 \in \mathbf{x}$. Suppose that **A** and **B** do not depend on a selection of x^0 .

- If f_i(x) are convex, then the half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If f_i(x) are concave, then the second half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.

Let $x^0 \in \mathbf{x}$. Suppose that **A** and **B** do not depend on a selection of x^0 .

- If f_i(x) are convex, then the half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If f_i(x) are concave, then the second half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If g_j(x) are convex, then the linearized inequality is a consequence of the corresponding inequalities derived by vertices of x.

Let $x^0 \in \mathbf{x}$. Suppose that **A** and **B** do not depend on a selection of x^0 .

- If f_i(x) are convex, then the half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If f_i(x) are concave, then the second half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If g_j(x) are convex, then the linearized inequality is a consequence of the corresponding inequalities derived by vertices of x.

Consequences

 For nice functions (linear, convex), non-vertex selection of x⁰ makes no progress

Let $x^0 \in \mathbf{x}$. Suppose that **A** and **B** do not depend on a selection of x^0 .

- If f_i(x) are convex, then the half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If f_i(x) are concave, then the second half of the linearized inequalities is a consequence of the corresponding inequalities derived by vertices of x.
- If g_j(x) are convex, then the linearized inequality is a consequence of the corresponding inequalities derived by vertices of x.

Consequences

- For nice functions (linear, convex), non-vertex selection of x⁰ makes no progress
- Non-vertex selection of x^0 is more useful more non-convex are f, g

Typical situation when choosing x^0 to be vertex:

M. Hladík (CUNI)

3

・ロト ・聞ト ・ヨト ・ヨト

Typical situation when choosing x^0 to be the opposite vertex:

Typical situation when choosing $x^0 = x_c$:

M. Hladík (CUNI)

3

・ロト ・聞ト ・ヨト ・ヨト

Typical situation when choosing $x^0 = x_c$ (after linearization):

3

★ E ► < E ►</p>

Image: Image:

Typical situation when choosing all of them:

M. Hladík (CUNI)

3

→ Ξ → < Ξ →</p>

Constraints:

$$\pi^2 y - 4x^2 \sin x = 0, \quad y - \cos \left(x + \frac{\pi}{2}\right) = 0, \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \ y \in \left[-1, 1\right].$$

Center: $x^0 = (0, 0)$

ъ

э

Constraints:

$$\begin{aligned} \pi^2 y - 4x^2 \sin x &= 0, \quad y - \cos \left(x + \frac{\pi}{2} \right) = 0, \quad x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ y \in [-1, 1]. \end{aligned}$$
 Center: $x^0 = (\frac{\pi}{6}, 0)$

ъ

э

Constraints:

$$\pi^2 y - 4x^2 \sin x = 0, \quad y - \cos\left(x + \frac{\pi}{2}\right) = 0, \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad y \in \left[-1, 1\right].$$

Center: $x^0 = \left(\frac{\pi}{2}, 0\right)$

표 1 표

Constraints:

$$\pi^2 y - 4x^2 \sin x = 0$$
, $y - \cos(x + \frac{\pi}{2}) = 0$, $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $y \in [-1, 1]$.
Contraction for centers $x^0 = (0, 0), (\frac{\pi}{2}, 0), (-\frac{\pi}{2}, 0)$

э

Comparison to Parallel Linearization

Suppose that $h: \mathbb{R}^n \mapsto \mathbb{R}^s$ has the following interval linear enclosure on **x**

$$h(x) \subseteq \mathbf{A}(x - x^0) + h(x^0), \quad \forall x \in \mathbf{x}$$

for a suitable interval matrix **A** and $x^0 \in \mathbf{x}$.

Comparison to Parallel Linearization

Suppose that $h: \mathbb{R}^n \mapsto \mathbb{R}^s$ has the following interval linear enclosure on **x**

$$h(x) \subseteq \mathbf{A}(x - x^0) + h(x^0), \quad \forall x \in \mathbf{x}$$

for a suitable interval matrix **A** and $x^0 \in \mathbf{x}$.

Theorem (Jaulin, 2001)

For any $A \in \mathbf{A}$ we have

$$h(x) \ge A(x-x^0) + h(x^0) + \underline{(\mathbf{A}-A)(\mathbf{x}-x^0)},$$

$$h(x) \le A(x-x^0) + h(x^0) + \overline{(\mathbf{A}-A)(\mathbf{x}-x^0)}.$$

Comparison to Parallel Linearization

Suppose that $h: \mathbb{R}^n \mapsto \mathbb{R}^s$ has the following interval linear enclosure on **x**

$$h(x) \subseteq \mathbf{A}(x - x^0) + h(x^0), \quad \forall x \in \mathbf{x}$$

for a suitable interval matrix **A** and $x^0 \in \mathbf{x}$.

Theorem (Jaulin, 2001)

For any $A \in \mathbf{A}$ we have

$$h(x) \ge A(x-x^0) + h(x^0) + \underline{(\mathbf{A}-A)(\mathbf{x}-x^0)},$$

$$h(x) \le A(x-x^0) + h(x^0) + \overline{(\mathbf{A}-A)(\mathbf{x}-x^0)}.$$

Theorem

For any selection of $x^0 \in \mathbf{x}$ and $A \in \mathbf{A}$, the interval linear programming approach yields always as tight enclosures as the parallel linearization.

M. Hladík (CUNI)

At each iteration

• choose two opposite corners and the midpoint x_c

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables
- solve 2n linear programs to have a new box $\mathbf{x}' \subseteq \mathbf{x}$

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables
- solve 2n linear programs to have a new box $\mathbf{x}' \subseteq \mathbf{x}$

Properties

• Runs in polynomial time, applicable for larger dimensions.

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables
- solve 2n linear programs to have a new box $\mathbf{x}' \subseteq \mathbf{x}$

Properties

• Runs in polynomial time, applicable for larger dimensions.

Future work

• choice of x^0 : optima of the linear programs?

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables
- solve 2n linear programs to have a new box $\mathbf{x}' \subseteq \mathbf{x}$

Properties

• Runs in polynomial time, applicable for larger dimensions.

Future work

choice of x⁰: optima of the linear programs?
 optima of underestimators (in global optimization)

At each iteration

- choose two opposite corners and the midpoint x_c
- we get a system of $3(2m + \ell)$ inequalities with respect to *n* variables
- solve 2n linear programs to have a new box $\mathbf{x}' \subseteq \mathbf{x}$

Properties

• Runs in polynomial time, applicable for larger dimensions.

Future work

 choice of x⁰: optima of the linear programs? optima of underestimators (in global optimization) what number?

M. Hladík and J. Horáček.

Interval linear programming techniques in constraint programming and global optimization.

submitted to LNCS, 2013.