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Problem formulation

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The midpoint and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).
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Problem formulation

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The midpoint and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

Constraint programming problem

Enclose the set S described by

fi (x1, . . . , xn) = 0, i = 1, . . . ,m, ( f (x) = 0 )

gj (x1, . . . , xn) ≤ 0, j = 1, . . . , ℓ, ( g(x) ≤ 0 )

on a box x.
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Linearization

Our approach

linearize constraints,

compute new bounds and iterate.
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Linearization

Our approach

linearize constraints,

compute new bounds and iterate.

Example

xx

S

x

S

x x′ ⊆ x

S
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Linearization

Interval linearization

Let x0 ∈ x, called the center. Suppose that a function h : Rn 7→ R
s

satisfies

h(x) ⊆ Sh(x, x
0)(x − x0) + h(x0), ∀x ∈ x

for a suitable interval-valued function Sh : IRn × R
n 7→ IR

s×n.
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Linearization

Interval linearization

Let x0 ∈ x, called the center. Suppose that a function h : Rn 7→ R
s

satisfies

h(x) ⊆ Sh(x, x
0)(x − x0) + h(x0), ∀x ∈ x

for a suitable interval-valued function Sh : IRn × R
n 7→ IR

s×n.

Techniques

mean value form

slopes

special structure analysis (McCorming-like linearizations . . . )
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Linearization

Interval linear programming formulation

Now, the set S is enclosed by a set described by

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

for some interval matrices A and B.
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Linearization

Interval linear programming formulation

Now, the set S is enclosed by a set described by

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

for some interval matrices A and B.

What remains to do

Solve the interval linear program

choose x0 ∈ x
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Vertex selection of x0

Case x
0 := x

Let x0 := x . Since x − x is non-negative, the solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

Ax ≤ A x − f (x), Ax ≥ Ax − f (x),

Bx ≤ B x − g(x).
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0 := x

Let x0 := x . Since x − x is non-negative, the solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

Ax ≤ A x − f (x), Ax ≥ Ax − f (x),

Bx ≤ B x − g(x).

Similarly if x0 is any other vertex of x
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Vertex selection of x0

Case x
0 := x

Let x0 := x . Since x − x is non-negative, the solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

Ax ≤ A x − f (x), Ax ≥ Ax − f (x),

Bx ≤ B x − g(x).

Similarly if x0 is any other vertex of x

Araya, Trombettoni & Neveu (2012) recommend two opposite corners
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Non-vertex selection of x0

General case

Let x0 ∈ x. The solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

|Ac(x − x0) + f (x0)| ≤ A∆|x − x0|,

Bc(x − x0) ≤ B∆|x − x0| − g(x0).
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Non-vertex selection of x0
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Let x0 ∈ x. The solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

|Ac(x − x0) + f (x0)| ≤ A∆|x − x0|,

Bc(x − x0) ≤ B∆|x − x0| − g(x0).

Non-linear description due to the absolute values.
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Non-vertex selection of x0

General case

Let x0 ∈ x. The solution set to

A(x − x0) + f (x0) = 0, for some A ∈ A,

B(x − x0) + g(x0) ≤ 0, for some B ∈ B,

is described by

|Ac(x − x0) + f (x0)| ≤ A∆|x − x0|,

Bc(x − x0) ≤ B∆|x − x0| − g(x0).

Non-linear description due to the absolute values.

How to get rid of them?
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Non-vertex selection of x0

Solution

Linearize the absolute values.
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Non-vertex selection of x0

Solution

Linearize the absolute values.

Theorem (Beaumont, 1998)

For every y ∈ y ⊂ R with y < y one has

|y | ≤ αy + β, (∗)

where

α =
|y | − |y |

y − y
and β =

y |y | − y |y |

y − y
.

Moreover, if y ≥ 0 or y ≤ 0 then (∗) holds as equation.
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Convex case

Proposition

Let x0 ∈ x. Suppose that A and B do not depend on a selection of x0.
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Convex case

Proposition

Let x0 ∈ x. Suppose that A and B do not depend on a selection of x0.

1 If fi(x) are convex, then the half of the linearized inequalities is a

consequence of the corresponding inequalities derived by vertices of x.
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Proposition

Let x0 ∈ x. Suppose that A and B do not depend on a selection of x0.

1 If fi(x) are convex, then the half of the linearized inequalities is a

consequence of the corresponding inequalities derived by vertices of x.

2 If fi(x) are concave, then the second half of the linearized inequalities

is a consequence of the corresponding inequalities derived by vertices

of x.

3 If gj (x) are convex, then the linearized inequality is a consequence of

the corresponding inequalities derived by vertices of x.

M. Hlad́ık (CUNI) Polyhedral Relaxations for CSP 9 / 21



Convex case

Proposition

Let x0 ∈ x. Suppose that A and B do not depend on a selection of x0.

1 If fi(x) are convex, then the half of the linearized inequalities is a

consequence of the corresponding inequalities derived by vertices of x.

2 If fi(x) are concave, then the second half of the linearized inequalities

is a consequence of the corresponding inequalities derived by vertices

of x.

3 If gj (x) are convex, then the linearized inequality is a consequence of

the corresponding inequalities derived by vertices of x.

Consequences

For nice functions (linear, convex), non-vertex selection of x0 makes
no progress
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Convex case

Proposition

Let x0 ∈ x. Suppose that A and B do not depend on a selection of x0.

1 If fi(x) are convex, then the half of the linearized inequalities is a

consequence of the corresponding inequalities derived by vertices of x.

2 If fi(x) are concave, then the second half of the linearized inequalities

is a consequence of the corresponding inequalities derived by vertices

of x.

3 If gj (x) are convex, then the linearized inequality is a consequence of

the corresponding inequalities derived by vertices of x.

Consequences

For nice functions (linear, convex), non-vertex selection of x0 makes
no progress

Non-vertex selection of x0 is more useful more non-convex are f , g
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Example

Example

Typical situation when choosing x0 to be vertex:

x

x0

S
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Example

Example

Typical situation when choosing x0 to be the opposite vertex:

x

x0

S
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Example

Example

Typical situation when choosing x0 = xc :

x
S

x0
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Example

Example

Typical situation when choosing x0 = xc (after linearization):

x
S

x0
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Example

Example

Typical situation when choosing all of them:

x
S
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Example II.

Constraints:

π2y − 4x2 sin x = 0, y − cos (x + π

2 ) = 0, x ∈ [−π

2 ,
π

2 ], y ∈ [−1, 1].

Center: x0 = (0, 0)
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Example II.

Constraints:

π2y − 4x2 sin x = 0, y − cos (x + π

2 ) = 0, x ∈ [−π

2 ,
π

2 ], y ∈ [−1, 1].

Center: x0 = (π6 , 0)
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Example II.

Constraints:

π2y − 4x2 sin x = 0, y − cos (x + π

2 ) = 0, x ∈ [−π

2 ,
π

2 ], y ∈ [−1, 1].

Center: x0 = (π2 , 0)
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Example II.

Constraints:

π2y − 4x2 sin x = 0, y − cos (x + π

2 ) = 0, x ∈ [−π

2 ,
π

2 ], y ∈ [−1, 1].

Contraction for centers x0 = (0, 0), (π2 , 0), (−
π

2 , 0)

−pi/2 0 pi/2
−1

0

1

Radians
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Comparison to Parallel Linearization

Suppose that h : Rn 7→ R
s has the following interval linear enclosure on x

h(x) ⊆ A(x − x0) + h(x0), ∀x ∈ x

for a suitable interval matrix A and x0 ∈ x.
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Comparison to Parallel Linearization

Suppose that h : Rn 7→ R
s has the following interval linear enclosure on x

h(x) ⊆ A(x − x0) + h(x0), ∀x ∈ x

for a suitable interval matrix A and x0 ∈ x.

Theorem (Jaulin, 2001)

For any A ∈ A we have

h(x) ≥ A(x − x0) + h(x0) + (A − A)(x− x0),

h(x) ≤ A(x − x0) + h(x0) + (A − A)(x− x0).

M. Hlad́ık (CUNI) Polyhedral Relaxations for CSP 19 / 21



Comparison to Parallel Linearization

Suppose that h : Rn 7→ R
s has the following interval linear enclosure on x

h(x) ⊆ A(x − x0) + h(x0), ∀x ∈ x

for a suitable interval matrix A and x0 ∈ x.

Theorem (Jaulin, 2001)

For any A ∈ A we have

h(x) ≥ A(x − x0) + h(x0) + (A − A)(x− x0),

h(x) ≤ A(x − x0) + h(x0) + (A − A)(x− x0).

Theorem

For any selection of x0 ∈ x and A ∈ A, the interval linear programming

approach yields always as tight enclosures as the parallel linearization.
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Summary, conclusion and future work

At each iteration

choose two opposite corners and the midpoint xc
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Summary, conclusion and future work

At each iteration

choose two opposite corners and the midpoint xc

we get a system of 3(2m + ℓ) inequalities with respect to n variables

solve 2n linear programs to have a new box x′ ⊆ x
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Summary, conclusion and future work

At each iteration

choose two opposite corners and the midpoint xc

we get a system of 3(2m + ℓ) inequalities with respect to n variables

solve 2n linear programs to have a new box x′ ⊆ x

Properties

Runs in polynomial time, applicable for larger dimensions.
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we get a system of 3(2m + ℓ) inequalities with respect to n variables

solve 2n linear programs to have a new box x′ ⊆ x

Properties

Runs in polynomial time, applicable for larger dimensions.

Future work

choice of x0: optima of the linear programs?
optima of underestimators (in global optimization)
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Summary, conclusion and future work

At each iteration

choose two opposite corners and the midpoint xc

we get a system of 3(2m + ℓ) inequalities with respect to n variables

solve 2n linear programs to have a new box x′ ⊆ x

Properties

Runs in polynomial time, applicable for larger dimensions.

Future work

choice of x0: optima of the linear programs?
optima of underestimators (in global optimization)
what number?
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