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Objects

The set of square matrices of order n (denoted by Mn)

Equivalence

We can defined an equivalence relation ∼ between elements of Mn

with
A ∼ B ⇔ ∃P ∈ GL,A = PBP−1

Invariant

The set of eigenvalues is an invariant because

A ∼ B ⇒ sp(A) = sp(B)
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Invariant

The set of eigenvalues is not a strong enough invariant since

∃A,B ∈Mn,A 6∼ B and sp(A) = sp(B)

Example

A =

(
0 0
0 0

)
and B =

(
0 1
0 0

)

A really strong invariant

Let us call by J the Jordan method, we have

A ∼ B ⇔ J(A) = J(B)
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Objects Equivalence Invariants

Square matrices A ∼ B ⇔ ∃P ∈ GL,A = PBP−1 Eigenvalues,

Jordanisation

Real bilinear A ∼ B ⇔ ∃U,V ∈ SO,A = UBV Singularvalues
forms

Smooth maps f ∼ f ′ if there exist diffeomorphic ?
changes of variables (g , h) on X
and Y such that f = g ◦ f ′ ◦ h
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Global picture

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.

Definition - Equivalence

Let f and f ′ be two smooth maps. Then f ∼ f ′ if there exists
diffeomorphisms g : X → X ′ and h : Y ′ → Y such that the
diagram

X
f−−−−→ Yyg

xh

X ′
f ′−−−−→ Y ′

commutes.
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Example

R 2x+6−−−−→ Ryg

xh

R x+1−−−−→ R
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Example

R 2x+6−−−−→ Ryx+2

x2y

R x+1−−−−→ R
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Examples

1 f1(x) = x2, f2(x) = ax2 + bx + c , a 6= 0

f1 ∼ f2

2 f1(x) = x2 + 1, f2(x) = x + 1,

f1 6∼ f2
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Proposition

Suppose that f ∼ f ′ with

x1
f−−−−→ y1yg

xh

x2
f ′−−−−→ y2

then f −1({y1}) is homeomorphic to f ′−1({y2}).
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Proposition

Suppose that f ∼ f ′ with

x1
f−−−−→ y1yg

xh

x2
f ′−−−−→ y2

then rank dfx1 = rank df ′x2
.

Proof

Chain rule, df = dh · df ′ · dg
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Definition

Let us defined by Sf the set of critical points of f :

Sf = {x ∈ X | df (x) is singular }.

Corollary

f ∼ f ′ ⇒ Sf ' Sf ′

where ' means homeomorphic.
i.e. the topology of the critical points set is an invariant.
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This is not a strong enough invariant,
there exists smooth maps f , f ′ : [0, 1]→ [0, 1] such that

Sf ' Sf ′ and f 6∼ f ′.

Figure: Singularity theory.
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This is not a strong enough invariant,
there exists smooth maps f , f ′ : [0, 1]→ [0, 1] such that

Sf ' Sf ′ and f 6∼ f ′.

Figure: Topology of X .
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Definition - Abstract simplicial complex

Let N be a finite set of symbols {(a0), (a1), . . . , (an)}
An abstract simplicial complex K is a subset of the powerset of N
satisfying : σ ∈ K ⇒ ∀σ0 ⊂ σ, σ0 ∈ K
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K =
{

(a0), (a1), (a2), (a3), (a4),

(a0, a1), (a1, a2), (a0, a2), (a3, a4),

(a0, a1, a2)
}

This will be denoted by a0a1a2 + a3a4
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Definition

Given abstract simplicial complexes K and L, a simplicial map
F : K0 → L0 is a map with the following property :

(a0, a1, . . . , an) ∈ K ⇒ (F (a0),F (a1), . . . ,F (an)) ∈ L.
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Example - Simplicial map

K = a0a1 + a1a2 + a2a3, L = b0b1 + b1b2

b
bb

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b1
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Example - NOT a Simplicial map

K = a0a1 + a1a2 + a2a3, L = b0b1 + b1b2

b
bb

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b0
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Example - Simplicial map

K = a0a1a2 + a1a2a3, L = b0b1b2

b

b

b

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b0
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Definition

Let f and f ′ be continous maps. Then f and f ′ are topologically
conjugate if there exists homeomorphism g : X → X ′ and
h : Y → Y ′ such that the diagram

X
f−−−−→ Yyg

xh

X ′
f ′−−−−→ Y ′

commutes.

Proposition

f ∼ f ′ ⇒ f ∼0 f ′
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Definition

Let f be a smooth map and F a simplicial map, F is a portrait of
f if

f ∼0 F
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Example - Simplicial map

The simplicial map

b
bb

is a portrait of [−4, 3] 3 x 7→ x2 − 1 ∈ R

-4 -3 -2 -1 1 2 3
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Withney theorem - Normal forms
Compact simply connected with boundary

Proposition

For every closed subset A of Rn, there exists a smooth real valued
function f such that

A = f −1({0})

We are not going to consider all cases . . .
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Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Introduction to classification
Stable mappings of the plane and their singularities

Interval analysis and mappings from R2 to R2.
Computing the Apparent Contour

Conjecture and conclusion

Introduction
Stable maps
Withney theorem - Normal forms
Compact simply connected with boundary

Definition

Let f be a smooth map, f is stable if their exists a nbrd Nf such
that

∀f ′ ∈ Nf , f
′ ∼ f

Examples

1 g : x 7→ x2 is stable,

2 f0 : x 7→ x3 is not stable, since with fε : x 7→ x(x2 − ε),

ε 6= 0⇒ fε 6∼ f0.
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Withney theorem

Let X and Y be 2-dimentional manifolds and f be generic. The
critical point set Sf is a regular curve. With p ∈ Sf , one has

TpSf ⊕ ker dfp = TpX or TpSf = ker dfp

Geometric representation

1 if TpSf ⊕ ker dfp = TpX ,

2 if TpSf = ker dfp,
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Geometric representation

1 TpSf ⊕ ker dfp = TpX : fold point

2 TpSp = ker dfp : cusp point
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Normal forms

1 If TpSf ⊕ ker dfp = TpX , then there exists a nbrd Np such
that

f |Np ∼ (x , y) 7→ (x , y 2).

2 If TpSf = ker dfp, then there exists a nbrd Np such that

f |Np ∼ (x , y) 7→ (x , xy + y 3).
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Introduction
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Definition

Let f a smooth map from X → R2 with X a simply connected
compact subset of R2 with smooth boundary ∂X . The apparent
contour of f is

f (Sf ∪ ∂X )

The topology of the Apparent contour is an invariant.
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Theorem (Global properties of generic maps)

Let X be a compact simply connected domain of R2 with
∂X = Γ−1({0}). A generic smooth map f from X to R2 has the
following properties :

1 Sf is regular curve. Moreover, elements of S are folds and
cusp. The set of cusp is discrete.
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Theorem

3 3 singular points do not have the same image,

4 2 singular points having the same image are folds points and
they have normal crossing.
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Theorem

5 3 boundary points do not have the same image,

6 2 boundary points having the same image cross normally.

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Introduction to classification
Stable mappings of the plane and their singularities

Interval analysis and mappings from R2 to R2.
Computing the Apparent Contour

Conjecture and conclusion

Introduction
Stable maps
Withney theorem - Normal forms
Compact simply connected with boundary

Theorem

7 3 different points belonging to Sf ∪ ∂X do not have the same
image,

8 If a point on the singularity curve and a boundary have the
same image, the singular point is a fold and they have normal
crossing.
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Theorem

9 if the singularity curve intersects the boundary, then this point
is a fold,

10 moreover tangents to the singularity curve and boundary
curve are different.
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Proposition

Let f be a smooth generic map from X to R2, let us denote by c
the map defined by :

c : X → R2

p 7→ dfpξp
(1)

where ξ is the vector field defined by ξp =

(
∂2 det dfp
−∂1 det dfp

)
.

If c(p) = 0 and dcp is invertible then p is a simple cusp. This
sufficient condition is locally necessary.
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Interval Newton method

c : X → R2

p 7→ dfpξp
(2)
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2 different folds

S∆2 = {(x1, x2) ∈ S × S −∆(S) | f (x1) = f (x2)}/ '

where ' is the relation defined by
(x1, x2) ' (x ′1, x

′
2)⇔ (x1, x2) = (x ′2, x

′
1).

Method

Bisection scheme on X × X .
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[x1] 6= [x2]

[x1] = [x2]
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Let us define the map folds by

folds : X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


det df (x1, y1)
det df (x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


One has

S∆2 = folds−1({0})−∆S/ ' .
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For any (α, α) in ∆S , the d folds is conjugate to
a b 0 0
0 0 a b

a11 a12 a11 a12

a21 a22 a21 a22


which is not invertible since det

(
a11 a12

a21 a22

)
= det df (α) = 0. In

other words, as any box of the form [x1]× [x1] contains ∆S , the
interval Newton method will fail.

One needs a method to prove that f |S ∩ [x1] is an embedding.
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One needs a method to prove that f |S ∩ [x1] is an embedding.

[x1] = [x2]

Not in this case ...
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Corollary

Let f : X → R2 be a smooth map and X a compact subset of R2.
Let Γ : X → R be a submersion such that the curve
S = {x ∈ X | Γ(x) = 0} is contractible. If

∀J ∈ d̃ f (X ) ·
(

∂2Γ(X )
−∂1Γ(X )

)
, rank J = 1

then f |S is an embedding.

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Introduction to classification
Stable mappings of the plane and their singularities

Interval analysis and mappings from R2 to R2.
Computing the Apparent Contour

Conjecture and conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

The last condition is not satisfiable if [x1] contains a cusp . . .

Proposition

Suppose that there exists a unique simple cusp p0 in the interior of
X . Let α ∈ R2∗, s.t. α · Im dfp0 = 0, and ξ a non vanashing vector
field such that ∀p ∈ S , ξp ∈ TpS (S contractible).
If g =

∑
αiξ

3fi : X → R is a nonvanishing function then f |S is
injective. This condition is locally necessary.

Here the vector field ξ is seen as the derivation of C∞(X ) defined
by

ξ =
∑

ξi
∂

∂xi
.
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∂X ∆2 = {(x1, x2) ∈ ∂X × ∂X −∆(∂X ) | f (x1) = f (x2)}/ '
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Let us define the map boundaries by

boundaries : X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


Γ(x1, y1)
Γ(x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


One has

∂X ∆2 = boundaries−1({0})−∆∂X/ ' .
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BF = {(x1, x2) ∈ ∂X × S | f (x1) = f (x2)}
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[x1] 6= [x2]

X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


det df (x1, y1)
γ(x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


[x1] = [x2]

X → R2(
x1

y1

)
7→

(
det df (x1, y1)
γ(x1, y1)

)
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Synthesis

X =



e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

a 0 0 0 0 0 0 0 0 1 1 0
b 0 0 0 0 0 0 0 1 0 0 1
c1 0 0 0 0 0 0 0 1 1 0 0
c2 0 1 1 0 0 0 0 0 0 0 0
d1 0 0 0 0 0 0 0 0 0 1 1
d2 0 0 1 1 0 0 0 0 0 0 0
e1 1 0 0 0 0 1 0 0 0 0 0
e2 0 0 0 1 1 0 0 0 0 0 0
f 1 1 0 0 0 0 1 0 0 0 0
g 0 0 0 0 1 1 1 0 0 0 0


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X/f =



e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

A 0 0 0 0 0 0 0 0 1 1 0
B 0 0 0 0 0 0 0 1 0 0 1
C 0 1 1 0 0 0 0 1 1 0 0
D 0 0 1 1 0 0 0 0 0 1 1
E 1 0 0 1 1 1 0 0 0 0 0
F 1 1 0 0 0 0 1 0 0 0 0
G 0 0 0 0 1 1 1 0 0 0 0


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Theorem

For every portrait F of f , the 1-skeleton of ImF contains a
subgraph that is an expansion of X/f .
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Conjecture

From X/f and its right embedding in R2 it is possible to create a
portrait for f .
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Source code is available on my webpage.

Merci pour votre attention.
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