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The set of square matrices of order n (denoted by M)

Equivalence
We can defined an equivalence relation ~ between elements of M,
with

A~B&3PeGL A= PBP!

The set of eigenvalues is an invariant because

A~ B = sp(A) = sp(B)
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Introduction to classification

Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Invariant

The set of eigenvalues is not a strong enough invariant since

JA, B € My, A B and sp(A) = sp(B)
0 0 01
A=(3 ) was=(2 1)

A really strong invariant

Let us call by J the Jordan method, we have

A~ B < J(A) = J(B)

N
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Objects Equivalence Invariants

Square matrices A~ B < 3P € GL,A = PBP~1 Eigenvalues,
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Objects Equivalence Invariants

Square matrices A~ B < 3P € GL,A = PBP~1 Eigenvalues,
Jordanisation

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case

Discretization - Portrait of a map

Objects Equivalence Invariants

Square matrices A~ B < 3P € GL,A = PBP~1 Eigenvalues,
Jordanisation

Real bilinear A~ B« dU,V € SO,A= UBV Singularvalues
forms

Nicolas Delanoue - Sébastien Lagrange ication of mappings from R



Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case

Discretization - Portrait of a map

Objects Equivalence Invariants

Square matrices A~ B < 3P € GL,A = PBP~1 Eigenvalues,
Jordanisation

Real bilinear A~ B« dU,V € SO,A= UBV Singularvalues
forms

Smooth maps f ~ f’if there exist diffeomorphic 7
changes of variables (g, h) on X
and Y suchthat f =gof'oh
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Global picture

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case

Discretization - Portrait of a map

Global picture

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.

Definition - Equivalence

Let £ and f’ be two smooth maps. Then f ~ f’ if there exists
diffeomorphisms g : X — X’ and h: Y’ — Y such that the

diagram
X 15y
=
x sy
commutes.
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Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Examples
O A(x)=x% fh(x)=ax®+bx+c, a#0

fi~hh
Q fA(x)=x>+1, h(x)=x+1,

hotho
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Suppose that f ~ f’ with

£
X2 —— 2

then f~1({y1}) is homeomorphic to f'~1({y2}).
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Suppose that f ~ f’ with

then rank df,; = rank dfy .

Chain rule, df = dh- df’ - dg
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Introduction to classification

Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Definition
Let us defined by S¢ the set of critical points of f :

Sr = {x € X | df(x) is singular }.

Corollary

| A\

fo/:>5f25f/

where ~ means homeomorphic.
i.e. the topology of the critical points set is an invariant.

A\
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Objects, Equivalence, Invariants
The one dimentional case

Discretization - Portrait of a map

This is not a strong enough invariant,
there exists smooth maps f, f’ : [0,1] — [0, 1] such that

Sf ~ Sf/ and f 74 f/.
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Introduction to classification

Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Definition - Abstract simplicial complex

Let NV be a finite set of symbols {(a%), (a%),...,(a")}

An abstract simplicial complex K is a subset of the powerset of N’
satisfying : 0 € K = VYoo C 0,00 € K
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Introduction to classification

Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

K = {(30)7 (al)’ (32)7 (33)’ (34)7
(a% %), (a%, %), (% &), (°, a%),
(ao,al,a2)}

This will be denoted by a%a‘a® + a3a*
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Introduction to classification

Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Definition
Given abstract simplicial complexes K and L, a simplicial map
F: K% — £° is a map with the following property :

(&% al,...,a") e K= (F(a%, F(a%),...,F(a")) € L.
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Example - Simplicial map

K = agay + a1ap + apaz, L = bgb1 + bibo

al 112
F A =B
al — bl
a2 = b?
a® — bl
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Example - NOT a Simplicial map

K = agay + a1ap + apaz, L = bgb1 + bibo

al 112
F A =B
al — bl
a2 = b?
ad — K

Nicolas Delanoue - Sébastien Lagrange ication of mappings from R? to R2



Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Example - Simplicial map

K = agaiar + aiaraz, L = bgbib;

b0

Lo

a

: b
F % — B
al — bl
a2 — b?
a® = b
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Definition

Let £ and f’ be continous maps. Then f and f’ are topologically
conjugate if there exists homeomorphism g : X — X’ and
h:Y — Y’ such that the diagram

X — vy

commutes.
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case

Discretization - Portrait of a map

Definition

Let f be a smooth map and F a simplicial map, F is a portrait of
fif
f~oF
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Introduction to classification
Objects, Equivalence, Invariants
The one dimentional case
Discretization - Portrait of a map

Example - Simplicial ma

The simplicial map

is a portrait of [-4,3] > x = x> —1€R
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Proposition
For every closed subset A of R”, there exists a smooth real valued

function f such that
A=f({0})
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Proposition
For every closed subset A of R”, there exists a smooth real valued

function f such that
A=f({0})

We are not going to consider all cases ... J
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. P L. Introduction
le mappings of the plane and their singulariti:
Stable mappings of the plane and their singularities Stable maps
Withney theorem - Normal forms
Compact simply connected with boundary

Definition
Let f be a smooth map, f is stable if their exists a nbrd Nf such
that

Y € Np, f ~ f

| \

Examples
Qg x— x2 is stable,
@ fy: x+— x3 is not stable, since with £ : x — x(x% — ¢),

€# 0= f % fo

N,
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.. P . Introduction
Stable mappings of the plane and their singularities St (e
Withney theorem - Normal forms
Compact simply connected with boundary

Withney theorem
Let X and Y be 2-dimentional manifolds and f be generic. The
critical point set Sr is a regular curve. With p € S¢, one has

TpSr @ kerdf, = TpX or T,S¢ = ker df,

Geometric representation
Q if To5r @ kerdf, = T,X,

A
5

Q if 7,5 = ker df,,
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. P . Introduction
Stable mappings of the plane and their singularities St (e
Withney theorem - Normal forms
Compact simply connected with boundary

eometric representation
Q 7,5 ®Dkerdf, = T,X : fold point

!

Q@ 7,5, = kerdf, : cusp point

E
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. P . Introduction
Stable mappings of the plane and their singularities St (e
Withney theorem - Normal forms
Compact simply connected with boundary

mal forms

Q If T,5¢ @ kerdf, = T,X, then there exists a nbrd N, such

that
f|NP ~ (X’y) = (Xayz)‘

Q If T,Sf = ker df,, then there exists a nbrd N, such that

FIN, ~ (x,y) = (x, xy + y°).
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Definition

Let f a smooth map from X — R? with X a simply connected
compact subset of R? with smooth boundary 0X. The apparent

contour of f is
f(SrUoX)

The topology of the Apparent contour is an invariant.

,
X
f
b A B
< Y |—
\\
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Definition

Let f a smooth map from X — R? with X a simply connected
compact subset of R? with smooth boundary 0X. The apparent

contour of f is
f(SrUoX)

The topology of the Apparent contour is an invariant.

P
X
f
—»
C
& s
\
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Stable mappings of the plane and their singularities

Definition

Let f a smooth map from X — R? with X a simply connected
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contour of f is
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Theorem (Global properties of generic maps)

Let X be a compact simply connected domain of R? with
OX = T~1({0}). A generic smooth map f from X to R? has the
following properties :
© S is regular curve. Moreover, elements of S are folds and
cusp. The set of cusp is discrete.
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. P . Introduction
Stable mappings of the plane and their singularities St (e
Withney theorem - Normal forms
Compact simply connected with boundary

Theorem
© 3 singular points do not have the same image,
Q 2 singular points having the same image are folds points and
they have normal crossing.

[

tion of mappings from R? to R2
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. P . Introduction
Stable mappings of the plane and their singularities St (e
Withney theorem - Normal forms
Compact simply connected with boundary

Theorem
© 3 boundary points do not have the same image,

@ 2 boundary points having the same image cross normally.
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Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Theorem
@ 3 different points belonging to S U 90X do not have the same
image,

© If a point on the singularity curve and a boundary have the
same image, the singular point is a fold and they have normal
crossing.

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Introduction

Stable maps

Withney theorem - Normal forms
Compact simply connected with boundary

Stable mappings of the plane and their singularities

Theorem
© if the singularity curve intersects the boundary, then this point
is a fold,

@ moreover tangents to the singularity curve and boundary
curve are different.
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Cusp
Fold - Fold

Boundary - Boundary
Boundary - Fold

=
h
+
£l
!
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

Proposition

Let f be a smooth generic map from X to R?, let us denote by ¢
the map defined by :

: 2
c )/: : dlff (1)
PSP
0> det df,
—01 det df, ) '
If ¢(p) =0 and dc, is invertible then p is a simple cusp. This
sufficient condition is locally necessary.

where ¢ is the vector field defined by &, = <
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Interval analysis and mappings from R ) = [l

Boundary - Boundary
Boundary - Fold




Cusp

Fold - Fold
Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

. . 2
Interval analysis and mappings from R

N

S22 — {(x1,x0) €S xS —A(S) | f(x1) = f(x2)}/ =~

where ~ is the relation defined by
(x1,%2) ~ (x1,%5) & (x1,x2) = (x5, x1).

Bisection scheme on X x X.

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Interval analysis and mappings from R to

Method
Bisection scheme on X x X.

R2
A

Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Y

]R2
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Bisection scheme on X x X.

Y

]R2

Nicolas Dela Sébastien Lagrange



Interval analysis and mappings from R to

Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

[x1] # [x]

Nicolas Dela




Interval analysis and mappings from R? to R?.

Let us define the map folds by

folds : X x X —

(n)-(2) =

Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

R4
det df (x1, y1)
det df(Xg,yg)
fi(xi,y1) — filx2, y2)
f(x1,y1) — 2(x2, y2)

One has

S22 — folds—1({0}) — AS/ ~ .

Nicolas Delanoue - Sébastien Lagrange
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Cusp
Fold - Fold
- Boundary

. . 2
Interval analysis and mappings from R

For any («, ) in AS, the d folds is conjugate to

a b 0 0
0 0 a b
a1 412 411 A
a1 a2 ax ax

which is not invertible since det

a1 ax
other words, as any box of the form [x1] x [x1] contains AS, the
interval Newton method will fail.

A ) = det df(@) = 0. In

One needs a method to prove that f|S N [x1] is an embedding. J

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

One needs a method to prove that 7|S N [x;] is an embedding. J

RN

[x1] = [x]
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Cusp

Interval analysis and mappings from [ el = (el

Boundary - Boundary
Boundary - Fold

One needs a method to prove that 7|S N [x;] is an embedding. J

RN

[x1] = [x]

Not in this case ...
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

Corollary

Let f : X — R? be a smooth map and X a compact subset of R2.
Let [ : X — R be a submersion such that the curve
S ={x € X |I(x) =0} is contractible. If

0al'(X)

VJ € df(X) - ( R (X)

),rankJ:l

then f|S is an embedding.

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

The last condition is not satisfiable if [x;] contains a cusp ...

Proposition

Suppose that there exists a unique simple cusp pg in the interior of
X. Let « € R%*, st. - Im dfp, = 0, and & a non vanashing vector
field such that Vp € S,§, € T,S (S contractible).

If g = «;€3f; : X — R is a nonvanishing function then f|S is
injective. This condition is locally necessary.

Here the vector field £ is seen as the derivation of C°°(X) defined

by 5
§= 25’87,
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Cusp

Interval analysis and mappings from R il = 76l

Boundary - Boundary
Boundary - Fold

OXB2 = {(x1,x) € X x dX — A(9X) | f(x1) = f(x0)}/ ~
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Cusp

Fold - Fold
Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

. . 2
Interval analysis and mappings from R

Let us define the map boundaries by

boundaries - X x X — R*
M(x1, 1

)
( ;i > ’ ( ;z ) 7o Ak yl()Xi)gE&,yz)

f(x1, y1) — h(x2, ¥2)

One has
X2 = boundaries 1({0}) — AOX/ ~ .
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Cusp

Interval analysis and mappings from R ) = [l

Boundary - Boundary
Boundary - Fold

BF = {(Xl,Xz) €oX xS | f(Xl) = f(XZ)} J
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

[xi] # D]

X x X — R*
det df(Xl, yl)

< X1 > ( X2 > e V(X2,Y2)
yvi )\ » fi(x1, y1) — fi(x2, y2)

fa(x1, y1) — f2(x2, y2)

X — R2
( X1 ) . < detdf(xl,yl) )
1 'Y(Xla}/l)
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Computing the Apparent Contour
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Computing the Apparent Contour
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Computing the Apparent Contour

o
—
1
N
1
w
o
~
[
o
o
o
o
~
o
©
1)
©
o
"
15
o
"
[

<

-

Il
AOTMMONO®m>
orroooo
orooroOO
coorrOO
corroOO
HorRroOOOO
HorRroOOOO
HHOOOOO
cooorr~O
coocoroOR
cooroor
coororO

Nicolas Delano Sébastien Lagrange



Computing the Apparent Contour

For every portrait F of f, the 1-skeleton of ImF contains a
subgraph that is an expansion of X'/f.
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Conjecture and conclusion

From X/f and its right embedding in R? it is possible to create a
portrait for f.

<
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Conjecture and conclusion
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Conjecture and conclusion

From X/f and its right embedding in R? it is possible to create a
portrait for f.
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Conjecture and conclusion

From X/f and its right embedding in R? it is possible to create a
portrait for f.
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Conjecture and conclusion

Source code is available on my webpage. J
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Conjecture and conclusion

Source code is available on my webpage. J

Merci pour votre attention. J
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