
Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

A simple SLAM example with IBEX
Swim 2013

Gilles Chabert

June 6th



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Introduction

The goal of this talk is to show how to implement
a simple contractor strategy
for a SLAM problem
with the IBEX library.

http://www.emn.fr/z-info/ibex/

http://www.emn.fr/z-info/ibex/


Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Introduction

Background
principles of contractor programming
basic knowledge of C++

Note. For the sake of simplicity, we shall always use
dynamic allocation :

MyClass* x = new MyClass(...)

just to avoid potential memory fault when pointing to
temporary objects.



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Problem Description

Description of the problem

t=0

t=1

t=2

The goal is to charaterize the trajectory of an autonomous
robot by enclosing in a box its position xt for each time step
t = 0 . . .T .



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Problem Description

We have no direct information on its position (including the
initial one) but the robot measures at each time step :

its distance from a set of N fixed “beacons” (→ N
measurements)
and its “speed” vector v(ti) = x(ti+1)− x(ti).

Each measurement is subject to uncertainty : position of the
beacons, distances and speed vector.

Furthermore, we shall consider outliers.



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Problem Description

First of all, let us assume that the measurements are all
simulated in a seperate unit. The header file of this unit
contains :



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

First strategy (no outlier)

First, we consider no outlier. A simple strategy consists in :
1 creating a contractor for each measurement,
2 calling all these contractors in sequence (composition)
3 performing a fixpoint loop

Let us start by creating contractors for measurements, that
is, those related to equations.



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Entering equations and functions

A measurement is an equation.

To enter an equation in Ibex, we use the NumConstraint
class. A NumConstraint object contains a mathematical
condition, or constraint.

To define a constraint mathematically, we must specify how
many variables it relates and in which order these variables
must be taken.

That is why we need to create first some Variable
objects. But keep in mind that these objects are just a C++
trick for the only purpose of declaring a constraint.

Once declared, a constraint is self-contained and depends
on nothing else.



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Entering equations and functions

Example. For creating the equations :

∀t < T , xt+1 − xt = vt

The corresponding code in Ibex is :



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Entering equations and functions

Sometimes, different constraints are based on the same
pattern. It is then often convenient to declare first a
Function object.

Example. For distances constraints, we may first declare
the distance function :

and then the equation for each time step and each beacon :



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Creating basic contractors

We can create now contractors.

To create a contractor with respect to an equation we use
the CtcFwdBwd class (stands for forward-backward).

Example with the constraint x = 1 :

Node : The Ctc prefix indicates that this class is a
contractor (i.e., it can be composed with other contractors).
Ctc is also the name of the generic contractor class.



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Combining contractors

We are now ready to build our first strategy. We create all
the contractors and push them in a vector ctc :

This vector will be necessary for the composition.



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Combining contractors

Now, we can create the composition of all these contractors
using CtcCompo (the vector ctc being given in argument)
and a fixpoint of the latter using CtcFixPoint. This gives :

We are done. We just have to call the top-level contractor on
the initial box.



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)
Entering equations
and functions

Creating basic
contractors

Combining
contractors

Result

Outliers

Conclusion

Result

The execution shows that the final box contains the real
trajectory.

The real positions are :

x[0]=8.806965820867086 y[0]=0.6934996231894474
x[1]=8.240950936914649 y[1]=1.517894644489497
x[2]=8.553965973529273 y[2]=0.5681464742605957
. . .



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Outliers

We consider now that at most NB_OUTLIERS outliers may
occur for each time step.

To contract rigorously despite of outliers, we must use the
“q-intersection” operator that basically consider all possible
combinations of N-NB_OUTLIERS among N :

Ibex provides the CtcQInter operator.
We must only place all the contractors related to the same
time step in another temporary vector (called cdist) and
give this vector in argument of CtcQInter :

Let us see what happens if we do this.



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Second strategy

Let us replace :

by :

Problem : the program runs almost endlessly ! . . . Why ?



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Second strategy

. . . because the q-intersection runs exponentially in the
dimension of the input box, which is 2T .

Of course, the implementation should take advantage of the
fact that only 2 variables are actually impacted. But the
current code is not optimized in this way.

Anyway, it is often necessary to apply a contractor strategy
to only a subset of variables (here, to the two components
of xt ).

For this end, we will make use of the inverse contractor.



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Inverse contractor

Definition (Inverse contractor)
Given

a function f : Rn → Rm

a contractor C : IRm → IRm,
the inverse of C by f is a contractor from IRn → IRn that
maps a box [x ] as follows :

[x ] 7→ {x ∈ [x ], ∃y ∈ C(f ([x ]))}

Back to SLAM. Applying the q-intersection on the subset of
variables xt amounts to apply the inverse of this contractor
by the projection function

x 7→ xt



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Third strategy

We replace :

By :



Introduction

Problem
Description

First strategy
(no outlier)

Outliers
Second strategy

Inverse contractor

Third strategy

Conclusion

Third strategy

And now, the program terminates instantaneously. The
dispaly shows a (larger) box :



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Outline

1 Introduction

2 Problem Description

3 First strategy (no outlier)
Entering equations and functions
Creating basic contractors
Combining contractors
Result

4 Outliers
Second strategy
Inverse contractor
Third strategy

5 Conclusion



Introduction

Problem
Description

First strategy
(no outlier)

Outliers

Conclusion

Conclusion

Contractor programmming wih Ibex basically
amounts to :

1 enter your mathematical model using Function and
NumConstraint

2 build basic contractors (CtcFwdBwd in our case) with
respect to the equations

3 apply operators to these contractors to yield new (more
sophisticated) contractors

We have seen a simple SLAM example that eventually
involves 5 different contrators :

CtcFwdBwd
CtcCompo
CtcFixPoint,
CtcQInter
CtcInverse.


	Introduction
	Problem Description
	First strategy (no outlier)
	Entering equations and functions
	Creating basic contractors
	Combining contractors
	Result

	Outliers
	Second strategy
	Inverse contractor
	Third strategy

	Conclusion

