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Computing reachable sets for hybrid or continuous systems is an important step when one
addresses verification, synthesis or monitoring tasks. A key issue lies in the calculation of
the reachable set for continuous dynamics with nonlinear models when uncertainty is present in
either parameters, control, or disturbance inputs. A nice way to solve this issue is to use guaran-
teed tools for numerical set integration of Ordinary Differential Equations (ODEs). VNODE-LP,
Validated Numerical ODE through Literate Programming [1, 2], is a state-of-the-art software for
computing bounds on the solution of an initial value problem (IVP) for ODEs. VNODE-LP is a
fixed-order, variable-stepsize solver, based on interval Taylor series and the Hermite-Obreschkoff
[3] methods. In general, it is suitable for computing bounds on the solution of an IVP ODE
with point initial conditions or interval initial conditions with a sufficiently small width.

When the ODE system is nonlinear and the starting point (or the parameter vector) of the
system under analysis is a wide interval vector, the enclosures returned by VNODE-LP may
however diverge after a few computation steps. One way to address this shortcoming, while
deriving guaranteed results, is to use the bracketing approach introduced in [4], which relies on
the classical Müller’s existence theorem [5] and a rule based on the sign of the elements of the
system’s Jacobian matrix [6]. Bracketing enclosures are computed as the solution of bracketing
dynamical systems, whose enclosures are also obtained through VNODE-LP, but with now a
point IVP ODE. A relaxed version of the bracketing approach [7] exists which is applicable only
to monotone order-preserving systems. Experimental comparison of the bracketing enclosure
method and VNODE-LP revealed that the two approaches have complementary strengths and
should be combined [8]. However, there was no tool for obtaining these bracketing systems in
an automatic and transparent way, these systems were to be derived manually.

In this talk, we give a preview on the IOLAVABE (iSAT-ODE Layer Around VNODE-LP
and Bracketing Enclosures) library, which encapsulates these two approaches. While IOLAVABE
has originally been developed as a part of the iSAT-ODE solver [8], we have only recently ex-
tracted it to form a stand-alone library that we hope will be useful in a wider range of contexts.
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In IOLAVABE, the bracketing systems are built automatically on the fly, through the FAD-
BAD++ [9] automatic differentiation package. To accelerate and simplify re-computation of
bracketing enclosures or solution bounds for the IVP ODE for arbitrary subranges of each inte-
gration time step without costly reinitialization of the solver, IOLAVABE also stores and reuses
the Taylor coefficients computed by VNODE-LP.

This talk reports main features and illustrates the performance of the IOLAVABE library.
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