Robust output/state feedback controllers design for uncertain systems described by interval statespace models

Journée MEA-GDRMACS (9-10 August 2017), Nancy, France

Directed by: Mounir HAMMOUCHE

Supervised by: Dr. Micky RAKOTONDRABE Pr. Philippe LUTZ

cultiver l'innovation, de la recherche fondamentale au partenariat industriel

FEMTO

LH

т С

2

L C H

r

Ш

S

- Context and motivations
- Basic Concepts on intervals
- Problem Formulation
- Interval linear approaches
- Experimental validation
- Other propositions
- Conclusion and Perspectives

1- Context and Motivations

1- Context and Motivations Context Smart materials are subjected to various uncertainties and contains serval nonlinearities.

•Sensitive to the environment - Hysteresis - creep (dérive) - Temperature ...etc. - vibrations ... etc. 45 y(t) 40 35 y(t)Cre'ep 30 [u[₹]] 25 X 20 J(t) u(t)25°C 29°C 15 31°C time 10 35°C 5 Ο 0.015 0.02 0 0.005 0.01 t[s]

Modeling and control of such systems are difficult.

Robust control techniques are required to ensure the specified performances.

1- Context and Motivations

Robust methods: H-2, H-inf, µ-synthesis

Complex controllers
 Difficult to implement

Objectives

Seek for simple methods to control systems ensuring the stability and performances.

Solution

"Control Systems Using Intervals theory"

□ Simple methods to describe the parameters uncertainties just by **bounding the parameters**.

- □ Provide **low order controllers**.
- □ Reliable computation.

2- Basic Concepts on intervals

✤ Operations on intervals

Interval operations

Given two intervals $[x] = [\underline{x}, \overline{x}]$ and $[y] = [\underline{y}, \overline{y}]$. The result of an operation $\Diamond \in \{+, -, \cdot, /\}$ between the two intervals is an interval that contains all possible solution:

$$[x]\Diamond[y] = \{x\Diamond y \mid x \in [x], y \in [y]\}$$
(1)

Definition of interval matrix

An interval matrix is defined as a family of matrices:

$$\boldsymbol{A} := [\underline{\boldsymbol{A}}, \overline{\boldsymbol{A}}] = \left\{ \boldsymbol{A} \in \boldsymbol{R}^{\boldsymbol{n} \times \boldsymbol{n}}; \, \underline{\boldsymbol{A}} \le \boldsymbol{A} \le \overline{\boldsymbol{A}} \right\}$$
(2)

The midpoint and the radius of A are denoted respectively by:

$$\boldsymbol{A_{c}} := \frac{1}{2} \left(\underline{\boldsymbol{A}} + \overline{\boldsymbol{A}} \right), \ \boldsymbol{A_{\triangle}} := \frac{1}{2} \left(\underline{\boldsymbol{A}} - \overline{\boldsymbol{A}} \right)$$
(3)

2- Basic Concepts on intervals

✤ Interval systems

Interval transfer function

An interval system denoted [G](s, [p], [q]) is a system where [p] and [q] are two boxes of interval numbers:

$$[G](s,[p],[q]) = \frac{\sum_{j=0}^{m} [q_j]s^j}{\sum_{j=0}^{n} [p_j]s^j}$$
(4)

where $[q_j] \in [q_j^-, q_j^+]$ and $[p_i] \in [p_i^-, p_i^+]$

Interval state-space

Interval uncertain system described by the state-space equation:

$$\begin{cases} \dot{x}(t) = [A]x(t) + [B]u(t) & ; \\ y(t) = [C]x(t) + [D]u(t) \end{cases}$$
(5)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, $[A] \in I\mathbb{R}^{n \times n}$, $[B] \in I\mathbb{R}^{n \times m}$, $[C] \in I\mathbb{R}^{p \times n}$, and $[D] \in I\mathbb{R}^{p \times m}$.

3-Problem Formulation

3-Problem Formulation

State-of-the-Art

TECHNOLOGIES

1- Linear interval approaches

a-Interval Transfer function representation

-PID controller.H∞ with interval techniques, RST-structured controller [E,Walter-1994, C,T,Chen-1997, Rakotondrabe-2009, Khadraoui-2012,-2014]

2. Nonlinear interval approaches

Proposition

"Robust Output-feedback with regional pole assignment technique"

Interval Eigenvalue Computation

- Symmetric matrix (Rohn,2005)
- Non-Symmetric matrix (Hladik, 2011)
- Vertex approach (Hussein, 2011)
-

Robust Output-feedback

The proposed recursive SIVIA-based algorithm

a- Encountered problems and propositions

If the interval system can not be stabilized with output-feedback?

Proposition

"Robust state-feedback with interval observer"

- □ Interval Luenberger observer.
- Regional eigenvalue assignment for both controller and observer.

✤ Advantages

Find easily the robust gains for the feedback controller also the robust gains for the observer in the presence of system uncertainties.

Robust observer-based state feedback

Controller

$$\begin{split} \dot{x}(t) &= \boldsymbol{A} x(t) - \boldsymbol{B} K \hat{x}(t) + \boldsymbol{B} N \xi(t) \\ u(t) &= -K \hat{x} + N \xi(t) \end{split}$$

Interval Observer

$$\begin{cases} \hat{x}(t) = \mathbf{A}\hat{x}(t) + \mathbf{B}u(t) + L(y - \hat{y}) \\ = \mathbf{A}\hat{x}(t) + \mathbf{B}(-Ky + N\xi(t)) + L(y - \hat{y}) \\ = (\mathbf{A} - L\mathbf{C} - \mathbf{B}K)\hat{x}(t) + \mathbf{B}N\xi(t) + Ly \\ = (\mathbf{A} - L\mathbf{C} - \mathbf{B}K)\hat{x}(t) + \mathbf{B}N\xi(t) + L\mathbf{C}x \end{cases}$$

Interval augmented State-space model

$$\begin{pmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \\ \dot{\xi}(t) \end{pmatrix} = \underbrace{\begin{pmatrix} \mathbf{A} & -\mathbf{B}K & \mathbf{B}N \\ 0 & \mathbf{A} - L\mathbf{C} - \mathbf{B}K & \mathbf{B}N \\ -\mathbf{C} & 0 & 0 \end{pmatrix}}_{[A_{cl}]} \begin{pmatrix} x(t) \\ \dot{\hat{x}}(t) \\ \xi(t) \end{pmatrix} + \underbrace{\begin{pmatrix} 0 \\ 0 \\ \xi(t) \end{pmatrix}}_{[B_{cl}]} r(t)$$
$$y(t) = \underbrace{\begin{pmatrix} \mathbf{C} & 0 & 0 \end{pmatrix}}_{[C_{c}]} \begin{pmatrix} x(t) \\ \dot{\hat{x}}(t) \\ \dot{\xi}(t) \end{pmatrix}$$

Robust observer-based state feedback

Separation principal

$$\overline{A_{cl}}] = T[A_{cl}]T^{-1}$$

If we consider that the system matrices that used to synthesis the controller and the observer are the same and belong to the interval system (*A*; *B*; *C*). We get,

Similarity transformation

$$\overline{[A_{cl}]} = \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & I \\ I - I & 0 \end{pmatrix} \begin{pmatrix} A & -BK & BN \\ 0 & A - LC - BK & BN \\ -C & 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & I \\ I - I & 0 \end{pmatrix}^{-1} \begin{pmatrix} A - BK & BN & -BK \\ -C & 0 & 0 \\ 0 & 0 & A - LC \end{pmatrix}$$

Problem Formulation

$$\begin{cases} det(\overline{[A_{cl}]}) = \begin{pmatrix} SI - A + BK & -BN & BK \\ C & SI & 0 \\ 0 & 0 & SI - A + LC \end{pmatrix} \\ = det \begin{pmatrix} SI - A + BK & -BN \\ C & SI \end{pmatrix} det(SI - A + LC) \end{cases}$$

$$eig\left[\begin{pmatrix}SI - \mathbf{A} + \mathbf{B}K & -\mathbf{B}N\\ \mathbf{C} & SI \end{pmatrix}\right] \subseteq \Omega_{Desired\ region\ -controller}$$
(21)

$$eig\left[(SI - A + LC)\right] \subseteq \Omega_{Desired \, region-observer} \tag{22}$$

 $\lambda(\overline{[A_{cl}]}) = \lambda([A_{cl}])$

5-Experimental Validation

5DoF precise positioner

Fig.3. 3D CAD model of a 5DLL micro-positioner based on a monolithic passive structures

Fig.4. Experimental set-up

Proposed Model for a 3-DoF movement

$$G(s) = \left(\begin{array}{ccc} G_{xx}(s) & 0 & G_{zx}(s) \\ 0 & G_{yy}(s) & G_{zy}(s) \\ 0 & 0 & G_{zz}(s) \end{array}\right)$$

Fig.5. Simulation results showing the deformation of the structure in response to load force

Identification

Interval model

Controller gains

Observer gains

$$G(s) = \begin{pmatrix} G_{xx}(s) & 0 & G_{zx}(s) \\ 0 & G_{yy}(s) & G_{zy}(s) \\ 0 & 0 & G_{zz}(s) \end{pmatrix}$$

Box-Jenkins technique (System Identification Matlab Toolbox)

$$G_{xx}(s) = \frac{25.84s + 3.93e05}{s^2 + 2669s + 3.471e06}$$

$$G_{yy}(s) = \frac{21.43s + 1.806e05}{s^2 + 1666s + 1.568e06}$$

$$G_{zz}(s) = \frac{-9.862s + 1.548e04}{s^2 + 578.9s + 1.29e05}$$

$$G_{zx}(s) = \frac{1.293s + 969.7}{s^2 + 399.6s + 4.153e05}$$

$$G_{zy}(s) = \frac{12.26s - 5547}{s^2 + 5.587e - 08s + 8.696e05}$$

Fig. 5. Open-loop step response for $G_{xx}(s)$, $G_{yy}(s)$, $G_{zz}(s)$, $G_{zx}(s)$, and $G_{zy}(s)$.

Fig.7. Resulting solution gains for the Observer.

Results for the observer

Simulation Validation using Monte-Carlo technique

We Select **Randomly** from the **solution boxes** he gains of the controller and the observer as: **Controller:** $[K_{xx}; N_{xx}] = [1; 0.05; 1200], [K_{yy}; N_{yy}] = [1; 0.05; 1200], [K_{zz}; N_{zz}] = [0.2; -10; 800],$ **Observer:** $L_{xx} = [50; 5], L_{yy} = [50; 5], L_{zz} = [0.2; 100]$

×10⁻³ 0.05 Error X(1) Error X(2) 0 0 -0.05 0.01 0.015 0.02 0.005 0 0.005 n 0.01 0.015 0.02 ×10⁻³ 0. Error X(3) Error X(4) 0 -0.1 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0 0 ×10⁻³ 0.2 Error X(5) Error X(6) 0 0 -0.2 -1 0.005 0.015 0.02 0.005 0 0.01 0 0.01 0.015 0.02 Time(s) Time(s)

Fig.8. The error between the real states and the estimated ones (Simulation).

Results for the Observer-based controller

**

Exprimental Validation

Fig.11. Closed_loop step response (experimentation)

Exprimental Validation

Fig.12. Complex trajectory tests (experimentation)

7- Other propositions a- Encountered problems and propositions **SIVIA Algorithm** How to choose **the optimal solution** from the set solutions [K] that minimize the inputs/outputs energy 700 and ensures the best behaviors ? 500 **400** set solutions Proposition State-of-the-Art [*K*] 300 200 "Robust and Optimal output-feedback design" 100 4.2 4.4 The Linear Quadratic (LQ) tracker design. ×10⁴ 4.6 -5 [K,] [K,] Particle Swarm Optimization (PSO) technique.

✤ Advantages

Robustly ensure the desired performances and, in addition to that, minimize the inputs/outputs energy described by a linear quadratic cost function.

7- Other propositions

a- Encountered problems and propositions

All actuators are usually subjected to input constraints. How to find the range of robust gains that satisfy the **input constrains**?

State-of-the-Art

Proposition

Robust and guaranteed output-feedback control

□ Interval computation of input control.

 $\boldsymbol{u}^* = (I + \boldsymbol{K}^* \boldsymbol{D}^*)^{-1} \boldsymbol{K}^* \left(\boldsymbol{C}_c^t \ \boldsymbol{B}_c \right)^t (-\boldsymbol{A}_c^{-1} \boldsymbol{B}_c \boldsymbol{r})$ $\boldsymbol{u}^*([A], [B], [C], [D], [K]) \equiv [\underline{u}, \overline{u}] \subseteq [\underline{U}, \overline{U}]$

✤ Advantages

Provides the robust set solutions **[K]** that ensures that the magnitude of the applied control inputs are included inside the physical limitations of the actuator.

8-Conclusion and perspectives

Conclusion

- State-of-the-art for linear and nonlinear control design using interval analysis were presented.
- The algorithm based on Set Inversion Via Interval Analysis (SIVIA) was adapted to synthesis a robust output-feedback and an observer based state-feedback controllers.
- Interval LQ tracker and input constraints syntheses were combined with the proposed SIVIA-Based algorithm to find the optimal and guaranteed gains.
- ✤ A simulation (using Monte-Carlo methods) and experiment tests were carried out to validate the proposed algorithm.

Perspectives

The use of the nonlinear interval approaches to enhance the control of Micro/nano systems Under high-speed conditions

