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a b s t r a c t

An interval problem is a problemwhere the unknown variables take interval values. Such a problem can

be defined by interval constraints, such as ‘‘the interval ½a; b� � ½a; b�2 ’’. Interval problems often appear

when we want to analyze the behavior of an interval solver. To solve interval problems, we propose to

transform the constraints on intervals into constraints on their bounds. For instance, the previous

interval constraint ½a; b� � ½a; b�2 can be transformed into the following bound constraints

‘‘aZminða2; ab; b2Þ and brmaxða2; ab; b2Þ’’. Classical interval solvers can then be used to solve the

resulting bound constraints. The procedure which transforms interval constraints into equivalent bound

constraints can be facilitated by using symbolic interval arithmetic. While classical intervals can be

defined as a pair of two real numbers, symbolic intervals can be defined as a pair of two symbolic

expressions. An arithmetic similar to classical interval arithmetic can be defined for symbolic intervals.

The approach will be illustrated on several applications.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Interval analysis (Moore, 1979) is an efficient numerical tool to

solve nonlinear problems such as global optimization (Hansen,

1992), set characterization (Jaulin et al., 2001), etc. in a reliable

way. Although interval methods made it possible to solve

efficiently a large class of nonlinear punctual problems (i.e.,

problems where the solutions to be found are vectors or real

numbers), they also brought new questions and new problems

about the properties and the behaviors of the interval algorithms.

Most of these new problems can be cast into the framework of

interval problems, i.e., problems where the solution set is

composed with intervals or boxes.

This paper introduces symbolic intervals with its arithmetic.

The idea is similar to that of numerical interval computation: the

interval operations are replaced by operations on their bounds.

But for symbolic intervals, these operations are performed in a

symbolic way. This symbolic arithmetic will make possible to

transform an interval problem into a punctual problem in a

systematic way. The resulting punctual problem will then be

solved using classical numerical interval methods.

To our knowledge, the idea of applying interval arithmetic

rules in a symbolic way has never been proposed before. Of

course, in the context of interval methods, classic symbolic

calculus was already used to improve the efficiency of interval

solvers (see, e.g., van Emden, 1999), but the interval rules was only

applied on the numerical resolution, not on the symbolic part.

Section 2 shows how an interval problem can be transformed

into an equivalent punctual problem. Symbolic interval arithmetic

is introduced in Section 3. Section 4 presents some potential

applications of symbolic intervals. Most of them cannot be solved

with existing tools, to our knowledge. Section 5 concludes the

paper.

2. Interval problem and bound problem

2.1. Interval constraint

An interval ½x� is a closed bounded set of R. The set of all

intervals is denoted by IR. A box ½x� ¼ ½x1� � � � � � ½x1� of Rn is the

Cartesian product of n intervals. The set of all boxes of R
n is

denoted by IR
n. An interval constraint is a function from IR

n to

f0;1g, where 0 and 1 stand for false and true, respectively. An

example of interval constraint is

Cð½x�Þ : ½x1� � ½x2�; ð1Þ

where ½x� ¼ ½x1� � ½x2�. An interval constraint is monotonic if

½x� � ½y� ) ðCð½x�Þ ) Cð½y�ÞÞ:

For instance Cð½x�Þ ¼def tð0A ½x�Þ is monotonic.
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2.2. Intervalization function

Define the intervalization function i as follows:
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The domain of i is

domðiÞ ¼ fx ¼ ðxÿ1 ; xþ
1 ; . . . ; xÿn ; x

þ
n Þ; 8j; xÿj rxþ

j g ¼ iÿ1ðIRnÞ:

Note that the bijection i between domðiÞ and IR
n is a classical and

useful conceptual tool (see Kulpa, 2006) to develop original

interval algorithms. To an interval constraint Cð½x�Þ from IR
n to

f0;1g we can define the corresponding bound constraint

C ðx Þ ¼ C3iðx Þ on the bound vector xAR
2n:
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For instance, to the interval constraint

Cð½x�Þ ¼def ð½x1� � ½x2�Þ;

we associate the following bound constraint:
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Symbolic intervals, to be presented in the following section, is a

new symbolic tool that makes possible to transform interval

problems into a problem on the bounds of the intervals.

3. Symbolic intervals

3.1. Definition

A symbolic interval is a pair, denoted by ½Aÿ;Aþ �, of two

mathematical expression A
ÿ and A

þ . For instance

½sinðaþbÞ; a2þb�

is a symbolic interval. Its lower bound is the expression

A
ÿ ¼ sinðaþbÞ and its upper bound is the expression A

þ ¼ a2þb.

3.2. Operations

We define the operations on symbolic intervals as classical

interval operations, but in a symbolic way.

½Aÿ;Aþ �þ½Bÿ;Bþ � ¼ ½AÿþB
ÿ;Aþ þB

þ �;

½Aÿ;Aþ � ÿ ½Bÿ;Bþ � ¼ ½Aÿ ÿ B
þ ;Aþ ÿ B

ÿ�;

½Aÿ;Aþ � � ½Bÿ;Bþ � ¼ ½minðAÿ � Bÿ;Aÿ � Bþ ;Aþ � Bÿ;Aþ � Bþ Þ;
maxðAÿ � Bÿ; . . .Þ�;

½Aÿ;Aþ �2 ¼ ½maxð0; signðAÿ �Aþ ÞÞminððAÿÞ2; ðAþ Þ2Þ;maxððAÿÞ2; ðAþ Þ2Þ�;

expð½Aÿ;Aþ �Þ ¼ ½expðAÿÞ; expðAþ Þ�;

1=½Aÿ;Aþ � ¼ ½minð1=Aþ ;1� ðAÿ �Aþ ÞÞ;maxð1=Aÿ;ÿ1 � ðAÿ �Aþ ÞÞ�;

½Aÿ;Aþ � \ ½Bÿ;Bþ � ¼ ½maxðAÿ;BÿÞ;minððAþ ;Bþ ÞÞ�;

½Aÿ;Aþ � t ½Bÿ;Bþ � ¼ ½minðAÿ;BÿÞ;maxððAþ ;Bþ ÞÞ�;

wð½Aÿ;Aþ �Þ ¼A
þ ÿA

ÿ:

For instance,

expð½aþb; a2þb� ÿ ½sinðabÞ; aþb�Þ
¼ expð½aþbÿ ðaþbÞ; a2þbÿ sinðabÞ�Þ
¼ ½expðaþbÿ ðaþbÞÞ; expða2þbÿ sinðabÞÞ�:

Note that some operations on symbolic intervals have not the

same form as their classical numerical counterpart. They have

been rewritten in order to get a symbolic interval as the result of

the operation, i.e., a pair of two symbolic expressions. For

instance, the definition of the square of an interval ½a;b� is

classically defined by

½a; b�2 ¼ ½0;maxða2; b2Þ� if 0A ½a; b�
¼ ½minða2;b2Þ;maxða2; b2Þ� if 0 =2 ½a;b�:

Now, since

maxð0; signðabÞÞ ¼ 0 if 0A ½a; b�
¼ 1 if 0 =2 ½a; b�;

we can define ½a;b�2 by a single expression

½a; b�2 ¼ ½maxð0; signðabÞÞminða2;b2Þ;maxða2; b2Þ�:

This explains the definition of ½Aÿ;Aþ �2 for symbolic intervals.

3.3. Relations

We also extend classical interval relations to symbolic inter-

vals:

ð½Aÿ;Aþ � ¼ ½Bÿ;Bþ �Þ 3 A
ÿ ÿ B

ÿ ¼ 0; A
þ ÿ B

þ ¼ 0

ð½Aÿ;Aþ � � ½Bÿ;Bþ �Þ 3 A
ÿ ÿ B

ÿ
Z0; B

þ ÿA
þ
Z0:

For instance

ð½aþb; a2þb� ¼ ½sinðabÞ; aÿ b�Þ
3ðaþb¼ sinðabÞ and a2þb¼ aÿ bÞ:

Another example is the following:

ð½a; b� � ½a;b�2Þ3
aÿmaxð0; signða � bÞÞ �minða2; b2ÞZ0;

maxða2; b2Þ ÿ bZ0:

(

3.4. Simplification

The expression involved as lower and upper bound of symbolic

intervals are classical expressions over real variables. Thus

classical simplification techniques can be applied to symbolic

interval. For instance, we can write

½aÿ bþaþb; a2þc ÿ a � a� ¼ ½2a; c�: ð2Þ

But note that

½a; b� ÿ ½a; b� ¼ ½aÿ b;bÿ a� ð3Þ

which is not [0,0]. The simplifications can only be performed on

the expressions inside the interval and not on the symbolic

interval operations.
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4. Applications

This section provides some simple potential applications of

symbolic intervals.

4.1. Experimental design

Assume we want to design an experiment to measure

indirectly a quantity y which satisfies the relation

y¼ f ðx1; . . . ; xnÞ; ð4Þ

where the xi can be measured with a accuracy lower than ex. We

also assume that an inclusion function

½f � :
IR

n
-IR;

½x�-½f �ð½x�Þ

(

ð5Þ

for f is available. Once the interval measurements ½xi� will be

collected, this inclusion function will be used to get an interval ½y�
for y. We would like to know with which accuracy y will be

obtained, i.e., what will be the size of ½y� ¼ ½f �ð½x1�; . . . ; ½xn�Þ in the

worst-case? This problem can be formulated as follows:

max
½x�A IRn

wð½x�Þr ex

wð½f �ð½x�ÞÞ:

As an illustration, consider the situation where f ðxÞ ¼ expðxÿ x2Þ,
½f �ð½x�Þ ¼ expð½x� ÿ ½x�2Þ, and ex ¼ 1. We get the following interval

optimization problem:

max
½x�A IR

wð½x�Þr 1

wðexpð½x� ÿ ½x�2ÞÞ:

Using the symbolic interval arithmetic, with ½x� ¼ ½a; b�, we get

max
bÿaA ½0;1�

ebÿmaxð0;signðabÞ�minða2 ;b2ÞÞ ÿ eaÿðmaxða2 ;b2Þ:

Using an interval method, we get that the maximum is inside

½3:324807;3:324808� and the global optimizer satisfies

ða�; b�ÞA ½0:547;0:548� � ½1:547;1:548�;

i.e., the interval optimizer is an interval ½a�; b�� which satisfies the

previous relation. In an estimation point of view, it means that the

worst case that could happen is to have an interval measurement

½x�C ½0:547;1:547�. However, in any situation, the accuracy for y

will always be better than 3.325.

Fig. 1 right, shows the set of intervals

S¼ fða; bÞA ½ÿ2;2� � ½ÿ2;2�;wð½a;b�Þr1 and wðexpð½a; b� ÿ ½a; b�2ÞÞ41g:

The light gray area has been proven to be inside S and the dark

gray area is outside S. The dashed zone corresponds to all pairs

ða; bÞ such that a4b, i.e., ½a; b� cannot be an interval. The left part

of the figure shows the contractions/bisections made by the

numerical interval algorithm.

4.2. Comparing two inclusion functions

When implementing an interval method to solve a nonlinear

problem (optimization, set inversion, etc.), we have to implement

an inclusion function for a function f involved in the problem. In

practice, f can be described by different expressions each of them

producing a different inclusion functions. Denote by ½f � and ½g� two

inclusion functions for f. Two situations could appear. (i) One is

always more accurate than the other (i.e., ½f � � ½g� or ½g� � ½f �) and
thus, the choice for the inclusion function to be implemented is

easy. (ii) For some boxes ½a�, ½f �ð½a�Þ � ½g�ð½a�Þ and for some other

boxes ½b�, ½g�ð½b�Þ � ½f �ð½b�Þ and it can be worthwhile the implement

the intersection ½h� ¼ ½g� \ ½f �. To make such a choice, a comparison

of the two inclusion function ½f � and ½g� is needed and, to our

knowledge, no tool exists in the literature to perform such a

comparison.

Let us now show how such an intersection can be done using

symbolic intervals on a simple example where two inclusion

functions ½f � and ½g� for f ðxÞ ¼ x2 ÿ x are available:

½f �ð½x�Þ ¼ ½x� � ð½x� ÿ 1Þ;

½g�ð½x�Þ ¼ ½x�2 ÿ ½x�:

We would like to know for which interval ½x� ¼ ½a; b�, ½f � is more

accurate than ½g�. We have

½f �ð½x�Þ ¼ ½a; b� � ð½a; b� ÿ 1Þ
¼ ½a; b� � ½aÿ 1; bÿ 1�
¼ ½minðaðaÿ 1Þ; bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞ;
maxðaðaÿ 1Þ; bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞ�

and

½g�ð½x�Þ ¼ ½a; b�2 ÿ ½a; b�
¼ ½maxð0; signða � bÞminða2; b2ÞÞ;maxða2; b2Þ� ÿ ½a; b�
¼ ½maxð0; signða � bÞminða2; b2Þ ÿ b;maxða2; b2Þ ÿ a�:

Thus

½f �ð½x�Þ � ½g�ð½x�Þ

3

minðaðaÿ 1Þ;bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞZmaxð0; signða � bÞminða2;b2ÞÞ ÿ b;

maxðaðaÿ 1Þ;bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞrmaxða2;b2Þ ÿ a

(

3

minðaðaÿ 1Þ;bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞ ÿmaxð0; signða � bÞminða2; b2ÞÞþbZ0;

maxða2; b2Þ ÿ aÿmaxðaðaÿ 1Þ; bðaÿ 1Þ; aðbÿ 1Þ;bðbÿ 1ÞÞZ0:

(

The solution set is represented in Fig. 2, right. On the light gray

area are represented the intervals ½x� such that ½f �ð½x�Þ � ½g�ð½x�Þ and
in the dark gray area are the intervals ½x� such that ½f �ð½x�Þg½g�ð½x�Þ.
Nothing is known about the intervals in the white area. The

Fig. 1. Left: contractions produced by the numerical interval algorithm. Right: set of all interval ½a; b� that belong to S.

L. Jaulin, G. Chabert / Engineering Applications of Artificial Intelligence 23 (2010) 1035–1040 1037
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hatshed zone are points ða; bÞwhich do not correspond to intervals

½a; b�.
The table below provides a comparison for three intervals.

½x� ½f �ð½x�Þ ½g�ð½x�Þ Relation

[1,2] [0,2] ½ÿ1;3� ½f �ð½x�Þ � ½g�ð½x�Þ
½ÿ2;ÿ1� [1,6] [2,6] ½f �ð½x�Þ � ½g�ð½x�Þ
½ÿ1;1� ½ÿ2;2� ½ÿ1;2� ½g�ð½x�Þ � ½f �ð½x�Þ

Note that for ½x� ¼ ½ÿ2;ÿ1�, we have ½f �ð½x�Þ � ½g�ð½x�Þ, but we are in

the undetermined area (white). The inclusion was not proven by

the method because we do not have a strict inclusion (i.e.,

8e40; ½1;6�þ½ÿe; e� is not a subset of [2,6]).

4.3. Analysis of the Newton contractor

The previous section has shown how two inclusion functions

could be compared. The same principle could be used to compare

two contractors. Here, we shall see how symbolic intervals can be

used to analyze the behavior of contractors. More precisely, we

would like to characterize the set of all intervals ½x� that can be

contracted by a given contractor. As an illustration, we consider

the equation f ðxÞ ¼ 0 with f ðxÞ ¼ ex ÿ 1. The associated interval

Newton contractor is defined by

N ð½x�Þ ¼ x0 ÿ
f ðx0Þ
½f 0�ð½x�Þ ; ð6Þ

where x0 is any point in ½x�. Here, we shall take x0 ¼ xÿ and thus

N ð½x�Þ ¼ xÿ ÿ f ðxÿÞ
½f 0�ð½x�Þ ¼ xÿ ÿ ex

ÿ ÿ 1

expð½xÿ; xþ �Þ : ð7Þ

The Newton operator is contracting if

N ð½x�Þ � ½x�: ð8Þ

Let us compute the set of all intervals such thatN is contracting. If

we set ½x� ¼ ½a; b�, we get

N ð½a; b�Þ ¼ aÿ aÿ 1

expð½a; b�Þ : ð9Þ

Using symbolic interval arithmetic, the relation N ð½a; b�Þ � ½a;b�
transforms into

aÿmax
ea ÿ 1

eb
;
ea ÿ 1

ea

� �

ÿ aZ0;

bÿ aþmin
ea ÿ 1

eb
;
ea ÿ 1

ea

� �

Z0;

bÿ aZ0:

8

>>>>><

>>>>>:

Fig. 3 represents the set S all pairs ða; bÞ which satisfy this set

of constraints. The light gray area is proven to be inside S and the

dark gray area corresponds to pairs ða; bÞ outside S.

4.4. Proving the asymptotic optimality of a contractor

Consider a contractor C and denote by S the set of all points x

such that CðfxgÞ ¼ fxg. The contractor is asymptotically optimal if

8½x�AIR
n; Cð½x�Þ ¼ ½S \ ½x��; ð10Þ

Fig. 2. Comparison between two inclusion functions.

Fig. 3. Left: contractions made by the numerical interval algorithm. Right: set of intervals that are contracted by the Newton contractor. The frame box is ½ÿ2;2� � ½ÿ2;2�.

L. Jaulin, G. Chabert / Engineering Applications of Artificial Intelligence 23 (2010) 1035–10401038
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where ½S \ ½x�� denotes the smallest box which encloses S \ ½x�.
When dealing with constraint satisfaction problem (CSP)

(Sam-Haroud and Faltings, 1996), it can be useful to prove that a

given contractor C is asymptotically optimal, but to our knowl-

edge, no methodology exists in the literature to prove it. In this

section, we show that symbolic intervals could be helpful for that.

To illustrate the principle, consider an equation

x2 ÿ x¼ 0: ð11Þ

A hull consistency contractor amounts to iterate the following

statements:

½x� :¼ ½x� \ ½x�2;

½x� :¼ ½x� \
ffiffiffiffiffi

½x�
p

; ð12Þ

from an initial interval ½x�ð0Þ until a steady interval is reached. The

methodology we propose to prove that the resulting contractor is

asymptotically optimal it is described below.

Step 1. Compute all solutions of the equation x2 ÿ x¼ 0. With

an interval method (with bisections), we get that we have exactly

two solutions x1 ¼ 0 and x2 ¼ 1. Thus we know any contractor

associated with the constraint x2 ÿ x¼ 0 has at least three steady

boxes (those corresponding to ½0;0�; ½1;1�; ½0;1�).
Step 2. Since the contractor will converge the biggest box inside

½x�ð0Þ which satisfies

½x� � ½x�2;
½x� �

ffiffiffiffiffi
½x�

p :

(

The interval CSP translates into the equivalent bound CSP

aÿmaxð0; signða � bÞ �minða2;b2ÞÞ Z0;

maxða2; b2Þ ÿ b Z0;

aÿ
ffiffiffi
a

p
Z0;

ffiffiffi

b
p

ÿ b Z0;

bÿ a Z0:

8

>>>>>><

>>>>>>:

ð13Þ

Let us compute all solutions of this bound system. We get the

three following boxes for ða; bÞ :

½0:999999999999;1� � ½0:999999999999;1�;

½0;3� 10ÿ39� � ½0;3� 10ÿ39�;

½0;3� 10ÿ39� � ½0:999999999999;1�: ð14Þ

A unicicity test can concludes about that each of the three boxes

contain a unique solution. Thus, we know that we have exactly

three steady boxes. Thus, we have proven that the hull contractor

is asymptotically optimal.

4.5. Quantifier elimination

In this section, we will show that symbolic interval arithmetic

can be used for quantifier elimination (see e.g., Collins, 1975).

Consider the quantified formula

(yA ½y� �R
m; f ðp; yÞ ¼ 0; ð15Þ

where pAR
n and f : Rn �R

m
-R is assumed to be continuous.

Assume that in the expression of f, the yi’s occur only once. Denote

by ½f �ðp; ½y�Þ the natural inclusion function for f with respect to y.

From Moore (1979), we have

½f �ðp; ½y�Þ ¼ ff ðp; yÞ; yA ½y�g; ð16Þ

and thus formula (15) is equivalent to

0A ½f �ðp; ½y�Þ: ð17Þ

Using symbolic interval arithmetic, we are able to compute an

expression aðpÞ and bðpÞ for the bounds of ½f �ðp; ½y�Þ. As a

consequence, Formula (15) is equivalent to

aðpÞr0rbðpÞ; ð18Þ

where no quantifier appears anymore. Note that similar reasoning

can be found in Gardenes et al. (1985) and Goldsztejn (2005) in

the context of modal interval analysis. As an illustration, consider

the quantified distance problem (Grandon and Goldsztejn, 2006).

The set to be characterized is defined by

S¼ pAR
2; (yA ½y�; ðp1 ÿ y1Þ2þðp2 ÿ y2Þ2 ÿ y3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f ðp;yÞ

¼ 0

8

><

>:

9

>=

>;

; ð19Þ

where

½y� ¼ ½ÿ0:5;0:5� � ½ÿ0:5;1:3� � ½1:69;2:56�: ð20Þ

Here S represents the set of all feasible p that are at a distance
ffiffiffiffiffi
y3

p
from a point ðy1; y2Þ, when the y¼ ðy1; y2; y3ÞA ½y�. We have

½f �ðp; ½y�Þ ¼ ðp1 ÿ ½y1�Þ2þðp2 ÿ ½y2�Þ2 ÿ ½y3�
¼ ½maxð0; signððp1 ÿ yþ

1 Þðp1 ÿ yÿ1 ÞÞÞminððp1 ÿ yþ
1 Þ2;

ðp1 ÿ yÿ1 Þ2Þþmaxð0; signððp2 ÿ yþ
2 Þðp2 ÿ yÿ2 ÞÞÞminððp2 ÿ yþ

2 Þ2;

ðp2 ÿ yÿ2 Þ2Þ ÿ yþ
3 ;maxððp1 ÿ yþ

1 Þ2;
ðp1 ÿ yÿ1 Þ

2Þþmaxððp2 ÿ yþ
2 Þ2; ðp2 ÿ yÿ2 Þ2Þ ÿ yÿ3 �:

Therefore, the set S can be defined by the quantifier free formula

maxð0; signððp1 ÿ 0:5Þðp1þ0:5ÞÞÞminððp1 ÿ 0:5Þ2; ðp1þ0:5Þ2Þ
þmaxð0; signððp2 ÿ 1:3Þðp2þ0:5ÞÞÞminððp2 ÿ 1:3Þ2; ðp2þ0:5Þ2Þr2:56;

maxððp1 ÿ 0:5Þ2; ðp1þ0:5Þ2Þþmaxððp2 ÿ 1:3Þ2; ðp2þ0:5Þ2ÞZ1:69:

8

><

>:

It can thus be characterized by an interval set inversion algorithm

(Jaulin et al., 2001). Fig. 4 have been computed in 0.4 s in a

Fig. 4. Left: contractions performed by the interval agorithm. Right: solution set of the quantified distance problem.
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standard laptop. The left subfigure shows all contractions that

have been performed by the algorithm and the right subfigure

represents the set S. The light gray area is proven to be inside S

and the dark gray area is outside S. The results are very similar to

those obtained in Grandon and Goldsztejn (2006) where

generalized interval computation has been used to eliminate the

quantifier. Note that the symbolic interval approach made

possible to have inner contractions which is not possible with

the approach proposed in Grandon and Goldsztejn (2006).

In this section, we have shown for the first time that interval

arithmetic as defined by Moore (1979) and applied in a symbolic

way, can be an efficient tool to deal with some specific symbolic

quantifier elimination problem.

Remark. The formula

8yA ½y�; (xA ½x�; f ðp;x;yÞ ¼ 0; ð21Þ

can also be transformed into one inequality of the form gðpÞr0, if

f is continuous and if, in the expression of f, all xi and all yj occur

only once. This can be done by using modal interval arithmetic in

a symbolic way. To each variable related to a subexpression of a,

we associate (Vinas et al., 2006) the pair (also called modal

interval)

max
yA ½y�

min
xA ½x�

aðp;x; yÞ;min
yA ½y�

max
xA ½x�

aðp;x; yÞ
� �

:

An arithmetic can be developed on these modal intervals. By

applying symbolically the modal interval arithmetic on f, we

obtain a symbolic expression for

aðpÞ ¼max
yA ½y�

min
xA ½x�

f ðp;x; yÞ and bðpÞ ¼min
yA ½y�

max
xA ½x�

f ðp;x; yÞ

and thus Eq. (21) transforms into the following quantifier free

formula:

aðpÞr0 and bðpÞZ0:

5. Conclusion

This paper deals with interval problems, where the solution set

is a set of intervals. The main contribution of the paper is the

introduction of symbolic intervals with the corresponding opera-

tions. This new tool makes it possible to transform in an easy way

an interval problem into a punctual nonlinear problem on the

bounds of the intervals. This nonlinear problem on the bounds can

then be solved using classical interval analysis methods. The

approach that has been proposed to solve nonlinear interval

problems applies interval calculus concepts twice: the first time in

a symbolic way and the second time in a numerical way. This

makes it possible to solve a huge class of nonlinear interval

problems that cannot be solved without this approach. To

illustrate the efficiency and the interest of symbolic intervals,

several applications have been considered.
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