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Abstract—This paper investigates the use of interval analysis to
solve the problem of maneuvering target tracking, using range-
only measures collected by a multistatic radar. The problem
consists in one transmitter, and some receivers working together
as a multistatic radar. The radar process is plagued by several un-
certainty sources that affect directly the receivers’ measures. As a
result, target tracking can be both imprecise and unreliable. This
study presents the Tracking using an Interval-Based Approach
(TIBA) that computes the set of all feasible configurations for the
target which are consistent with the measures. The algorithm is
compared to a conventional tracking method: particle filtering.

Index Terms—target tracking; manoeuvering target; multi-
static radar; interval analysis; interval methods.

I. INTRODUCTION

Radar systems have been used in several fields [1] as in
airspace monitoring, marine surveillance, weather prediction,
and ground imaging. Most systems today are monostatic, that
is, the transmitter and the receiver share the same antenna.
There is, however, an increasing interest in bistatic [2] and
more generally multistatic systems [3], where one or several
receivers are positioned elsewhere than the receiver.

We consider in this paper a simple, theoretical multistatic
radar system which returns range-only measures. The true
position of the target can be found by the intersection of
the Fresnel ellipsoids corresponding to the distances measured
by the radars. However, these measures can be corrupted by
noise, and the probable position of the target becomes harder
to determine: instead of a point, the target could lie in a
much larger region. The use of several, consecutive measures,
coupled to a tracking algorithm, can reduce this uncertainty on
the target’s position. However, the mapping from observation
(that is, distances) to the Cartesian target’s coordinates is non-
linear; similarly, the noise has no reason to be Gaussian. Thus
methods based on the Kalman filter and its derivatives are
non-robust, especially in the presence of outliers.

In this paper, we propose to track targets using an interval
analysis approach (TIBA). Interval analysis has begun with
Moore [4] for the treatment of the rounding errors in numerical
computation and it has been efficiently employed to solve
problems with uncertainty parameters [5] and [6]. In interval
analysis approaches, sets are used to represent punctual num-
bers and their uncertainties. Then, a safe manipulation of these
sets results in the guaranteed interval where the true punctual

This work was in part sponsored by CAPES, CNPq, FAPEMIG and PUCMi-
nas from Brazil, ENSIETA and UBO from France and the regional council
of Brittany.

solution is. However, Interval Analysis suffers from some
criticisms, as the (relatively) slowness of their implementation,
for instance. Hansen and Walster [7] refuted most of these
and showed the advantages of the interval approaches as
for example: the possibility to obtain the solution of certain
problems that can not be solved by non-interval methods, the
convergence of their algorithms and the reliability of their
results. These facts have motivated the use of the interval
methodology to solve the tracking problem.

II. DESCRIPTION OF THE PROBLEM

Consider a target T traveling in the 2D space. This target
can be represented by the following state vector:

Xn = [xn, yn, ẋn, ẏn]t (1)

where xn and yn are the target’s Cartesian coordinates, and
ẋn, ẏn their derivatives with respect to time. The evolution of
the target is described by a state evolution equation:

Xn+1 = f(Xn) + Vn (2)

where f is a deterministic state evolution function, and Vn

is a random vector representing unpredictable changes in the
target’s motion. Denoting the time between the states n and
n + 1 by ∆t, a simple approximation for f and Vn can be:

Xn+1 = AXn︸ ︷︷ ︸
f(Xn)

+BNn︸ ︷︷ ︸
Vn

(3)

where matrices A and B are given by:

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 B =


∆t2

2 0
0 ∆t2

2
∆t 0
0 ∆t

 (4)

respectively, and Nn is a vector of dimensions 2 × 1 witch
entries have mean zero and standard deviation σx to horizontal
axis, and σy to vertical axis.

The multistatic radar system consists in one transmitter E
and a series of receivers Ri, i = 1, . . . , l which are not
positioned at the same place. Each couple Bi = (E,Ri)
forms a bistatic radar and the whole set (B1, . . . , Bn) is
the multistatic radar mentioned earlier. We consider in our
simulations that R1 shares the same antenna as E, thus B1 is
really only a monostatic radar. An example of the multistatic
radar is presented in Fig. 1. Each bistatic radar provides
outputs ri

n corresponding to the total distance traveled by the
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Fig. 1. Multistatic problem with three receivers as used in this paper. The
isorange ellipses (in gray) represent the target location by each receiver, and
their intersection (in black), the true target location (4,4). Note that the range
resolution is 100 m in this figure.

radio wave from E, to T , then to Ri. Hence, the target position
is the solution of the following system of equations:

ri
n = dET + dTRi , i = 1, . . . , l (5)

where dET and dTRi
denote the distance from the transmitter

to the target, and the target to the i-th receiver. The output of
the multistatic radar can be stored in an observation vector:

Yn = [r1
n, . . . , rl

n]t (6)

Beyond the uncertainty sources listed before, the radar
system can face other hard problems. For instance, noise might
be mistaken for the target; this could be a strong spike coming
from the scene clutter, or a strong return in the secondary
lobe of the antenna. In these cases, the measurement process
yields an outlier. There could also be missing measures, if
no echo significantly arises above the noise level. Thus, the
measurement system is also unreliable, and the tracking system
must be able to cope with that.

III. TRACKING USING INTERVALS

Usually, the traditional filtering algorithms work within the
probabilistic framework. These algorithms assume that the
noise (or other uncertainties) follow a probability distribution.
Without being exhaustive, the best known algorithms are the
Kalman filter and its numerous variants (among which the
most celebrated one today is probably the Unscented Kalman
filter [8]); or the particle filter [9]. Their goal is to estimate the
probability density function (pdf) of Xn given the observations
Y1, . . . ,Yn. A review of the applicability of these methods
for range-only, multistatic radar tracking may be found in [3].

In the interval approach presented in this section, the uncer-
tainty sources are not modeled by pdf’s but strictly bounded by
intervals. Intervals have a specific notation which are described
below. Then TIBA itself is presented.

A. Interval Analysis

Definition 1 A real, closed and connected interval [z] is
defined by:

[z, z] = {z ∈ R | z ≤ z ≤ z}, (7)

where z and z represent, respectively, the lower and the upper
bounds of [z]. The domain of all real numbers intervals is IR.

Definition 2 Denote � as binary operator to represent the four
classical operations of real arithmetic +, −, ∗ and /. Then:

[z] � [w] = {z � w | z ∈ [z], w ∈ [w]} (8)

Definition 3 A box [z] is an interval vector in IRn defined as
the Cartesian product of n closed intervals:

[z, z] = [z1]× [z2]× . . .× [zn], (9)

where z and z are the lower and the upper bounds of [z].

Definition 4 The center c([z]) ∈ Rn and the width w([z]) ∈
R are defined by:

ci([z]) = (zi + zi)/2, i = 1, . . . , n (10)
w([z]) = max

i
(zi − zi), i ∈ {1, . . . , n} (11)

Definition 5 Denote the Euclidean distance from p ∈ Rn to
z ∈ Rn by dpz. Then, the interval distance [d]p[z] ∈ IRn

between a point p and an interval [z] ∈ IRn is:

[d]p[z] = [min(dpz),max(dpz)], ∀z ∈ [z] (12)

Definition 6 Consider the intervals [z] ∈ IR and [w] ∈ IR.
The interval displacement [∆d][z][w] ∈ IR is given by:

[∆d][z][w] = [w]− [z] (13)

Definition 7 Consider the set [Z] = {[z]1, . . . , [z]m} ⊆ IRn.
The box of narrowest width containing all elements of [Z] is:

Φ([Z]) = [Z1]× [Z2]× . . .× . . . [Zn], (14)
[Zi] = [ min

j=1,...,m
(zij), max

j=1,...,m
(zij)], i = 1, . . . , n

Definition 8 An operation that divides a box [z] in two off-
spring boxes [z]1 and [z]2 of the same size is called bisection.

Definition 9 Consider the functions f from Rn to Rm and [f ]
from IRn to IRm. The [f ] is an inclusion function for f if:

∀[z] ∈ IRn, f([z]) ⊂ [f ]([z]) (15)

B. SIVIA

The Set Inverter Via Interval Analysis (SIVIA) method [5]
searches the preimage of a given set under a function. Its inputs
are a search interval [z], an image box [r] and the accuracy
parameter ε. SIVIA bisects [z] until it classifies its offsprings.
The typical outputs are a set composed by solution boxes [Z]s
that belong to the preimage of [r], a set with non-solution
boxes [Z]n, and a set that contains boundary boxes [Z]b. In
our case, consider what the radar system provides to SIVIA: a)
the range values ri

n; b) the transmitter and receivers position,
E and Ri; c) the maximal uncertainty on the measurement ε;
and d) the search box [z]. Then, SIVIA is used to solve the
following equation:

[ri
n − ε, ri

n + ε] = [d]E[z] + [d][z]Ri
, i = 1, . . . , l (16)

For instance, Fig. 2 presents SIVIA’s output for the radar
configuration in Fig. 1. We implemented SIVIA to return the
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Fig. 2. Typical SIVIA graphics. Above, the results are plotted at the same
coordinates that in Fig. 1. Below, a zoom on the region where the solution
lies. (CPU time= 0.7s; [z] = [0, 25]km× [0, 10]km; ε = 2m, ε = 12m)

wrapping box (or target box) given by Φ([Z]s ∪ [Z]b). Com-
puting the wrapping box is faster than computing separately
each small box, however it is less precise.

In the presence of outliers, (16) can yield no solution. Thus,
SIVIA has been adapted to use the outlier minimal number
estimator (OMNE) [10], to find the solutions consistent with
at least two measurements.

C. TIBA

TIBA is a heuristic technique addressing target tracking
problems. It is an interval-based method, hence the variables
and the equations have to be adapted to intervals. For instance,
the state vector (1) lies in the following box:

[X]n =
[
[x]n, [y]n, [ẋ]n, [ẏ]n

]t
(17)

Now, to present how TIBA works, consider a radar system
composed by a transmitter and three receivers as in the
configuration in Fig. 1. TIBA assumes that the following
information is available: a) the location of the radar equip-
ments E and Ri; b) the range of the radar system [X]0;
c) the maximum deviation from receiver’s measure ε; d) the
interval noise [V]n; and e) the delay between observations
∆t. Then, when an object is detected, an iteration of TIBA
is done. A block diagram of TIBA is presented in Fig. 3.
In the initialization step, two consecutive target positions
[X]1 and [X]2 are computed by SIVIA. The displacement
[∆d][X]1[X]2 (only cartesian components) by ∆t gives the
speed components to [X]2, that is sent to next step. Henceforth
[X]2 will be known as [X]n. In the prediction stage, the
system tries to guess the next target’s position by using
(3). The result is denoted [X]n+1|n. After that, [X]n+1|n is
evaluated by the expression in (5), represented in the block
diagram by function [h], resulting in a hypothetical interval
observation vector [Ỹ]n+1, that is input to correction step.
The correction consist in the intersection between [Ỹ]n+1 with
the observation [Y]n+1 = [Yn − ε,Yn + ε]. When there is
no intersection, TIBA discards the observation. The updated
interval observation vector [Ŷ]n+1 is then fed to SIVIA to
find the target box to (16). After that, the target box [X]n+1 is

sent to the prediction step. The algorithms loops until receivers
stop their observations.

(SIVIA)

-1

(*)

(*) used if incoherent observations

,1

Fig. 3. TIBA’s block diagram. Note that the correction step is implemented
in the observation space.

IV. COMPARISON AND EXPERIMENTS

The experiment consists in the comparison of Particle
Filtering (PF) [9] and the TIBA when they track a hypothetic
target moving in the 2D space. In this example, we consider
the receiver’s position and initial location of the target are the
same, as showed in Fig. 1. The trajectory was created by using
(3) with ∆t = 0.1 s, and Wn has zero mean and standard
deviation 100 m.s−2. The observations were obtained by the
following equation:

Yn = AXn + Wn, (18)

where the random vector Wn is a mix of Gaussian-distributed
observations with zero mean and standard deviation σr = 4 m,
intertwined with outliers and missing measures happening
with a 10% probability. In the end, 1000 observations were
processed. The graphical results present the guessed positions
and the error with the real target positions. The methods
were implemented in MATLAB and they were executed on a
Pentium-4 CPU, 3 GHz, 1024 MB RAM, using Windows XP
SP2. The total tracking time for PF was about 1 s per
iteration for 1000 particles against 0.1 − 35 s for TIBA.
The re-sampling of the particles was done only based on the
range observations: for each particle, the likelihood of each
observation is computed (for each radar); then all observations
are combined by using the max operator. Some regularization
is needed, especially on the particle speeds; otherwise, the
PF fails to converge. Particle filtering has others probabilistic
parameters that requires a lot of tuning, which is not needed
by TIBA. Finally, particle filtering is a Monte Carlo method;
whereas TIBA is deterministic.

Fig. 4 shows the output of TIBA. It is clear that some target
boxes are far wider than many others in their neighborhood.
In these cases, multiple outliers and/or measure missing are
present simultaneously and there is no consistent solution with
the receiver’s observations. Thus, TIBA returns the prediction
box. The prediction boxes can become wider when outliers
and/or measure missing happen in consecutive measurements.
In all observations, the prediction boxes have enveloped the
next target position safely, even in the presence of the events
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above. However, sometimes the outliers perturbation yielded
measurements inside the box prediction, and TIBA encloses a
false solution, as showed in the detail of Fig. 4. This problem
could probably be solved by using more receivers.

Fig. 4. Full TIBA tracking output. The target boxes, false solution boxes
and the real target location are in the detail.

In Fig. 5, the centers of the target boxes are presented with
the true target trajectory. Although these centers are considered
as a punctual estimation of the target’s position, the true TIBA
solution is still the target box. The details on Fig. 5 present the
quality of the estimation in two parts of the trajectory with the
same altitude. The relative position between the receivers and
the target causes the ellipsoid’s intersections to be smaller in
region (a) than region (b). The boxes are wider for the worse
ellipsoids’ intersections.

Fig. 5. TIBA’s estimation on the target location. The quality of the TIBA’s
estimation depends on the quality of the isorange ellipses intersections.

Fig. 6 presents the results of the PF tracking for the same
trajectory with 1000 particles (which gave better results than
2000 particles or 500 particles). The error plotted here is
at 3σe = 3

√
σ2

1 + σ2
2 , where σ1 and σ2 are the diagonal

components of the covariance matrix of the particles cloud.
It appears clearly that, globally, PF is outperformed by TIBA.
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Fig. 6. Comparison between particle filtering (1000 particles) and TIBA in
terms of precision and robustness.

V. CONCLUSIONS AND FUTURE OUTLOOKS

Real time applications like radar tracking need methods giv-
ing reliable results using the allotted CPU time. After several
tests, we found PF faster than TIBA. For PF, the tracking
process is independent of the transmitter-target-receivers po-
sitions, otherwise TIBA is dependent. Contrarily to PF, TIBA
has fewer tuning parameters. Also, TIBA always converges,
even when there are only few consistent measures. TIBA was
still reasonably fast (0.4 − 3.2 s by iteration) to envelope
the target trajectory if the outliers and the missing measures
were not present. Nevertheless, when these events were present
simultaneously and consecutively, TIBA spent much more
time than usual to converge. Inserting an effort parameter in
the SIVIA and executing a correction also in the search space
could increase TIBA’s performance and let it more competitive
against PF or any other radar tracking algorithm.
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