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Abstract: This paper proposes a new observer for estimating the state vector of a nonlinear

system. This observer, which is robust with respect to outliers, assumes that the measurement

errors as well as the number of outliers that could occur within a given time window are bounded.

The principle of the approach is to use interval analysis to deal properly with the nonlinearities

involved in the system (without any linearization nor approximation) and to propagate through

the time, in a forward and backward manner, the assumptions made about outliers. A testcase

related to the localization and control of an underwater robot is also proposed to illustrate the

efficiency of the approach.

Keywords: bounded-error, constraint propagation, control, interval analysis, localization, non-

linear estimation, observer, outliers, underwater robotics.

1. Introduction

Consider the discrete-time dynamic system described by the following nonlinear state equations

{
x(k + 1) = fk(x(k))

y(k) = gk(x(k)).
(1.1)

This formulation encloses situations where the state equations depend of some inputs that are

known exactly. In a bounded-error context, we generally assume that for all k, the output vectors

y(k) belong to some known sets Y(k). These sets are obtained from measurements ỹ(k) of the

output vector y(k) and take into account some bounded error noises that could corrupt the

measurements. We can thus define the feasible set X(k) of all state vectors x(k) that are consistent
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with the past as follows

X(k) =






x(k) ∈ Rn,

∣∣∣∣∣∣∣∣∣∣∣

∃x(0), . . . ,∃x(k − 1),

∀k1 ∈ {0, . . . , k − 1}

x(k1 + 1) = fk1(x(k1))∧

i∈{0,...,ℓ}

(gk1(x(k1)) ∈ Y(k1))






. (1.2)

In this formula the operator ∧ is the logical and operator. The set X(k) can be computed

recursively [BR71] as follows

X(k + 1) = fk (X(k)) ∩
(
fk ◦ g

−1
k

)
(Y(k)) . (1.3)

In practice, it may happen that some of the y(k), the actual value the output vector at time k,

do not belong to their corresponding sets Y(k). In such a case, we say that Y(k) is an outlier.

Dealing with outliers has already been consider by several authors, in a set membership context

(see, e.g., [NV93], [LWG87], [PW96], [KLP+03]). To robustify bounded error methods against

these outliers, we shall make the following assumption:

MNO (Minimal Number of Outliers) assumption: Outliers may exist for the outputs but

within any time window of length ℓ we never have more than q outliers.

We can thus define the feasible set X(k) as the set of all feasible values for x(k), i.e., the set of

all x(k) that could be reached by assuming less than q outliers within any time window of length

ℓ. More rigorously, X(k) is defined as follows:

X(k) =






x(k) ∈ Rn,

∣∣∣∣∣∣∣∣∣∣

∃x(−ℓ), . . . , ∃x(0), . . . , ∃x(k − 1),

∀k1 ∈ {−ℓ, . . . , k − 1},x(k1 + 1) = fk1(x(k1))

∀k2 ∈ {0, . . . , k − 1},

{q}∧

i∈{0,...,ℓ}

(gk2−i(x(k2 − i)) ∈ Y(k2 − i))






. (1.4)

In this formula the operator

{q}∧
is the relaxed ’and’ operator. It means that q of the ℓ + 1 set-

membership constraints are allowed to be violated. For instance

{1}∧
(a ∈ A, b ∈ B, c ∈ C)⇔ (a ∈ A ∧ b ∈ B) ∨ (a ∈ A ∧ c ∈ B) ∨ (b ∈ A ∧ c ∈ B) ,

where ∨ and ∧ stand for or and and respectively.

If our MNO assumption is true, then for each k, the true value for the state vector belongs to X(k).

This paper proposes an interval constraint propagation approach to recursively compute a box

which encloses X(k), for all k. Or, equivalently and in a control point of view, we shall build an

interval observer robust with respect to outliers. The two integers q and ℓ will be the parameters
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of this observer. Note that interval constraint propagation methods have been shown successful

for several state estimation problems (see, e.g., [JKBW01], [RRC04] or [GB06]). However, these

techniques have never been used for state estimation in the context where outliers could occur.

Section 2 provides a recursive definition of the set of feasible set for the state vectors. The method-

ology that is used for characterizing the feasible set is detailed in Section 3. As an illustration,

Section 4 deals with the control and the localization problem of an underwater robot moving inside

a swimming pool. Section 5 will then conclude the paper.

2. Recursive formulation for the feasible set

2.1. Relaxed intersection

Consider n sets X1, . . . ,Xm of Rn. The q-relaxed intersection denoted by

{q}⋂
Xi is the set of all

x ∈ Rn which belong to all Xi’s, except q at most. Figure 2.1 illustrates this notion for m = 6

and q = 2, 3, 4. For this example, we have

{0}⋂
Xi =

{1}⋂
Xi = ∅,

{5}⋂
Xi =

⋃
Xi and

{6}⋂
Xi = R

2. (2.1)

Since the q-relaxed intersection can be written as a combination of unions and intersections, it is

inclusion monotonic, i.e.,

(X1 ⊂ Y1, . . . ,X6 ⊂ Y6)⇒

{q}⋂

i∈{1,...,m}

Xi ⊂

{q}⋂

i∈{1,...,m}

Yi.

This inclusion monotonicity is illustrated by Figure 2.2 in the case where the Yi’s are boxes. Note

that the q-relaxed intersection of m boxes is not necessarily a box.

2.2. Feasible sets for the state

The following new theorem provides a recursive definition for the feasible set X(k+1) for the state

vector.

Theorem 2.1. If all fk are bijective functions, then feasible set for the state vector assuming

less than q outliers inside a time window of length ℓ (it is our MNO assumption made on the

introduction) is

X(k + 1) = fk (X(k)) ∩

{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1
k−i (Y(k − i)) , (2.2)
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Figure 2.1: Illustration (in gray) of the q-relaxed intersection the 6 sets X1, . . . ,X6 where q ∈

{2, 3, 4}

where

f ik(x(k − i)) = fk◦fk−1◦ . . . ◦ fk−i (x(k − i)) . (2.3)

Moreover, if

X(k + 1) ∩ f ik◦g
−1
k−i (Y(k − i)) = ∅, (2.4)

then the k − i data set Y(k − i) an outlier (i.e., y(k − i) /∈ Y(k − i)).

This theorem is illustrated by Figure 2.3 for ℓ = 2 and q = 1. The actual state vectors and

outputs are represented by the small black disks. In the situation represented on the figure, an

outlier occurs at time k − 1. Moreover, since X(k + 1) ∩ f1k◦g
−1
k−1 (Y(k − 1)) = ∅, then we detect

that y(k − 1) is an outlier.

Proof of the theorem: From Equation (1.4), we have

X(k + 1) =






x(k + 1) ∈ Rn,

∣∣∣∣∣∣∣∣∣∣

∃x(−ℓ), . . . , ∃x(0), . . . , ∃x(k),

∀k1 ∈ {−ℓ, . . . , k},x(k1 + 1) = fk1(x(k1))

∀k2 ∈ {0, . . . , k},

{q}∧

i∈{0,...,ℓ}

(gk2−i(x(k2 − i)) ∈ Y(k2 − i)) .






(2.5)
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Figure 2.2: Illustration of the inclusion monotonicity of the q-relaxed intersection (in dark grey

for the Xi’s and in light grey for the Yi’s)

Figure 2.3: The feasible set for the state vector X(k + 1), assuming at most q = 1 outlier, can be

defined recursively from X(k) and from the data sets Y(k),Y(k − 1),Y(k − 2).
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Since
(∀k1 ∈ {−ℓ, . . . , k},x(k1 + 1) = fk1(x(k1)))

⇔






x(k + 1) = fk(x(k))

x(k) = fk−1(x(k − 1)))
...

x(−ℓ+ 1) = f−ℓ(x(−ℓ))






⇔






x(k + 1) = fk(x(k))

x(k + 1) = fk ◦ fk−1(x(k − 1))
...

x(k + 1) = fk ◦ fk−1 ◦ · · · ◦ f−ℓ(x(−ℓ))






(2.3)
⇔






x(k + 1) = f0k (x(k))

x(k + 1) = f1k (x(k − 1))
...

x(k + 1) = fk+ℓk (x(−ℓ))






⇔






x(k) = (f0k )
−1
(x(k + 1))

x(k − 1) = (f 1k )
−1
(x(k + 1))

...

x(−ℓ) =
(
fk+ℓk

)−1
(x(k + 1))





,

the proposition (2.5) becomes

X(k + 1) =





x(k + 1) ∈ Rn,∀k2 ∈ {0, . . . , k},

{q}∧

i∈{0,...,ℓ}

gk2−i ◦
(
fk−k2+ik

)−1
(x (k + 1)) ∈ Y(k2 − i)






By applying the equivalence

g(b) ∈ A⇔ b ∈ g−1 (A) , (2.6)

we get

X(k + 1) =





x(k + 1) ∈ Rn, ∀k2 ∈ {0, . . . , k},

{q}∧

i∈{0,...,ℓ}

x (k + 1) ∈ fk−k2+ik ◦ g−1k2−i (Y(k2 − i))






or equivalently

X(k + 1) =
⋂

k2∈{0,...,k}

{q}⋂

i∈{0,...,ℓ}

fk−k2+ik ◦ g−1k2−i (Y(k2 − i)) . (2.7)
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By decomposing the intersection indexed by k2 ∈ {0, . . . , k} into two parts ({0, . . . , k − 1} and

{k}), we get

X(k+1) =




⋂

k2∈{0,...,k−1}

{q}⋂

i∈{0,...,ℓ}

fk−k2+ik ◦ g−1k2−i (Y(k2 − i))



 ∩




{q}⋂

i∈{0,...,ℓ}

f ik ◦ g
−1
k−i (Y(k − i))



 .

(2.8)

We shall now prove that the left part of this intersection corresponds to fk (X(k)). We have

fk (X(k))
(2.7)
= fk




⋂

k2∈{0,...,k−1}

{q}⋂

i∈{0,...,ℓ}

fk−1−k2+ik−1 ◦ g−1k2−i (Y(k2 − i))



 .

Now, since fk is bijective, it is distributive with respect the intersection and union. Moreover, the

relaxed intersection can be defined as a composition of intersections and unions. As a consequence,

fk (X(k)) =
⋂

k2∈{0,...,k−1}

{q}⋂

i∈{0,...,ℓ}

fk ◦ f
k−1−k2+i
k−1 ◦ g−1k2−i (Y(k2 − i)) . (2.9)

Now, by using the definition of f ik (see (2.3)), we have

fk ◦ f
k−1−k2+i
k−1 = fk ◦ fk−1◦ . . . ◦ f(k−1)−(k−1−k2+i) = fk◦ . . . ◦ fk2−i = fk◦ . . . ◦ fk−(k−k2+i) = f

k−k2+i
k .

Thus

fk (X(k)) =
⋂

k2∈{0,...,k−1}

{q}⋂

i∈{0,...,ℓ}

fk−k2+ik ◦ g−1k2−i (Y(k2 − i)) (2.10)

which corresponds to the left part of the intersection in (2.8). This terminates the proof of

Equation (2.2). We shall now prove the last part of the theorem given by (2.4). If the assumption

of the theorem are satisfied, the true value for the state at time k+1 satisfies x (k + 1) ∈ X(k+1).

If X(k + 1) ∩ f ik◦g
−1
k−i (Y(k − i)) = ∅, then

x (k + 1) /∈ f ik◦g
−1
k−i (Y(k − i)) (2.11)

which implies that

y (k − i) = gk−i◦
(
f ik
)−1

(x (k + 1)) /∈ Y(k − i). (2.12)

The k − i data is thus an outlier. �

Figure 2.4 assumes the conditions of Figure 2.3, with q = 1. Whereas in the situation of Figure

2.3, we were able to detect that y(k − 1) were the outlier, in the situation represented on the left

part of Figure 2.4, we are only able to detect that either y(k−1) or y(k−2) is an outlier and that

y(k) cannot be an outlier. On the right of Figure 2.4, since
⋂
i f
i
k◦g

−1
k−i (Y(k − i)) is not empty,

we are not able to detect if there exists an outlier. Note that in both cases represented on Figure

2.4, y(k − 1) is an outlier and X(k + 1) encloses the actual state vector. This property will be

true as long as a maximum of q outliers could occur on a window of length ℓ (which is our MNO

assumption).
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Figure 2.4: Left: we are able two detect that either y(k − 1) or y(k − 2) is an oulier; Right: we

are not able to detect that there exists an outlier.

2.3. Enclosing the feasible sets

The sequence of sets given by Equation (2.2) is very difficult to compute exactly, except for some

unrealistic situations. Here, we shall assume that the sets Y(k) are boxes or can be enclosed by

boxes denoted by [y](k). We shall also assume also that the set X(k) can be included into a box

[x](k). Because of the inclusion monotonicity of the q-relaxed intersection, we have the enclosure

X(k + 1) ⊂ fk ([x](k)) ∩

{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1
k−i ([y](k − i)) . (2.13)

If we are able to compute a box [x](k + 1) such that

[x](k + 1) ⊃ fk ([x](k)) ∩

{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1
k−i ([y](k − i)) (2.14)

then, we will be able to generate a sequence of boxes which encloses the sequence of sets X(k).

The following section will explain how such an enclosing box [x](k + 1) can be computed.

3. Relaxed set inversion

3.1. Problem

We shall consider in this section the relaxed set inversion problem which consists in finding a box

enclosing the set defined by

X
def
= [x] ∩

{q}⋂

i∈{1,...,ℓ}

f−1i ([y](i)) . (3.1)
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Note that this problem is very similar to finding a box enclosing the set X(k + 1) defined by

(2.2), except that the notations have been simplified for the sake of clarity. The correspondence

between this problem and that of finding [x](k + 1) satisfying (2.14) is as follows: f−1i ↔ f ik◦g
−1
k−i,

[y](i)↔ [y](k − i), X↔ X(k + 1) and [x] corresponds to a box enclosing fk ([x](k)).

3.2. Algorithm

We shall now present a new algorithm which solves the relaxed set inversion problem The principle

of the method for solving the relaxed set inversion problem is illustrated by figure 3.1. In this

figure, we used the notation

Xi = f
−1
i ([y](i)) . (3.2)

Subfigure (a) represents the sets Xi with the solution set X (hatched), representing the q-relaxed

intersection we would like to enclose (here, q = 1). For each i, we first enclose the sets [x] ∩ Xi
by boxes [x](i) as represented with dash line boxes on subfigure (b). On subfigure (c), the two

grey boxes represents the q-relaxed intersection of the boxes [x](i). We compute a box enclosure

(hatched box) of this q-relaxed intersection. On subfigure (d), we are in the same situation as

we were on subfigure (a). The current box still encloses X but is now smaller. The process

can be iterated once more as illustrated by subfigures (e) and (f). We will then converge to a

steady box quickly, even if the dimension n of x is high. The accuracy of the enclosure can be

controlled by allowing several bisections of the current box into subboxes and by iterating the

contraction procedure on each subbox. The algorithm RSIVIA (for Relaxed Set Inverter Via

Interval Analysis) for solving the relaxed set inversion problem is given by Table 3.1.

Table 3.1: Algorithm for solving the relaxed set inversion problem
Algorithm RSIVIA(in: [x], f 1, . . . , fℓ, q, out: [x̄])

1 L := {[x]} ;

2 while we still have time and L �= ∅

3 pull ([x],L) ;

4 Repeat several times

5 for i = 1 to ℓ, compute [x](i) which encloses [x] ∩ f−1i ([y](i))

6 [x] :=




{q}⋂

i∈{1,...,ℓ}

[x](i)





7 end repeat

8 if [x] �= ∅, bisect [x] and push the resulting boxes into L

9 end while

10 [x̄] = ⊔ (L)

Step 1: The list L contains boxes, the union of which encloses X. It is a queue (i.e., it has a first
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Figure 3.1: Principle of the contraction procedure for the relaxed set inversion problem
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in first out structure) and is initialized with the single box [x].

Step 2: The algorithm RSIVIA should take less than the sampling time (between k and k + 1)

for real time applications. This is why we should contract as much as possible the list L within

the allocated time.

Step 3: The first box (i.e., the one which is waiting to be processed since the longest time) is

pulled out from the list.

Step 4: The contraction procedure is iterated a number of times fixed in advance (for instance

10 times) for real time applications. If no real time implementation is required, it is better to

contract until no more significant contractions of [x] can be observed.

Step 5: For all i, a box [x](i) enclosing [x] ∩ f−1i ([y](i)) is computed. This can be done efficiently

using interval analysis [Moo66] combined with constraint propagation methods. For the applica-

tion presented in this paper, a single forward-backward contraction procedure (see e.g. [L. 01]) is

implemented to compute the [x](i)’s.

Step 6: A box enclosing the q-relaxed intersection of the [x](i)’s is computed. Here [A] represents

a box (as small as possible) enclosing A. Note that computing the q relaxed intersection of ℓ boxes

has a polynomial complexity, if the dimension n of the boxes is fixed (see, e.g., [BR07]), but the

complexity of this problem is exponential with respect to n. Figure 3.2 illustrates the principle of

such an algorithm. First, generate (2ℓ− 1)n boxes as on the subfigure (b). Select all boxes whose

centers belong to at least ℓ−q of the ℓ initial boxes Finally, take the enveloping box of all selected

boxes. For the test case of Section 4 a much efficient algorithm has of course been implemented

but the theoretical complexity remains the same (i.e., O (ℓn)).

Step 7: The current box is bisected into two smaller boxes. These two boxes are pushed at the

end of the queue L.

Step 8: The algorithm returns the smallest box [x̄] enclosing all boxes stored in L (represented

here by the box union operator ⊔).

3.3. Application to the enclosure of the feasible set

Recall that (see (2.14)), at each step, we have to compute a box enclosure [x](k + 1) for the set

fk ([x](k)) ∩

{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1 ([y](k − i)) (3.3)

which has been proven to enclose X(k + 1), in Section 2.3. Using interval arithmetic [Moo66], a

box [z](k) enclosing the set fk ([x](k)) can easily be computed. Since the functions fk have been

assumed to be bijective, this is also the case for the functions f ik. Thus, we can call the algorithm
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Figure 3.2: Illustration of the principle of polynomial method which computes the smallest box

which contans the q-relaxed intersection of ℓ boxes

RSIVIA([z],gk ◦ (f
0
k )
−1
, . . . ,gk−ℓ ◦

(
f ℓk
)−1

, q) which will return a box [x](k+1) enclosing X(k+1).

An illustration of the procedure is given on Figure 3.3.

4. Application to the localization and control of an underwater robot

To illustrate the efficiency of the approach, we shall consider the problem of the localization

of an underwater robot. Note that set-membership methods have often been considered for the

localization of robots (see, e.g., [MPRH96], [HM96], in the case where the problem is linear and also

[CGLP02] when the robot is underwater). In situations where strong nonlinearities are involved,

interval analysis has been shown to be particularly useful (see, e.g., [MLJW02], where the first

localization of an actual robot has been solved with interval methods). Here, the approach is

made more efficient by the addition of constraint propagation techniques.

Assume the robot is described by the following state equation





ẋ = v cos θ

ẏ = v sin θ

θ̇ = u2 − u1
v̇ = u1 + u2 − v.

(4.1)

This model corresponds to an underwater robot with a constant depth (the depth regulation of

the robot is assumed to be already solved and will not be considered here) and with no roll and

pitch. Thus, our robot can be seen as a two-dimensional robot. The localization problem for this
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Figure 3.3: Computation of a the box [x](k + 1) (hatched box) which encloses the feasible set

X(k + 1)

type of robot in the presence of outlier is similar to that treated in [MLJW02] or [KJWM00],

but, in these two papers, the outliers was treated with a static manner, i.e., at each k a lot of

measurements were collected (24 sensors were available for the application treated). The robot

pose had to be consistent with all measurements made at time k except q of them. Here, the

outliers have to be treated in a dynamic manner: the maximum number of allowed outliers is not

defined for each k, but for all feasible time windows of a given length.

4.1. Observer

The system can be discretized as follows






x(k + 1) = x(k) + δ.v(k). cos (θ(k))

y(k + 1) = y(k) + δ.v(k). sin (θ(k))

θ(k + 1) = θ(k) + δ. (u2(k)− u1(k))

v(k + 1) = v(k) + δ. (u1(k) + u2(k)− v(k))

(4.2)

or equivalently by

x(k + 1) = fk (x(k)) , (4.3)
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where δ is the sampling time, x = (x, y, θ, v) is the state vector and

fk






x1
x2
x3
x4





=






x1 + δ.x4. cos (x3)

x2 + δ.x4. sin (x3)

x3 + δ.u2(k)− δ.u1(k)

x4 + δ.u1(k) + δ.u2(k)− δ.x4





. (4.4)

Note that the function fk is invertible as required by the condition of the Theorem 2.1. The

expression of f−1k is

f−1k






x1
x2
x3
x4





=






x1 −
δ
1−δ

(x4 − δ.u1(k)− δ.u2(k)) . cos (x3 − δ.u2(k) + δ.u1(k))

x2 −
δ
1−δ

(x4 − δ.u1(k)− δ.u2(k)) . sin (x3 − δ.u2(k) + δ.u1(k))

x3 − δ.u2(k) + δ.u1(k)
1
1−δ

(x4 − δ.u1(k)− δ.u2(k))





.

The robot is assumed to move inside a swimming pool with a known shape. It is equipped with

a sonar which makes it possible to measure the horizontal distance between the robot and the

border of the pool following the direction pointed by the sonar. The sonar turns on itself and we

shall denote by α the angle between the direction of the sonar and the axis of the robot. If the

swimming pool is composed with planar vertical walls, the observation equation of the system is

d = gk (x) , (4.5)

where the observation function gk is given by the algorithm of Table 4.1. When walls have a more

complicated shape, such as cylinder, the algorithm could be adapted. In this algorithm, Step 1

computes the directional vector −→u of the sonar. In Step 2, m is the position of the center of the

robot. The loop of Step 3 is run for each segment [aj,bj ] with endpoints aj and bj. The condition

of Step 4, checks whether or not the line (m,−→u ) crosses the segment [aj ,bj]. Step 5 computes the

distance dj between the robot and the corresponding wall with respect to the direction −→u . Only

the minimum of all the distances di can be the distance between the robot and all the walls with

respect to −→u . This is illustrated by Figure 4.1, left. As shown on Figure 4.1, right, the angle α

between the sonar and the robot depends on k.

Even if the functions fk and gk are strongly nonlinear, the interval contraction methods required

by RSIVIA can be used efficiently to compute a box [x](k) which encloses the feasible set X(k).

The center x̂(k) of this box is returned by the observer as an estimation of the actual state vector

for the robot. It is this estimate that will be used by the controller to compute the control vector

u(k).

4.2. Controller

The principle of the controller is described on Figure 4.2. First, a mission planner sends to the

controller a waypoint (xw, yw) that has to be reached by the robot. When the current waypoint is
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Table 4.1: Distance measured by the sonar between the robot and the wall (assumed to be planar

and vertical), following the direction pointed by the sonar

Algorithm: gk(in: x, y, θ, out: d)

1 −→u = (cos (θ + α(k)) ; sin (θ + α(k))) , d =∞

2 m =(x y)T

3 for j = 1 to nwalls
4 if det

(
aj−m,

−→u
)
.det

(
bj−m,

−→u
)
≥ 0 then next j

5 dj :=
det(m−aj ,bj−aj)

det(−→u ,bj−aj)

6 if dj < 0 then next j

7 d := min (d, dj)

8 next j

9 return (d).

Figure 4.1: Left: distance that is supposed to be returned by the sonar; Right: when the robot is

moving, the sonar turns around the robot
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Figure 4.2: Principle of the control of the underwater robot

considered as reached with a given precision (i.e., (x̂− xw)
2 + (ŷ − yw)

2 ≤ ε), the planner sends

the next waypoint. The controller that has been chosen is given by the following expression:

u =

(
1− ω

1 + ω

)
, where ω = sign

(

det

(
cos θ̂ xw − x̂

sin θ̂ yw − ŷ

))

.

The main advantage of this controller is its simplicity. The direction to be followed by the robot

is given by the vector e = (xw − x̂, yw − ŷ)
T. The estimated orientation of the robot is given by

the vector v =
(
cos θ̂, sin θ̂

)T
. If v is on the right of e (i.e., det (v, e) < 0), we turn right (ω = 1)

otherwise, we turn left (ω = −1).

4.3. Results

To illustrate the behavior of our observer and controller, we consider the problem of localization

and control of an underwater robot moving inside a pool with four vertical planar walls and one

vertical cylinder (which plays the role of an artificial island inside the pool). Since all walls are

vertical, a projection onto the (x, y)-plane is sufficient to characterize them. The coordinates of

the corners made by the vertical walls are given by

x 0 13 15 0

y 0 0 10 8

and the circle corresponding to the vertical cylinder has a center at (10, 5) and a radius equal to

2.8m. The mission planner has to send the three following waypoints (4, 5) , (4, 2) and (1.5, 1).

Once a waypoint is thought to be reached with a precision less than 0.5m, the planner sends the

next waypoint, until all waypoints have been sent. The sampling time is chosen as δ = 0.0625s.

The length of the sliding time window is chosen as ℓ = 40, which corresponds to one complete
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Figure 4.3: Actual (black) and estimated (gray) trajectory of the robot.

turn of the sonar. The number of allowed outliers inside a time window of length ℓ is chosen as

q = 10. In our simulation, an outlier is generated with a probability of 0.1. In such a case, the

measured distance returned by the simulated robot is fixed at 15m. This choice will facilitate the

visualization of the results. Moreover, we added to the measured distance a white noise with a

uniform distribution inside the interval [−0.03, 0.03], which correspond to an error of ±3cm.

The results obtained by our observer and controller are illustrated by Figures (4.3) and (4.4).

The total computation time is less than 30sec on classical personal computer, which makes the

approach consistent with real time applications. Figure (4.3) represents the shape of the pool,

the trajectory performed by the robot (in black) and the estimated trajectory (small gray squares

which represent the centers of the boxes that have been proven to enclose the actual position). On

this figure, point (a) represents the initial position for the robot. Points (b),(c) and (d) are the

waypoints that have to be reached by the robot. Note that once point (d) has been reached, the

mission is finished. A zoom of a part of the trajectory is drawn at point (e). One may see the gray

boxes representing the estimated position returned by our observer. At point (f) is represented

the vertical cylinder which is inside the pool. To make the interval observer working, we had to

adapt the observation function provided by Table 4.1, by taking into account the presence of the

cylinder. This algorithm is much longer and is not given here for the sake of clarity.
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Figure 4.4: The interval observer computes intervals that are guaranteed to enclose all the feasible

state variables x, y, θ, v. It also filters the measured distance d.
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Figure 4.5: From the current estimated state vector, one is able to reconstruct the past. This can

be used for instance to detect which data are outliers.

Figures (4.4) presents the temporal behavior of our interval observer. For each sampling time,

the actual state vector (x(t), y(t), θ(t), v(t)) and the measured distance d(t) are depicted. Point

(a) represents the initialization step. Its duration corresponds to the length of the sliding window

(i.e., ℓ.δ = 40 ∗ 0.0625 = 2.5sec). The vertical bar on (b) indicates the end of the initialization

step. A zoom of a sliding window is represented at point (c). The data collected are represented

by the black points and the filtered distance, by the small gray squares. One can see that, inside

this window, we have 9 outliers (recall that all of them correspond to a distance of 15m) which

is consistent with the assumption that a maximum of 10 outliers could occur inside a window of

length ℓ. A typical outlier is represented at point (d). At point (e), we can see a local minimum in

the measured distance. This minimum usually corresponds to a situation where the sonar beam is

orthogonal to one of the wall, but of course, we don’t know a priori which wall it is. At point (f),

an outlier has been detected and the estimated distance is far from the measured distance. Point

(g) provides some intervals [x(t)] enclosing x(t). When this interval is large, the approximation is

less accurate. However, for our testcase, the center is always a good approximation of x(t) and it

is the center that is used by the controller. Such enclosing intervals are also provided for y(t), θ(t)

and v(t). All these intervals are proven to to enclose the state variables as long as our MNO

assumption is satisfied. Note that, for each t, from the current estimated state vector, one is able

to reconstruct the past (see Figure 4.5). The small circle represents the position of the robot at

the current time.

4.4. SAUC’ISSE

The principle of our observer and controller have been implemented on an actual submarine robot

that participated to the SAUC’E (Student Autonomous Underwater Competition, European)

competition that took place on July 2007 in Portsmouth, England. This competition has been
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Figure 4.6: A photo of the underwater robot SAUC’ISSE

organized by DGA (France) and DSTL (UK). For more information, see

http://www.dstl.gov.uk/news_events/competitions/sauce/

Of course, many technical adaptations have to be done in order to take into account the real

time requirement, a more complicated state space model, the depth, roll and pitch control, the

informations given by the cameras, . . . However, the principle of the estimation of (x, y, θ, v)

remains the same. The robot, named SAUC’ISSE (SAUCe Interval Super Submarine of Ensieta),

has been build by student of the ENSIETA Engineering school, Brest, France. A photo of this

robot is given on Figure 4.6. Our team won the third place at the competition and got the price of

innovation for control. The robot was able to localize itself and to go from one waypoint to another.

Unfortunately, it was not able to find some targets and during its mission it suddenly sunk for

some low-level software reasons. One should note that interval analysis has often been used for

offline robotic applications [MLJW02], [DDEBC05], [Por05], [GB06], [LP03], [VSVJ06], [DJC06],

. . . , but to my knowledge, SAUC’ISSE is the first robot which embeds interval computation (i.e.,

which control its trajectory using online interval methods).

5. Conclusion

In this paper, a new observer has been presented with several nice properties that we shall now

recall.
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• The observer is robust with respect to outliers. By propagating the assumptions on the

possible outliers through time, we are able to be robust with respect to a bounded number

of outliers, even if we have a small number of outputs in our system. To my knowledge,

with existing methods, we were only able to detect outliers in a static way. It should

be noted that the principle of propagating outlier assumptions could also be adapted to

probabilistic observers (such as Kalman or particle filters [TBF05]) that are not based on

some set membership assumptions.

• The observer is reliable with respect to nonlinearities. Thanks to interval analysis, we were

able to deal with some nonlinear (or nondifferentiable and even noncontinuous) state equa-

tions, without linearizing or approximating them.

• The observer can be used for real time applications. Constraint propagation techniques,

combined with interval analysis, have been used to contract the domains for the variables

involved in our problem. These techniques are known to be very efficient even when the

number of variables is high. An implementation on an actual robot has also demonstrated

the feasibility of our approach when real time is required.

The principle of the approach is based on a new theorem that made it possible to compute

recursively the set of all state vectors that are consistent with some bounded errors and a maximal

number of outliers within any time window of a given length. A proof of this theorem has also

been provided. A testcase illustrating the efficiency of the approach has been treated. The C++

source code of the simulation as well as an executable program are made available at the following

address:

http://www.ensieta.fr/e3i2/Jaulin/sauce_article_auto.zip

Some limitations of our approach should also be mentioned.

• The evolution function of the state model is assumed to be invertible with respect to the

state vector. But no answer has been given is the case where this function is not invertible

anymore.

• When dealing with continuous systems, a discretization should be done and the guarantee

is lost. Now, there exists some interval-based methods that discretize state equations in a

guaranteed way (see e.g., [RRC04]). It remains to study how such an interval discretization

could be combined with the approach proposed here to keep guaranteed results.

• When the assumption on the maximum number of outliers is not satisfied anymore, the

observer may return an emptyset. What should we do in such a situation ? Should we

stop the robot to start a new initialization, and should we increase the number of allowed

outliers, in an adaptative way . . .
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All these questions that have not been studied in this paper show that it remains a lot of room

for improvements.
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