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A Nonlinear Set Membership Approach for the
Localization and Map Building of Underwater Robots

Luc Jaulin

Abstract—This paper proposes a set membership method based
on interval analysis to solve the simultaneous localization and map
building (SLAM) problem. The principle of the approach is to
cast the SLAM problem into a constraint satisfaction problem for
which interval propagation algorithms are particularly powerful.
The resulting propagation method is illustrated on the localization
and map building of an actual underwater robot.

Index Terms—Interval analysis, interval propagation, localiza-
tion, set-membership estimation, simultaneous localization and
map building (SLAM), underwater robots.

I. INTRODUCTION

THIS PAPER proposes a set-membership approach to deal
with simultaneous localization and map building (SLAM)

in a submarine context. The SLAM problem [19] for an au-
tonomous robot moving in an unknown environment is to build
a map of this environment while simultaneously using this map
to compute its location. Most approaches for the SLAM cast the
problem into a state estimation problem by including the land-
mark locations among the state variables [2], [7], [23]. Also,
see [9], [29], and [33] for the case of autonomous underwater
robots. Most of the proposed solutions are based on probabilistic
estimation techniques (Kalman filtering, Bayesian estimation,
particle filters) [30], [31], which aim at blending data with some
state equations of the robot.

In this paper, a set-membership approach for SLAM (see,
e.g., [5] and [6]) is considered, and it is shown that this ap-
proach leads us to a huge set of nonlinear equations that can be
solved efficiently using interval analysis and constraint propa-
gation (see [24] and [25] for classical interval analysis, [12] for
interval optimization methods, and [15] for interval constraint
propagation and applications). The approach will be illustrated
on an experiment where an actual underwater vehicle is in-
volved. In this problem, we will try to find an envelope for the
trajectory of the robot and compute sets that contain some de-
tected seamarks. Note that for our experiment, the detections
of the seamarks are performed by a human operator, after the
mission of the robot. Thus, our problem can be considered as
an offline smoothing SLAM problem, i.e., the reconstruction of
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the robot trajectory and the map building are performed once
the measurements have been collected.

Set-membership methods have often been considered for the
localization of robots (see, e.g., [11] and [22] if the problem
is linear, and also [1] when the robot is underwater). In situa-
tions where strong nonlinearities are involved, interval analysis
has been shown to be particularly useful (see, e.g., [21], where
the first localization of an actual robot is solved with interval
methods). Classical interval analysis has been shown to be ef-
ficient in several SLAM applications (see [8] and [26], where
it is applied to SLAM of wheeled robots). Now, the resulting
techniques perform bisections, and thus, the complexity of the
resulting algorithms is exponential with respect to the number
of variables that are bisected. In this paper, the approach is made
more efficient by the use of interval propagation. With this ap-
proach, no bisection is performed and the resulting complexity
becomes polynomial (almost linear in practice for the SLAM
problem) with respect to the number of variables. Note that in
our case, the number of variables grows with time, since they
contain the robot pose at each time instant, as well as the mark
position. Although never used in this context, there exist many
other robotics applications where interval propagation has been
successful (see, e.g., [27] for state estimation, [10] for dynamic
localization of robots, [20] and [32] for control of robots, [3] for
topology analysis of configuration spaces, etc.).

The paper is organized as follows. We shall first present a set
membership approach for SLAM in Section II. By taking into
account the state equations of the robot and the interpretation
of the sensors in a bounded-error context, we will show that a
SLAM problem can be cast into a set of nonlinear equations
and inequalities. Section III will recall the basic notions of in-
terval analysis and constraint propagation needed to solve the
set of nonlinear constraints involved in our SLAM problem. In
Section IV, we consider the particular situation of the SLAM
in a submarine context that could be used by mine hunters.
The efficiency of the interval approach will be illustrated on
an actual experiment in Section V. A comparison between the
proposed approach and other classical Bayesian techniques will
be proposed in Section VI. Section VII will then conclude the
paper.

II. SET-MEMBERSHIP APPROACH FOR SLAM

A. Principle

We shall describe our SLAM problem as follows:
ẋ = f(x,u) (evolution equation)

y = g(x,u) (observation equation)

zi = h(x,u,mi) (mark equation)

(1)
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Fig. 1. Underwater robot with two state variables is able to measure the
distance between a seamark and itself.

where x(t) is the state vector of the robot, u(t) is its input
vector, y(t) is its output vector, mi is the location of the ith
mark, zi(t) is the measurement vector related to the ith mark,
and t ∈ [t0 , tf ] is the time. In a set membership context, we shall
assume the following.

1) For all t ∈ [t0 , tf ], we have boxes [u] (t) and [y] (t) en-
closing the vectors u(t) and y(t). If some components of
y or u are not measured, then the corresponding interval
will be ] −∞,∞[.

2) We have a finite subset M ⊂ [t0 , tf ] × {1, . . . , imax}
and bounded boxes [zi ] (t), where (t, i) ∈ M, such that
zi(t) ∈ [zi ] (t). The number of elements of the set M
corresponds to the number of times a mark has been de-
tected. If (t, i) ∈ M, then the ith mark has been detected at
time t.

In a set-membership context, the objective of SLAM is to
contract as much as possible all set-membership domains for
x(t),m1 , . . . ,mim a x , without removing any feasible value.

B. Simple Example

In this section, an academic problem involving a 2-D under-
water robot is presented. This problem has been chosen for the
following reasons: 1) it illustrates the main idea of SLAM; 2)
it will be used to show how interval propagation works (see
Section III-D); and 3) it is not easily solved using usual SLAM
methods such as the extended Kalman filter.

In the environment of the robot, we have one immobile sea-
mark m (see Fig. 1). The SLAM problem is described by the
following equations:

ẋ = u (state equation of the robot)

y = x (GPS, when available)

z = ‖x − m‖ (mark equation).

(2)

At time t = 0, the robot is at the origin, and thus, x(0) = (0, 0).
At time t = 4, the robot is at the surface and is able to measure
its location (with the GPS). At time t ∈ {1, 2, 3}, the robot
measures its distance z to the mark m. During its mission, at

each time t ∈ [0, 4], it also measures the input u with a known
accuracy.

Remark 1: For our simulation, the seamark is located at m =
(40, 60) and the chosen input u(t) is given by

The exact position of the robot as well as the exact distance to
the seamark can thus be computed for all t. As a consequence,
we get the following values for x and z:

The exact values for u(t) and m are given here for a better
understanding of the example and to allow the reader to check
the consistency of the results. But in what follows, the location
for m is unknown and u(t) is measured with a known accuracy.

The quantities that can actually be measured are u(t) for
each t ∈ [0, 4], z(t) for t ∈ {1, 2, 3}, and x(4). In a set mem-
bership context, these measurements translate into the intervals
[u] (t), [z] (t), and [x] (4), which enclose the true values for u(t),
z(t), and x(4). Define the quantity v(t) =

∫ t+1
t u(τ)dτ, t ∈

{0, 1, 2, 3}. From the intervals [u] (t), we are able to com-
pute intervals [v] (t) enclosing v(t), t ∈ {0, 1, 2, 3}. Our SLAM
problem can then be cast into the following set of equations:{

x(1) = x(0) + v(0), . . . ,x(4) = x(3) + v(3)

z(1) = ‖x(1)−m‖, . . . , z(3) = ‖x(3)−m‖
(5)

where some prior membership intervals (or domains) are known
for v(0),v(1),v(2),v(3),x(4), z(1), z(2), and z(3). These do-
mains are given by

where δz , δv , and δx are positive real numbers. Note that all
domains have the form [a] = [ å − δa , å + 2δa ], where å is the
true value for the variable a and δa is a tuning error coefficient.
These intervals have been chosen in order to satisfy the follow-
ing properties: 1) [a] always encloses the true value å for a;
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2) if δa = 0, then [a] becomes the degenerated interval [ å, å]
(i.e., a singleton { å}); 3) if δa > 0, then the center of [a] is not å;
this choice makes possible to avoid a particular unrealistic situ-
ation that could be favorable to some estimation methods. Any
other arbitrary choice for the interval domains that would satisfy
these three properties could have been done as well. Again, re-
member that the components of x(1),x(2),x(3), and m are not
measured, and thus, the associated prior intervals are ] −∞,∞[.

Interval propagation is a set of numerical methods that make
possible to contract the interval domains for the variables, with-
out losing any feasible value. After a brief presentation of inter-
val propagation, we will illustrate the efficiency of the approach
on our simple SLAM problem.

III. INTERVAL PROPAGATION

With an interval approach, a random variable x of R is often
represented by an interval [x] that encloses the support of its
probability function. This representation is, of course, poorer
than that provided by its probability density distribution, but
it presents several advantages; 1) since an interval with non
zero length is consistent with an infinite number of probability
distribution functions, an interval representation is well adapted
to represent random variables with imprecise probability density
functions; 2) an arithmetic can be developed for intervals, which
makes it possible to deal with uncertainties in a reliable and
easy way, even when strong nonlinearities occur; 3) when the
random variables are related by constraints (i.e., equations or
inequalities), a propagation process (which will be explained
later) makes it possible to get efficient polynomial algorithms
to compute precise intervals that are guaranteed to contain all
feasible values for the random variables.

A. Interval Arithmetic

An interval is a closed and connected subset of R. Consider
two intervals [x] and [y], and an operator � ∈ {+,−, . . . , /}, we
define [x] � [y] as the smallest interval that contains all feasible
values for x � y, if x ∈ [x] and y ∈ [y] (see [24]). If f is an
elementary function such as sin, cos, . . . , we define f([x]) as
the smallest interval that contains all feasible values for f(x)
if x ∈ [x]. Consider a constraint C (i.e., an equation or an in-
equality), some variables x1 , x2 , . . . involved in C, and prior
interval domains [xi ] for the xi’s. Interval arithmetic makes
it possible to contract the domains [xi ] without removing any
feasible values for the xi’s. For instance, consider the equa-
tion z = x + y, where the domains for x, y, and z are given by
[x] = [−∞, 5], [y] = [−∞, 4], and [z] = [6,∞]. These domains
can be contracted to [x′] = [2, 5], [y′] = [1, 4], and [z′] = [6, 9].
The resulting interval calculus is as follows:

z = x + y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4]) = [6, 9]

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞] − [−∞, 4]) = [2, 5]

y = z − x ⇒ y ∈ [−∞, 4] ∩ ([6,∞] − [−∞, 5]) = [1, 4].

A contraction operator is called a contractor.

Fig. 2. Illustration of the propagation procedure.

B. Propagation

When several constraints are involved, the contractions are
performed sequentially until no more significant contraction
can be observed (see [15] for more details). To illustrate the
propagation process, consider the following three equations:

(C1): y = x2

(C2): xy = 1

(C3): y = −2x + 1.

(6)

Using interval propagation, we want to prove that this system
has no solution. To each of the variables, we assign the domain
[−∞,∞]. Then, we contract the domains with respect to the
constraints in the following order: C1 , C2 , C3 , C1 , C2 , and we
get empty intervals for x and y. A geometric interpretation of the
propagation is given in Fig. 2. The resulting interval computation
is as follows:

(C1) ⇒ y ∈ [−∞,∞]2 = [0,∞]

(C2) ⇒ x ∈ 1/[0,∞] = [0,∞]

(C3) ⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) =
[
0,

1
2

]
(C1) ⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]

(C2) ⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅.

Remark 2: The interval propagation method converges to a
box that encloses all solutions (if there exists any), but the box
is not necessarily the smallest one. The box is said to be locally
consistent because it is consistent with all constraints taken in-
dependently. The smallest box that encloses all solutions is said
to be globally consistent. The problem of computing this small-
est box is NP-hard, and can be solved using bisection methods
only for problems involving few variables. In this paper, since
we want to solve large-dimensional problems, local consistency
methods will be used.

C. Complex Constraints

Contractors can be developed for complex constraints, but an
adaptation is often required (see, e.g., [15]). For instance, if we
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consider the constraint ṗ(t) = R(t)vr (t), where ∀t ∈ [t0 , t1 ],
R(t) ∈ [R] and vr (t) ∈ [vr ]. Since

p(t1)=p(t0)+
∫ t1

t0

R(t)·vr (t) ∈ p(t0) + (t1 − t0)·[R]·[vr ]

the domains for p(t0) and p(t1) can be contracted as follows:

[p] (t1) = [p] (t1) ∩ ([p] (t0) + (t1 − t0) · [R] · [vr ])

[p] (t0) = [p] (t0) ∩ ([p] (t1) + (t0 − t1) · [R] · [vr ]) .

For more information on the contraction of constraints described
by differential equations; see, e.g., [13]. There exist a lot of so-
phisticated methods to build contractors adapted to complex
constraints. Some of them combine interval methods with for-
mal calculus (for instance, by computing the derivatives of the
functions involved in the equations). Others have been built
for specific important constraints (such as distance or angle
constraints).

D. Forward–Backward Propagation

The interval propagation method converges to a box that con-
tains all solution vectors of our set of constraints. If this box
is empty, it means that there is no solution. It can be shown
that the box to which the method converges does not depend
on the order to which the contractors are applied [15], but the
computing time is highly sensitive to this order. There is no op-
timal order in general, but, in practice, one of the most efficient
is called forward–backward propagation. It consists of writing
the whole set of equations under the form f(x) = y, where x
and y correspond to quantities that can be measured (i.e., some
prior interval domains are given for them). Then, using interval
arithmetic, the intervals are propagated from x to y in a first step
(forward propagation) and, in a second step, the intervals are
propagated from y to x (backward propagation). The forward–
backward propagation is then repeated until no more significant
contraction can be observed. To illustrate the principle, con-

sider the equations (5). If x def= (x(0),v(0), . . . ,v(3),m) and

y def= (z(1), z(2), z(3),x(1), . . .,x(4)), then (5) can be rewrit-
ten under the form f(x) = y. The forward contraction can be
described by the following algorithm:

where [d] (k) is the box [d1 ] (k) × [d2 ] (k). The backward prop-
agation is described by

E. Results on Our Simple SLAM Example

Again consider the simple SLAM example of Section II-B. If
we apply an elementary interval propagation for different values
of δx , δv , and δz , we get the contracted intervals given in the
following table.

Case 1: δv = 0, δz = 0, δx = ∞. We are in the unrealistic sit-
uation with no noise on the evolution and no noise on
the distance measurements. An interval propagation
contracts the domains for m,x(1),x(2),x(3), and
x(4) (which were initially equal to ] −∞,∞[2) to
singletons. The obtained results are consistent with
the exact solution.

Case 2: δv = 1, δz = 0, δx = ∞. The evolution is now noisy
and we are still able to localize the mark with a rather
good accuracy. The localization of the mark allows a
small improvement of the accuracy on the trajectory
[see the domain for x(3)].

Case 3: δv = 1, δz = 1, δx = ∞. Now, there is also an error
in the distance measurement. The location of the mark
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is less accurate than that for case 2. This additional
error prevents any improvement in the accuracy of
the trajectory envelope.

Other cases have been considered. For instance, if δx is small,
the localization of the mark as well as the estimation of the
trajectory becomes more accurate. The computing time to get
the contracted intervals is always less than 0.1 s on a standard
laptop.

IV. SLAM IN A SUBMARINE CONTEXT

A. Mine Hunters

We shall consider a class of autonomous underwater robots,
which are called mine hunters. These robots are used to detect
near-shore underwater mines. Most mine hunters are equipped
with a loch-Doppler, a gyrocompass, an altimeter, and a barom-
eter. They also enclose one or two sidescan sonars to localize
seamarks such as rocks or mines. The SLAM problem of mine
hunters can be described by the SLAM equations (1), as will be
shown now.

B. Evolution Equation

Around the zone covered by the robot, let us build the frame
(O, i, j,k), where the vector i indicates the north, j indicates the
east, and k is oriented toward the center of the earth. Denote by
p = (px, py , pz ) the coordinates of the robot expressed in the
frame (O, i, j,k). The robot motion can be described by

ṗ = REuler(ϕ, θ, ψ) · vr (7)

where vr represents the speed vector of the robot measured
by a loch-Doppler and REuler(ϕ, θ, ψ) is the Euler rotation
matrix returned by the gyrocompass (the roll is ϕ, the pitch
is θ, and the head is ψ). Equation (7) corresponds to the first
equation of (1), where the state vector is p and the input vector
is u = (ϕ, θ, ψ, vx

r , vy
r , vz

r ).

C. Observation Equation

The observation equation is given by y = p and corresponds
to the second equation of (1). The first two coordinates px and
py of p can be measured by the GPS with an accuracy less than
2.5 m. Since electromagnetic waves (here, around 1.2 GHz)
do not propagate through the water, the GPS is operational
only when the robot is at the surface of the ocean. During a
typical underwater mission, the robot is able to measure only its
location with the GPS before diving and once it comes back to
the surface. A barometer is used to measure the depth pz of the
robot (i.e., the distance between the robot and the surface of the
ocean).

D. Mark Equation

To detect mines, a mine hunter uses a sidescan sonar that
has either an antenna starboard or an antenna portside. It may
also have two antennas on both sides. Sometimes, a mine hunter
uses a camera located below it and oriented toward the bottom.
A sidescan sonar sends a ping, i.e., a short ultrasonic wave on

Fig. 3. When the robot emits a ping (i.e., a short ultrasonic sound), it receives
an echo. (a) Robot and the propagation of the sound. (b) Intensity of the cor-
responding echo with respect to the distance. The quantity a is the distance
between the robot and the bottom. When d < a, no echo can be detected.

Fig. 4. Slice of the waterfall built by a sonar with one antenna starboard; this
sonar image makes it possible to detect a seamark (here, a mine) and compute
the distance r between the seamark and the robot.

a thin plane located on the right or on the left of the robot and
perpendicular to its main axis. It receives an echo, as illustrated
by Fig. 3.

From all these pings, the sidescan sonar builds a long image,
and a horizontal slice of such an image is represented by Fig. 4.
The image, called a waterfall, has a length that corresponds to
the distance covered by the robot during its mission. Its width
corresponds to the product of the distance covered by the sonar
by the number of antennas (one or two). After the mission, a
scrolling of the waterfall is performed by a human operator. He
is then able to get an estimation r̃(t) of the distance r(t) between
the robot and the seamark detected at time t. From the width of
the black vertical strip on the left of the picture (called the water
column), we are also able to compute an estimation ã(t) of the
altitude a(t) of the robot (distance between the robot and the
bottom), but this estimation is less precise and less robust (i.e.,
it can generate outliers) than that provided by the loch-Doppler.
Thus, we will not take it into account for the SLAM.

When the human operator detects a seamark on the waterfall,
he is able to see if it is on the right or on the left of the robot, and
he is also able to measure the distance between the robot and
the mine. As a consequence, we shall define the lateral distance
between the robot at position p and the ith mark mi as follows:

r(p, ψ, θ, ϕ,mi)
def=


−‖ei‖

sign (jTr · ei)
, if

{
iTr · ei = 0

kT
r · ei ≤ 0

∞, otherwise
(8)
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Fig. 5. Distance between the robot and a seamark obtained using a lateral
sidescan sonar with an antenna starboard.

where ir , jr , and kr are the three column vectors of the rotation
matrix REuler(ϕ, θ, ψ) and

ei
def= p − mi . (9)

Let us now explain this definition (see Fig. 5). The lateral sonar
is able to detect only a mark that is on its lateral plane, per-
pendicular to the main axis of the robot. Thus, if the mark is
outside this plane (i.e., iTr · ei �= 0), the lateral distance will be
undefined (i.e., equal to ∞). Moreover, the detected mark is
always below the robot (i.e., kT

r · ei ≤ 0); otherwise, the lateral
distance is undefined (i.e., equal to ∞). If the mark is starboard
(i.e., jTr · ei ≤ 0), then, by convention, the lateral distance ri

is positive and equal to ‖ei‖. If it is portside (i.e., jTr · ei ≥ 0),
then ri = −‖ei‖. Moreover, if we assume that the ocean bottom
is approximately flat (at least locally), the altitude of the robot
and its depth can be used to get a measurement of the depth of
the seamark by the relation

mz
i = a + pz + si (10)

where si is a variable that could be bounded if we could give
a bound on the slopes of the bottom of the ocean in the area
covered by the robot. As a consequence, the mark equation is
composed of the lateral distance of the seamark and the depth
of the seamark. It has the form

zi = h(p,u,mi) =
(

r(p, ψ, θ, ϕ,mi)

mz
i

)
. (11)

Note that, since r(p, ψ, θ, ϕ,mi) is given by (8), the function h
is not continuous.

E. SLAM Formulation for Mine Hunters

The previous developments lead to the following SLAM for-
mulation [see (1))]:

ṗ = REuler(ϕ, θ, ψ) · vr

y = p

zi =
(

r(p, ψ, θ, ϕ,mi)

mz
i

) (12)

where u = (ϕ, θ, ψ, vx
r , vy

r , vz
r ) . Recall that in the context of

mine hunters, we have accurate interval domains for all compo-
nents of u(t) ∀t ∈ t ∈ [t0 , tf ]. We also have accurate domains
for ri(t) and mz

i for any pair (t, i) corresponding to a detection.

An interval propagation can thus be launched to find accurate
interval domains for all other variables involved in our set of
equations.

Remark 3: If a scalar decomposition of the vector equations
is performed, the set of constraints associated with the SLAM
problem involves ntnp + 3nm unknown variables that cannot be
measured, where nt is the number of sampling times, np = 3 is
the dimension of p, and nm is the number of mines. The number
of equations is nt (np + nz ), where nz is the dimension of zi .
For the actual experiment to be considered in Section V, we
will have nt = 60 000, nm = 6, and thus, we have a problem
with 180 018 variables for 300 000 equations. The fact that we
have more equations than unknowns creates the redundancy
needed by interval propagation methods to solve efficiently and
rigorously such high-dimension problems.

F. GESMI

In Section III, we have shown that a SLAM problem could
be cast into a set of nonlinear constraints where interval do-
mains were available for each variable. We have also presented
an interval propagation approach to contract domains for the
variables, and we have illustrated how interval propagation can
be used on the simple SLAM problem presented in Section II-B.
An interval SLAM solver named guaranteed estimation of sea-
marks with intervals (GESMI) [14] has been developed. The
interval propagation performed by GESMI is mainly based on a
forward–backward interval propagation (see Section III-D). The
reason for choosing a forward–backward strategy is mainly due
to the large number of constraints involved in our problem. There
exist two versions of GESMI: one running under a Windows
environment with a nice OpenGL-based interface and one run-
ning under Linux without graphical interface. Up to now, the
Windows version does not implement the outward rounding
needed to get the guarantee of the results with respect to round-
ing errors. On the other hand, the Linux version is based on the
validated interval library IBEX (http://ibex-lib.org/) and per-
forms an outward rounding for each interval operation. The
Windows solver as well as the data collected during the ex-
periment presented in the next section have been made avail-
able [14]. The software is easy to use and allows the reader to
get a quick idea about the efficiency of the method.

V. EXPERIMENTAL SETUP

A. Description of the Robot

The robot to be considered in this experiment (see Fig. 6)
is a mine hunter, named Redermor (means sea runner, in the
Breton language). This robot, developed by the Groupe d’Etude
Sous-Marine de l’Atlantique (GESMA), a center of the French
Defense Ministry that supervises most of the research in French
underwater robotics, has a length of 6 m, a diameter of 1 m,
and a weight of 3800 kg. It has powerful propulsion and control
system able to provide hovering capabilities. The main purpose
of the Redermor is to evaluate improved navigation by the use
of sonar information. Note that the use of sonars for improving
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Fig. 6. Autonomous underwater vehicle, Redermor, built by the GESMA.

the localization and the navigation has already been proven on
several robotics applications (see, e.g., [18]).

B. Description of the Mission and Sensors

The experiment to be presented now has been performed by
the GESMA in the Douarnenez bay, Brittany, France. At time
t0 = 0.0 s, the robot has been dropped approximately around
the position �̃0= (�̃0

x , �̃0
y ) = (−4.458227931◦, 48.212920614◦),

measured by the GPS, where �0
x is the west/east longitude and

�0
y is the south/north latitude. The error of the GPS is known

to be less than 0.0000135◦ for �0
x and less than 0.0000090◦ for

�0
y in this part of the earth that corresponds approximately to a

position error less than 2.5 m. When the robot surfaces, at time
tf = 5999.4 s, its position is also measured as �̃f = (�̃f

x , �̃f
y ) =

(−4.454660760◦, 48.219129760◦), with the same accuracy. The
loch-Doppler is a Workhorse Navigator Doppler Velocity Log
from RD-instruments company. The frequency of the waves are
around 300 kHz. The actual speed (in meters per second) is
known to satisfy

v̊r ∈ ṽr + 0.004 ∗ [−1, 1] · ṽr + 0.004 ∗ [−1, 1] (13)

where ṽr denotes the 3-D speed vector returned by the sensor
(see www.rdinstruments.com/navigator.html for more informa-
tion about these bounds). The loch-Doppler is also able to pro-
vide the altitude a of the robot with an error less than 10 cm. The
gyrocompass that has been used is an Octans III from IXSEA.
If we denote by (ϕ̃, θ̃, ψ̃) the angles (in radians) returned by our
gyrocompass, then the actual Euler angles for our robot should
satisfy (see www.ixsea.com for the technical characteristics of
the sensor) ϕ̊

θ̊

ψ̊

 ∈

 ϕ̃

θ̃

ψ̃

 +

 1.75 × 10−4 · [−1, 1]
1.75 × 10−4 · [−1, 1]
5.27 × 10−3 · [−1, 1]

 . (14)

If d̃ is the depth (in meters) collected by the barometer, then
the actual depth of the robot satisfies p̊z (t) ∈ [−1.5, 1.5] + d̃ +

0.2 ∗ [−1, 1]·d̃. The interval [−1.5, 1.5] may change depending
on the strength of waves and tides.

Thus, for each time t ∈ T def= {0.0, 0.1, 0.2, . . . , 5999.4s}, the
vector of measurements (ϕ̃(t), θ̃(t), ψ̃(t), ṽx

r (t), ṽy
r (t), ṽz

r (t),
ã(t), d̃(t)) is collected. This vector can be represented by a point
in the 8-D sensor space (where 8 is the number of corresponding
sensors) and approximates the actual value(

ϕ̊(t), θ̊(t),ψ̊(t), v̊x
r (t), v̊y

r (t), v̊z
r (t), å(t), p̊z (t)

)
(15)

for the measurement vector, with an error that can be bounded
by taking into account the characteristics of the sensors. For
each t ∈ T , we are thus able to get a box in R

8 that contains the
actual measurement vector.

The sidescan sonar used for detection is a KLEIN 5400 (see
www.l-3klein.com for detailed characteristics of this sensor). It
has a single-antenna-located starboard (i.e., on right-hand side)
and its scope is about 75 m. Every 0.1 s, the sonar sends a ping,
i.e., a short ultrasonic wave with frequency 455 kHz, on a thin
plane located on its right and perpendicular to the main axis
of the robot. From the sonar waterfall, provided by the robot
after its mission, six mines m0 , . . . ,m5 have been detected
manually. From these detections, the following mark table can
thus be built:

The table provides: 1) the time t a mine has been detected
starboard; 2) the number i of the detected mine; and 3) a measure
r̃i(t) of the lateral distance between the robot and the mine
mi . The actual distance r̊i(t) is assumed to satisfy the relation
r̊i(t) ∈ [r̃i(t) − 1, r̃i(t) + 1]. The set M of all (t, i) such that
the ith mine has been detected at time t can be built from the
mark table. We get

M= {(1054, 1), (1092, 2), (1373, 1), . . . , (5279, 5), (5688, 1)}.

For the flatness characteristics of the bottom, we took a maxi-
mum slope of 1%, which makes a measurement of the depth of
the mine mz

i with an accuracy less than 0.1 + 2.5 + 0.01 ∗ 75 =
3.35 m (0.1 m for the accuracy of a, 2.5 m for pz , and 75 m
for the distance covered by the lateral sonar). Fig. 4 is related
to the detection of a mine (here, it is a spherical floating mine
connected to its sinker by a tether).
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Fig. 7. Envelope enclosing the trajectory of the robot and the six boxes con-
taining the six mines detected by the sonar.

C. Results

We applied GESMI to solve the SLAM problem related to
this experiment. The results obtained after ten interval forward–
backward propagations are illustrated in Fig. 7. The envelope
painted gray encloses the trajectory of the robot, the six black
boxes contain the six mines detected by the sonar, and the two
black circles represent the initial and final poses of the robot.
These enclosures result from a merge of the information given
by the GPS (available at the beginning and at the end of the mis-
sion), the detected mines, the loch-Doppler, the gyrocompass,
and the barometer. The accuracy of the locations of the robot
and the mines is always better than 30 m. The computing time
to get these results is less than 30 s with a Pentium III under the
Windows version of GESMI (without the outward rounding).
With the Linux version of GESMI, which performs an outward
rounding, the computing time is less than 55 s. Note that both
versions provide exactly the same interval domains (up to five
significant digits).

Remark 4: We are not supposed to know the location of these
six mines. However, when we dropped them, we measured our
location with a GPS, and we used this information to check the
consistency of results obtained by the interval propagation.

Remark 5: Remember that our interval estimation has been
done after the mission, and thus, the robot did not use SLAM
to control its trajectory. During its mission, the robot localizes
itself using a dead reckoning approach (i.e., it does not use
the lateral sonar, but only the loch-Doppler, the gyrocompass,
and the barometer). The robot tries to follow a trajectory using
an elementary PID controller. The trajectory has been defined
through a list of waypoints that have to be reached. These way-
points have been given by the user before the mission. Dead
reckoning generates a drift that can be estimated here to 100 m
for 1-h mission, and thus, the waypoints have been reached with

a bad precision. However, this can be considered as sufficient
for controlling the robot for a 2-h mission in the ocean without
being lost. Now, the aim of our robot is to detect and localize
mines. This localization should be as precise as possible (less
than 30 m) in order to be able to send another teleoperated robot
equipped with cameras, to destroy the detected mines. Such a
reliable accuracy of 30 m could not have been obtained without
using a SLAM approach.

D. Waterfall

Fig. 8 contains the reconstructed waterfall (left side) and one
zoom (right side). Each column corresponds to one of the six
mines (i = 0, . . . , 5). The gray areas contain the set of all fea-
sible pairs (t, ‖ei(t)‖) obtained after the interval propagation.
The 12 small black disks correspond to the mines detected by
the human operator. From each disk, we can get the time t
at which the mine has been detected (y-axis), the number of
the mine, and the distance ri between the robot and the mine
(x-axis). Thus, from the 12 black disks in the figure, we are
able to reconstruct the mark table. Black areas correspond to all
feasible (t, ri). Some of these areas are tiny and are covered by
a black disk. Some are larger and do not contain any black disk.
In such a case, an existing mine has been missed by the operator
during the scrolling of the waterfall. As a consequence, with
the help of Fig. 8, the operator could again scan the waterfall
and find undetected mines much more efficiently. If the operator
is able to detect at least one more mark, then the propagation
algorithm can run again to get a thinner envelope for the tra-
jectory, thinner black areas in the reconstructed waterfall, and
thus, a higher probability to detect new mines on the waterfall.
The operator can thus be seen as a contractor inside an inter-
val propagation process. Up to now, the detection procedure is
done by hand. Now, new techniques for automatic detections of
seamarks are more and more reliable (see, e.g., [28] in the situa-
tion where the seamarks are mines). Such automatic detections
could, of course, be included in our propagation process.

VI. COMPARISON WITH EXISTING METHODS

The class of SLAM problems treated with the interval prop-
agation approach can also be treated using more classical
Bayesian smoothers. For instance, in the experiment consid-
ered in the previous section, a Kalman smoother leads to the
trajectory envelope represented by Fig. 9. To apply a Kalman
smoother, the Euler angles ϕ, θ, and ψ are assumed to be mea-
sured without any error (otherwise, the noise would become
multiplicative and Kalman filter would not apply) and the mark
equation has to be linearized. For our application, we observed
that the resulting envelope as well as the ellipses for the marks
are accurate and consistent with the results obtained by an in-
terval propagation. This consistency of the results is mainly due
to the fact that linearization as well as the assumption on the
exact knowledge of the Euler angles do not affect the quality of
the results. Let us now give a list a comparisons between the in-
terval propagation approach and other more classical Bayesian
approaches for SLAM.
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Fig. 8. Reconstructed waterfalls can help the human operator to find unde-
tected mines.

1) Reliability: If the assumption on both the model and the
bound errors are correct, then the interval method will
provide guaranteed results. This is not the case of other
Bayesian smoothers. The Kalman-based methods do not
provide any bound on the linearization errors and particle-
based methods do not provide any quantification of the
error due to the finite number of particles. Only the interval

Fig. 9. Confidence ellipses generated by a classical extended Kalman
smoother; the six thick ellipses correspond to the six mines.

propagation method is able to provide an envelope that
encloses all feasible trajectories of the robot in a nonlinear
context.

2) Inconsistency: When the model is not anymore valid (for
instance, when the robot meets the bottom), when outliers
occur in data, then the interval propagation method gen-
erally yields an empty set. An inconsistency often trans-
lates some anomalies during the mission of the robot,
and should thus be identified in order to realize a reliable
navigation system. Detecting inconsistencies can thus be
useful in practice to detect conception bugs that affect the
behavior of the robot.

3) Validation: On the one hand, if some sensors are not re-
liable or if the model is not precise enough, the interval
propagation system usually detects an inconsistency. On
the other hand, if the interval propagation provides a con-
sistent and small envelope for the trajectory and the marks,
then the robot equipped with its sensors can be considered
as reliable (this is not the case for the Kalman filter that
often provides a thin envelope even if some assumptions
on the sensors are wrong). As a consequence, the interval
propagation can be considered as a reliable way to validate
the quality of a navigation system.

4) Mark association: Interval propagation can easily be com-
bined with other propagation methods to deal with prob-
lems involving Boolean or integer variables. For instance,
if, in the mark table (16), we remove all mark numbers
in column 2, and if we only give the information that we
have six marks, then the propagation is able to find all
correspondences between marks in less than 3 m.

5) Approximation: Interval propagation methods never lin-
earize the equations (contrary to the Kalman smoother);
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they do not assume that the noise is additive; they do
not approximate probability density functions (contrary
to most Bayesian smoothers); they do not assume that the
computer computes with real numbers instead of floating
point numbers. Of course, they consider that the noise
is bounded, reliable boundaries are known, the model is
correct, and no outlier occurs, but these assumptions are
already in the definition of the problem. Interval propaga-
tion does not bring any further approximation as it is the
case for other nonlinear SLAM methods.

VII. CONCLUSION

In this paper, we have shown that interval constraint prop-
agation could be seen as an efficient alternative to Bayesian
approaches for solving SLAM problems in a bounded-error
context. Of course, as presented here, the SLAM method is
offline and requires a human operator to detect seamarks and
make the mark associations. A lot of work is left to obtain an
online SLAM method. However, the approach has been demon-
strated on a real problem with an actual underwater robot (the
Redermor).

The main advantages of the interval propagation approach
are its generality, its simplicity, its reliability, and its efficiency.
For instance, if we have several robots communicating together,
with different kind of sensors, the SLAM problem can be cast
into a huge nonlinear set of constraints. Without any approxi-
mation (such as a linearization) or tuning (such as the number of
particles), the interval propagation is able to provide an envelope
that encloses the trajectories of the robots and build an interval
map for the surrounding marks. Whereas classical Bayesian can
be considered as more efficient to get the best trajectory and the
best mark positions, an interval propagation is more adequate to
find an envelope for them.

In practice, when strong outliers occur, an interval approach
generally returns the empty set and we are not able to have an
estimation of the location of the robot. If we really need such an
estimation, a possible alternative is to maximize the number of
constraints that can be satisfied [17]. This can be done efficiently
using interval propagation [16]. The corresponding approach
has been shown to be robust with respect to outliers.

In the near future, we are planning to merge several experi-
ments made by one or different underwater robots. A promising
work in this direction has been proposed by Di Marco et al. [4]
in a set membership context. With the approach proposed here,
merging several experiments can be done by concatenating the
equalities and inequalities associated to each experiment. We
suspect the interval propagation to be efficient for this type of
problems.
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