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Guaranteed Robust Nonlinear Minimax Estimation

Luc Jaulin and Eric Walter

Abstract—Minimax parameter estimation aims at character- proximation of the set of robust minimax estimates is obtained.
izing the set of all values of the parameter vector that minimize the The basic idea is akin to that in [16] and [3], but its implemen-
largest absolute deviation between the experimental data and the tation is radically new. It combines the tools iaterval anal-

corresponding model outputs. It is well known, however, to be ex- . d traint tiori hat is k int |
tremely sensitive to outliers in the data resulting, e.g., of sensor fail- ysisandconstraint propagationn what IS known asnterva

ures. In this paper, a new method is proposed to robustify minimax Cconstraint propagatiorflCP) [7], [8] to provide guaranteed re-
estimation by allowing a prespecified number of absolute devia- sults (contrary to [16]) for nonlinear models (contrary to [3]) in
tions to become arbitrarily large without modifying the estimates.  the presence of outliers (contrary to [13]). Estimation methods
By combining tools of interval analysis and constraint propaga- based on ICP are described in [14].

tion, it becomes possible to compute the corresponding minimax . . . .
estimates in an approximate but guaranteed way, even when the Som(_a basic nothns 9f ICP are _recalled in S.e.ctlon I, _and.the
model output is nonlinear in its parameters. The method is illus- NECesSity of eXte'_"dlng itto de_a| with robust minimax estimation
trated on a problem where the parameters are not globally iden- is stressed. Section IV describes a rather classical optimization
tifiable, which demonstrates its ability to deal with the case where a|gorithm based on ICP. In order to allow the development of
the minimax solution is not unique. an efficient reduction procedure, able to handle robust minimax
Index Terms—Constraint propagation, interval computation, estimation, Section V introduces the notion of set polynomials.
minimax estimation, nonlinear estimation, outliers, robust esti- To the best of our knowledge, this notion is new, at least in this
mation. context. A test case is presented in Section V to demonstrate the

efficiency of the approach.
I. INTRODUCTION

HEN the vectorp of the parameters of a model has to Il. RELAXED MINIMAX ESTIMATOR

be estimated from experimental datethe procedure to |y what follows, the parameter vectpr € R™ is assumed
be followed depends on the assumptions about the noise. If {i&elong to some possibly very large prior axis-aligned search
components of are assumed independently corrupted by gghy [po]. Lety € R™ be the data vectog,, (p) € R™ be the
additive noise uniformly distributed over the intervald, 6], associated model output vector afitp) € R™ be the (abso-
with _6 unknow_n,_ the_n a maximum-likelihood est_lm_atep)is lute) error vector defined ds — y.. (p) |, where the absolute
obtained by minimizing the largest absolute deviation betwegg| e is taken componentwise. Denotegayie number of data
the data and the corresponding model outputs, which correspepghts where the error is allowed to become arbitrarily large.
to minimax estimation. The resulting estimgidelongs to the pefine theg-max function fromR™ — R, wherem is an in-
set of all parameter vectors that are consistent with any valggyer withm > ¢ > 0, as the function that associates with

of ¢ large enough for the set to be nonempty. Moreover, the — (z1,...,am)" its (¢ + 1)th largest entry. By convention
corresponding largest absolute deviatiais a lower bound for for ¢ — 4, we shall takey — max (x) = —oo. For example, if
6, which provides useful information to anyone interested ip _ (3,—4,3,5,0)", thend — max(x) = 5, 1 — max(x) = 3,
bounded-error parameter estimation. (See [6], [15], [18], [20], _ max(x) = 3, 3 — max(x) = 0, 4 — max(x) = —4, and
[21], [25], and the references therein). 5 —max(x) = —oc. In a robust minimax context, the cost func-
Minimax estimation is well known, however, to be extremelyion, 1o be used if; outliers are assumed can be written
sensitive to outliers, as a single of them may suffice to ruin the
estimate [22], [3]. Outliers are data that result of events not ac- )
counted for by the model, such as sensor failures, transcription Ja(P) = q—max(f(p)). (1)
errors or erroneous hypotheses on noise distribution. The pur- . . .
pose of this paper is tigppresent a new algorithm for comput?ééré;h any giveny andy, therglaxed minimax e_stlmgtc(RME)
guaranteed robust minimax estimates, robust meaning here ociates the s§t1 = Arg Millpe(po] Jg (p)..Smce_yq(p) IS a
a prespecified number of absolute deviations are allowed to [#§creasing function af, the minimumyj, of j(p) over [po] is

come arbitrarily large, and guaranteed meaning that an outer &[° @ decreasing function oi.e.,¢1 < ¢2 & Jjg, < Jg,). The
setS,(6) = {p € [po] | j; (P) < 6} isincreasing withy (i.e.,
So(8) C 81 (8) C -+ C S (8) = [po]) and withs (i.e., 51 <
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a more accurate outer bounding of compact sets with discon-
nected parts. Note that an axis-aligned box is a Cartesian product
of intervals and, thus, a Cartesian domain. The set of all Carte-
sian domains oR™ will be denoted byD (R™). Vector calculus

can be extended to Cartesian domains using interval arithmetic
[19], and the notion of inclusion function. Consider a func-
tion f : R® — R. An inclusion functionof f is a function

F : D(R™) — D(R) such that

¥X € D(R"), f(X)C F(X) 3)

wheref(X) = {f(x) | x € X}. Domain arithmetic makes it
possible to compute inclusion functions for a very large class
of functionsf. The principle is to replace each occurrence of a
variablez; in the expression of by the corresponding domain
and each operator or basic function by its domain counterpart,
Fig. 1. Whereag, (p) andj, are decreasing functions of S,(6) increases 55 defined by (2). The following example illustrates computa-
with g ands. tion on domains and demonstrates the pessimism resulting from
multiple occurrences of variables in the expressioif.of

Example 1: Consider the functiorf(x) = z1 +z122 and the

The approach to be employed enters into Apt’s chaotic itedemainX = X; x X, with X; = [1,2] and X, = [-3, —2] U
ation framework [1] or into the Saraswat’s model [23]. It com[3, 4]. A possible inclusion function fof is F(X) = X; +
bines two complementary tools, namely interval analysis [19]; X5, which is evaluated as follows:
and constraint propagation [17], [26], into what is knowriras
terval constraint propagatiofiCP) [7], [8]. Note that interval F(X)
analysis is also used for reliable global optimization without
constraint propagation, see, e.g., [9], and [27] in a general con-
text, and [13] and [28] in a minimax context. Reliable global op-
timization based on ICP is often more efficient [24], [29]. Morelf f(x) is rewritten ag)(x) = z1(1+2), a new inclusion func-
over, ICP can handle subsetsib{or domains) that may not betion is obtained a&/(X) = X; (1 + X»), which is evaluated as
intervals. Although such domains are less easily manipulattadiows:
than intervals, they allow more accurate outer approximations
of sets.

I1l.  NTERVAL ARITHMETIC AND CONSTRAINT PROPAGATION

[1,2] + ([L,2] * ([-3, =2] U [3,4]))
[1,2] + ([-6,—2] U [3,8])
[~5,0] U [4, 10].

G(X)

(1, 2] ([1,1] + ([-3, 2] U [3,4]))
o [1,2)# (=2, -1 U [4,5])
A. Interval and Domain Arithmetics [—4, —1] U [4,10].

A domain X of R is a subset ofR. Domain arithmeticis ) )
a generalization to domains of the classical arithmetic for rddPte thatf(X) = G(X) C F(X), i.e., G(X) provides the
numbers. LetY andY be two domains@ be an operator in €Xactimage oiX by f whereas'(X) provides only an outer

{ +,—,% /," max,min... }and f be a real function such asapproximation (because the two occurrences ofre treated
7 ) 7 0 7 s

sin, cos, tan, sqr, abs... By definition as if_they were independe_nt). ) ) ) u
With domain computation, inclusion functions can thus be
XoY={zoy|lzeX,yeY} obtained for any functiorf for which an analytical expression
F(X) ={f(z) |z € X}. (2) Isavailable. We shall see in Section V-D how to obtain an inclu-

sion function for the cost functiofy (p) defined by (1), with the
When the domains to be handled are intervals, interval analys&p of the notion of set polynomials introduced in Section V.
can be used to evaluate these quantities. Here, the domains
are assumed to consist of finite unions of intervals and i Interval Constraint Propagation
terval computation can be extended to computing with suchprimitive constraintsare relations involving up to three real
domains [10]. The main advantages of using domains insteagtiables that can be written in one of the three following forms:
of intervals are that the set of domains is closed with respect

to the union operator and that domain computation makes (unary constraint z; €7

it possible to avoidhull pessimismwhen discontinuous or (binary constraint z; =f(z2)

m_ultiyalued fun_ctions_ are involved ([10], [13]). For instgnce, (ternary constraint z, =z» @ z;

with interval arithmeticl/[—1,1] = ]—o0, co[, whereas with

domain arithmetid /[—1,1] =] — 0o, —=1] U [1, o0]. whereZ is a domain o, f is an elementary function such as

We shall callCartesian domairof R™ the Cartesian product cos, sin, exp, log, sqr, sqrt, . .. and® is a binary operator such
of n domains ofR, i.e., X = X; x --- x X,,. The notion as+,—,*,/, ", max, min,....
of Cartesian domain can be interpreted as an extension of thaf\ constraint is and-decomposabléf it can be decom-
of axis-aligned box (or interval vector). This extension allowposed into a finite set of primitive constraints related by
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the Boolean operatorand For instance, the constraint TABLE |
(max(z1w2, 21 — log(zz)))? + exp(z1) < 3 is and-decom- CLASS'CS‘ELlch:;:EAthNE:M'?‘Z'ﬁ?OR,\'ITHM FOR
posable since it admits the following decomposition into eight

primitive constraints: MINIMIZE(in: [po], 5(.); out: [j], S*)
1 = ; S =0; 7+ =005 [j] =0;
21 = T1T2 zo = log(x2) 9 3hile{g)(i}0 ¢ g
z3 =1 — 22 24 = max(z1,23) (4) 3 put first element of @ into [p];
z5 =sqr(za) 26 = exp(71) 4 j*+ = GoDown(center([p]), 5(.));
27 =25+ 26 27 €] — 0,3 5 find a box [r] such that

If fis afunction fromR™ to R, X € D(R™) andY € D(R), P17 (1 = 00,571) € ] € [p];

) . S - 6 if [r] = 0, th to 2;
ICP makes it possible to obtain, in a very efficient way, an outer - ;f Ef;lidth([r])eige(; fhen
approximation of the set {8t =8*tu {[’r]}; go to 2;}
. 1 8 bisect [r] and append the two
S=Xnf(Y) ®) resulting boxes to Q;
by a Cartesian domain, provided that the constraiat f = (V") 9  end while;

10 remove all [p] in St such that 1b([5]([p])) > j*;
11 for all [p] in 8%, [j] = [f]U [s)([p));
12 [j] =[5]N] - o0, 57].

is and-decomposabliee, e.g., [10], [5], and [4]Contracting
X with respect taS means finding a Cartesian domasuch
thatS c R C X.

Example 2: Consider the sef defined by (5), wherg (x) £

23x9 + z3x1, X = [1,10]* andY = [—4, 4]. To contractX, When the constraints encountered areamat-decomposable
first decompose the constraifitx) € Y into the following set the classical ICP approach, as presented above, does not apply
of primitive constraints: directly. For instance, the constraiff(p) < j* involved in
1) o the solution of the robust minimax estimation problem is not
1= and-decomposablas illustrated by the following example.
(C2) 22 =mwaz Example 3: If j(p) = 1—max(p, p?,sin(p)), the constraint
(C3) 23 =x371 j(p) < 47 can be expanded as
(C4) y =2+ 2 (21 =p?) and(z; = sin(p)) and
(©9) wel=4.4 (s =matp ) ands € —ox.7)
The prior domains for the variables, =2, z3, 21, 22, 23 and or((zq4 = max(p,72)) and(zy €] — 00,5 1)))
y are taken ase1] = [z2] = [13] = [1,10], [zl]_: [22] = or (25 = max(z1, 22)) and(z5 €] — J+]))}
[23] = [y] = ]—o0, oo[. For simplicity, these domains have been
chosen as intervals, but this is not required by the method. Byd cannot be expressed as a set of primitive constraints related
propagating these four constraints as long as contraction takgsind |
place, one gets An efficient adaptation of ICP to su@nd-or-decomposable
. - problems will be made possible by the introduction of the new
(C5) = [y] :=[~4,4] notion of set polynomials in Section V. To implement RME, we
(C1) = [z1] :=[z1] N ([1])? = [1,100] also need a reliable procedure for global optimization. A trivial
(C2) = [22] :=[22] N ([z2] * [21]) = [1,1000] adaptation of a classical optimization algorithm [29], [24] will
(C3) — [23] :==[23] N (3] * [1]) = [1,100] be us.ed. Th|s is presented in th(_e following section. The resulting
algorithm is particularly well suited to the use of ICP.
(C4) = [yl :=[y] N ([z2] + [23]) = [2,4]
(C4) = [z2] :=[z2] N ([y] = [2s]) = [1, 3] IV. MINIMIZE ALGORITHM
([y] = [z2]) = [L,3] The problem to be solved in this section is the global min-

n
(C4) = [z5] :=[zs] N
n

(C3) — [x1] :=[z1] <M) =[1,3] imization of a cost functiorj(p) over a box pg]. Let S be
[[3:3]] the selt of allfglobal rnfinin;]izers q;ffover [[:QO])an?][j](l[pD Ee
o 23]\ an inclusion function for the cost functigitp). The algorithm
(O3) = [ws] :=ls] N <m> =13 MINIMIZE , presented in Table I, computes a list of boxs,
[22] the union of which contains, and an interval containing the
(C2) = [a1] :=[za] N (@) =[1,3] global minimumy. A local minimization procedure G@OWN,
[22] similar to that presented in [12], is used at Step 4 to decrease the
(C2) — [x9] :=[x2] N <—> =1, 3] upper bound ™ for the minimumyj. Interval analysis is involved
[] at Steps 10 and 11 to compute an inclusion funcfigfip])
(C1) = 2] ==[a] N V/[aa] = [1,V3]. in order to enclose the range pfover the box p]. By taking

3, o . advantage of the availability of the upper boujtd ICP is in-
Thus,S = {x € [L10]"| wizs + wamn € [_474]} isincluded \o)yed at Step 5 to replace] by a smaller boxif] such that any
in the box[1, v/3] x [1,3]*. m global minimizer in p] is also in []. Q is a First-In—First-Out
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list of boxes containing the part of search space that has not genstruction of the se8[X(1), ..., X(m)] of all polynomials
been studied. Any point of) is still a potential candidate for in these indeterminates with coefficients in the set of Boolean
being a global minimizer. The real number> 0 is the width numbersB = {0,1} is in principle illicit, because® (R"), U,
below which boxes will not be bisected. The intervfdl ¢on- ) is not a ring but only a semiring, sinc® (R"), U) is only
tains the global minimum. It is computed by interval evalua-a monoid and not a group (see [11, p. 116]). By an abuse of
tion of 5 over all boxes ofST at Step 11. The lower bound ofnotation commonly committed, e.g., in the4x, +) commu-
the interval[j]([p] is denoted byb([j]([p]))- nity [2], we shall nevertheless speak®{X(1),...,X(m)] as
In the context of robust minimax estimation, two problema set of polynomials. One should keep in mind, however, that
remain to be solved, namely getting an inclusion function f@ome classical operations allowed for ring-based polynomials
Jq(p) as defined by (1) and adapting an ICP-based procedureate no longer valid. Any element & [X(1),...,X(m)] will
the contraction of a boxd] under the constrain,(p) < j*,as be called aset polynomialAn example of a set polynomial is
required by Step 5 of MimizE. These two operations will be (X(1) N X(2)) U (X(1) N X(1)) U X(2), which is an element
based upon of a new type of object presented in Section V. of B[X(1),X(2)]. When there is no ambiguityd U B and
A N B will be denoted more concisely byt + B and A.53, re-
V. SET POLYNOMIALS spectively. Set polynomials are obviously inclusion monotonic.
The problem considered in this section is the contraction 911;2 1obta|nXan outﬁr a]?pro_xmratl_on of at S.Gﬁ i _f
the Cartesian domaiR associated with the vectqr subject . (X(1),..., X(m)) w eret 1S INGUSIoN Monotonic, 1t sut-
fices to enclose eadX (k) into a boxY (k) (or more generally a

to the constrain§(p) € Y when this constraint iand-orde- : )
composable. This problem has to be solved to implement StCarteS|an domain) and then to CompBEY (1), ..., Y (m)).

p . ; :
5 of MiNIMIZE where the constraint to be taken into account 'E method for evaluating® (Y (1),..., Y (m)) is proposed in

Jq(P) €] — 00,7 T]. The notions developed in this section willﬁw following section.

also be used to obtain an inclusion function for the cost functig) gy ajuation Over Cartesian Domains
Jq(P), as needed at Steps 10 and 11 okMizE . A procedure
to contractP could in principle consist of three steps.
Step 1) Decompose the constrajffp) € Y into a set
of m and-decomposableonstraints related by the (X1 x --- x X,,) N (Y7 x --- x Y},)
Boolean operatoor. For instance, the constraint =(X1NY)) x---x(X,NY,) (7)
considered in Example 3 is decomposed as follows:

and
max(p, p*) < j*
1= max(p, p,sin(p)) < j* < 4 or max(p?,sin(p)) < j+ (K1 XX Xn)U(Y1xx V)
or max(p,sin(p)) < j7. C(X1uUY)) x---x(X,UY,). (8

Lemma 4 (Cartesian Expansion):et X andY be Cartesian
domains. Then

Lemma 5 (Cartesian Decompositionlt X (1),...,X (m)
taken independently. Thusp Cartesian domains %r?XCSBteS|an£?2;|T§ ;RZGSQStF;fIS a set polynomial, then
P(1),...,P (m) are obtained. B

Step 3) Comput®(1) U --- U P (m). F(X1(1),...,Xn (1)) x--x F(Xy(m),...,Xn(m)).

The disjunctive decomposition at Step 1), however, woulghis jemma is a direct consequence of Lemma 4. We shall only

lead .to. a cqmblnatonal epr03|o.n in our context. To avo[q thi ive a sketch of its proof on an academic example, wheze2.
the disjunctive form at Step 1) will be replaced by a specific de- Example 6: Assume that

composition and the unions at Step 3) will be replaced by a spe-

cific set algorithm. The theoretical background needed tound&(X,Y,Z) =X.Y + Y .Z

stand this adaptation is presented in Sections V-A-V-C, via the =(X; x X). (Vi x Ya) + (Y1 x Y3) . (Z1 X Zs).
notion of set polynomials. In Section V-D, a new procedure is L

given for contracting® under the constraint, (p) €] — oo, 5] (/) then implies thaF (X, Y,Z) = ((X1.Y1) x (X2.Y2)) +
while avoiding combinatorial explosion. ((¥1.21) x (Y2.22)) and (8) implies that

F (X/Y Z) C (Xl.Yl + Yl.Zl) X (X2.Y2 + Y2.Z2)

Step 2) ContracP with respect to each of the constraints

A. Definitions
) :F(X17Y1721) XF(X27Y27Z2).
Let P (R™) be the set of all subsets Bf*. The set function
F:PR") x---xP(R") — P (R")isinclusion monotonidf _ _ u
When X (1),...,X (m) are Cartesian domains arH is
X(1) cY(1),...,X(m) C Y(m) a set polynomial, the smallest Cartesian domain containing

= F(X(1),....,X(m)) C F(Y(1),....Y(m)). F(X (.1?7....7X(m)) can be computed exactly by rewriting
F in disjunctive form. However, an exact procedure to evaluate
For instance,F (X(1),X(2),X(3)) 2 (X(1)NnX(2)) U it via the computation of a disjunctive form may become too
(X(1)nX(3)) is inclusion monotonic, contrary tocomplex when the number. of sets increases, because this
G (X) £ X, whereX is the complementary &X in R". Let disjunctive form is usually longer than the initial form. This
X() € P(R"), i = 1,...,m bem set indeterminates. Thewill be avoided by using Lemma 5.
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L By convention®,,, (m) = R™. We shall call®, (m) theg-in-
X tersectionof them setsX(k), k € {1,...,m}, asitis the set
Q of all x’s that belong to at least — ¢ of these sets. Since
Y Jqa(P) < ite

{ p € &4 (m) 9)
with X (i) = 71 (] — o0, j*]),i € {1,...,m}
anenclosure o, () = {p € [p] | j,(p) < j*} could be ob-
1 5 3 4 & & tained by expanding, into its disjunctive form. Unfortunately,
this expansion gives rise to a combinatorial explosion. For in-
Fig. 2. The grey box is the value of the set polynon®&(X,Y,Z) of stance, ifm = 10 andg = 4, which corresponds to ten mea-
Example 7. surements with at most four outlier, is the sum of 210 mono-
mials. This combinatorial explosion can be avoided by using the
Example 7:1f F(X,Y,Z) = (XNY) U (YNZ) U pexitheorem, which provides a new way to evalubjgm),
(XnNnZ), for the situation of Fig. 2,F(X,Y,Z) = (< < efficiently and recursively oven.
hubu (XnZ) = [2,3] x [2,3] is the box in grey.  Theorem 8: Assume thatby (m — 1),.. ., ®,(m —1) are
SinceF (X, Y, Z) is already in disjunctive form (a very specialy5jjable and that a new ski(m) has to be taken into account.
case), the complexity of using the Cartesian decompositiqﬂen,% (m),..., ®, (m) can be obtained recursively as fol-
remains the same, but the result is now pessimistic lows: L

F(X1,Y1,71) x F(X2,Y2, Z5) P (m) Pg (m — 1) X(m)
— (X1 Y1) U (Y1 N Z1) U (X1 N Z0) Pr(m) | | Palm=DXm)U R (m—1)

X ((XaNYo)U(YaN Zy) U (XN Z3)) o Em) o (%_I)X(m)uq) (m—1)
=(puU[4,5]U2,3]) x ([4,5]UBU[2,3]) a q -1 (10)

=([2,3]U[4,5]) x ([2,3] U [4,5]). where®,(0) = R™ and®, (k) = R™if k € {0,...,q}. ]

)

The resulting Cartesian domain thus consists of four boxes, an na (U, n) algebra, (10) can be interpreted as a linear dis-

is an outer approximation of the actual solut®riX,Y,Z) = ciéte-time state equ_al_tlon where the_ state vectab {sn) =
(®o(m) ... &,(m)) and the input iX(m).

H N W A OO
—t—t—

[2,3] x [2,3]. | : . e
Proof: The proof is a direct application of Horner's
C. Elementary Set Polynomials scheme. To avoid introducing a new notation and tedious ma-
We now focus attention on constraints of the fojpip) < ?i%l;lgszs_cﬁsmdexes, we shall restrict ourselves to checking

j*+, as needed by Step 5 ofiMmizE . We first define symmetric

set polynomials and show how they govern the relations b (D (3) A X (1) X(2) X (3)
tween theand-decomposable constraints of the robust minima; D1 (3) ) = | X()X(2) +X (1) X(3) +X(2)X(3)
estimation problem. We then propose a recursive definition o @ (3) X(M)+X(2)+X3)
symmetric polynomials, in order to derive an efficient algorithm (X(1)X(2))X(3)
for their outer evaluation over Cartesian domains. =| (X(1)+X(2)XB3)+X(1)X(2)
Definitions: A set polynomial F (X(1),...,X(m)) is R*"X (3) + (X (1)+ X (2))
symmetricif it is invariant under permutation. For instance, By (2)X(3)
X(1)X(2) + X(1)X(3) + X(2)X(3) + X(1)X(2)X(3) =1 (2)X(3) + B0 (2) | .
is symmetric. By analogy with [11, p. 133], tredementary Dy (2) X(3) + @4 (2)
symmetric set polynomiaise defined as The following theorem gives three basic properties of the ele-
m _ mentary set polynomials.
o (m) =[] X() Theorem 9: The following properties hold true:
=1 ) g (m) C 1 (m) C - C &y (m);
@y (m) = [ XG) + X () "
i<j O, (m) C Pe(m—1)C - CPy(q) =04 (¢ —1)
T x(: , —...=®,(0)=R"
@ (m) = T X()+X()+X(k) 1)
i<k iii)
S X (k)N &g (m) =0 = Py (m)
T m =0, (X(1),...,X(k—1),
G (m) =Y X(i)X(j) X(k+1),...,X(m)).
i<j

™ Proof of i): ®,(m) is the sum of all mono-
®,,_1 (m) :ZX(i)' miqls of the' form X‘(il)X('L‘Q?X(ig)...X-(im_k). Now,
= X(i1)X(i2)X(i3) . . . X(im—k—1) is @ monomial ofbj1 (m).
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TABLE I
EVALUATION OF AN ENCLOSURE OF THE SETPOLYNOMIAL ®, OVER 124
. CARTESIAN DOMAINS
or | [
¢-INTERSECT(in: X (1),...,X (m); out: [®,(m)])
1 for k € {0,...,m}, [®_1] (k) = 8
2 for £ € {0,...,q}, [®¢] (0) = R™; 64
3 fork=1up tom
4 for {=0up to q 4+
5 (@] (k) = ([2¢] (k — 1) N X (K)) 24
U[®en] (k-1);

Thus, any monomial of®, (m) is included in ®;. (m).

Therefore @, (m) C Prpr (m) Fig. 3. The black box is the 2-intersection of 9 boxes.

Proof of ii): ®&,(m) = ®,(m-1)X(m) U
®,_1 (m —1). Now, from i), q)q 1 (m— ) C q> ,(m—1),s0 Step 5 of MNIMIZE in the context of robust minimax estimation,
P, (m) C Py (m—1)X(m)UP,(m—1)= ( —1). and to obtain an inclusion function fgy, as required by Steps

Proof Of iii): Set®, (m) = (X (1),..., X(k—1), 10 and 11. The following algorithm contractg][ by taking

' q
X(k+1),..., X(m)). Factor ®, (m) W|th respect to advantage of the fact that

X(k) to get®,(m) = @y (m)X(k) U ®, i(m). In- [p]Nj;*(]—o0,j%])
tersect both S|des of this equatlon Wlm (m) to get =, ([plNf; L] =00, 5%, [l N 21 - 50, 51)))

g (m) = @, (M)X (k) @y (m) U &,_(m)@, (m) Now, by
assumptionX (k) N ¢, (m) = 0. Thereforefb q(m) = @U

k k
®y1(m)®q () = 2, (m). NTRACT(II’] [ pl, 4t out: [ )
In the context of bounded-error estimation, Theorem 9 cgﬁ) Pl J" : ’ .
for k£ = 1 to m, compute a Cartesian do-

main P(k)
such that  ([p] N f; (] — o0,5%])) C P(k) C [p;
R = ¢-1 NTERSECTIONP(1),...,P(m));

3 return [ r], the smallest box that con-

tains [p]NR.

see (9).

be interpreted as followg € X (k) means thap is consistent
with the kth datum; i) ifp is consistent with at least — ¢ data,
then it is also consistent with at least — ¢ — 1 of them; ii)
if p is consistent with at least. — ¢ of the firstn data, then
it is also consistent with at least — ¢ — 1 of the firstrm — 1
data; iii) if there exists n@ consistent with at leash — ¢ of
the data and with théth datum, then théth datum (which is
interpreted as an outlier) can be removed from the data set an&ince the constraint, (p) < j* isand-decomposable (k)
q can be replaced hy— 1 to get a simpler definition ob, (m). can be obtained using interval constraint propagation as ex-
Evaluation Over Cartesian DomainsTo implement (10), plained in Section Ill-B. To get an inclusion function fix(p),
one should use sets on which unions and intersections carcbesider the semirind, min, max). Denote theth elementary
computed or at least enclosed in computable outer approxinssmmetric polynomial imn indeterminates b, (1, ..., ).
tions, such as Cartesian domains, boxes, ellipsoids or polytoges. instance
Unfortunately, outer approximation with such sets introduces
pessimism and the equality (10) becomes an inclusion. The
g-INTERSECTION algorithm (given in Table II) computes a
Cartesian domain that encloses the®gtX (1) ,...,X (m)), max (z1,73))
¢ e {1,...,q}, where the setX (k) are Cartesian domains. Do(21, 9, 23) =min (21,22, 23) .

In the computer[®/] (k), £ € {- 1 o qh k€ {0,..,m} pe costfunct|0r3q(p) of (1) can then be expressedjgép) =

is r_epresented by dd+2) X (m (m + 1))-matrix, the entries of jo(m.p) = ®y(f1(P), ... fm(p)) and (10) can be adapted to
which are Cartesian domains. this context to computgzq( ) as

This algorithm will now be illustrated on the situation de- .
scribed by Fig. 3, where the Cartesian domains to be considerfd® (m, p)
are boxes. Fog = 0, 1,2, g-INTERSECTION respectively, yields | /1 (m, p)
[Do] (X (1) - ., [x] (9)) = 0, [&:] (K] (1) ..., [x] (9)) = :
and [@o] ([x] (1),...,[x](9)) C[6,7] x [5,6] (represented by \ j, (m,p)
the black box in Flg 3). The results obtained here are exact, max(jo (m — 1,p), fm(P))
but in general they are pessimistic. To limit such a pessimism, mm(max(jl (m—1,p), fm(P)),jo (m —1,p))
a possible improvement based Theoreiii)can be used. This
improvement remains to be implemented.

Oo(z1, w2, 23) =max (z1, T2, T3)

D4 (21,29, 23) =min(max (1, z2) , max (2, T3)

min(max(jy (m — 1,p) , fn(P)), jg—1 (m — 1,p))
D. Application to Robust Minimax Estimation (11)

In this paragraph, we show how set polynomials can be usetierej,(k,p) = ®.(f1(p),..., fx(P)), k€ 1,...,m; k > q,
to contract p] under the constraing, (p) < j%, as required by jx(0,p) = —oo, andjx(k,p) = —oo. An inclusion function



JAULIN AND WALTER: GUARANTEED ROBUST NONLINEAR MINIMAX ESTIMATION 1863

TABLE I TABLE IV
FIRST PART OF THE RESULTS OBTAINED BY THE ROBUSTMINIMAX ESTIMATOR SECOND PART OF THE RESULTS OBTAINED BY THE ROBUST MINIMAX
FOR THREE DATA SETSWITH O, 1AND 2 OUTLIERS, RESPECTIVELY, AND ESTIMATOR FOR THREE DATA SETS WITH 0, 1 AND 2 OUTLIERS,
FOR THREE VALUES OF ¢ RESPECTIVELY, AND FOR THREE VALUES OF ¢
data | ¢ | #split | time #Sq+ (3] Ja(p*) data | g box guaranteed to contain S7 (1)
Y [0 33 21 42 [To41,0458 | 1067 e e g e
}’O 1 845 70 18 0.371,0.375 0.694 zo 2 (19:1: 19:4] X [0:992: 12000] X [«7:68: ~7:57] X [0:189: 0:192}
y? 2 6044 770 21 0.198,0.214 0.465 y 1 0 | [39.4,40.0] x [0.300, 0.305] x [—40.0, —39.4] x [0.988, 1.000]
yl 0 1581 84 230 1405’ 14.10 33.07 yi 1 [18.4,18.7] x [0.904, 0.926] X [—7.61, —7.47] X [0.162, 0.165]
y' [T a1l 28| 70 [0.442,0450] | 1.067 e N MR O E RN Y S AR T T TN
y! 2 906 104 10 0.372,0.375 0.694 v 2 1 [39.3, 40.0] x [0.300, 0.305] x [—40.0, —39.4] x [0.987, 1.000}
y2 0 208 15 70 1760, 17.66 33.07 y2 2 [18.3,18.7] x [0.903, 0.928] X [—7.66, —7.45] x [0.161, 0.166]
y? 1 2779 220 246 14.05,14.10 29.59
y? 2 343 42 59 0.441,0.458 1.067

the boundary ofbo] or if the value of}, is too large, it can be
suspected that there are at le@st 1 outliers. Note thaj, cor-

for j,(p), can, thus, be derived from (11) by applying the rulei&sponds to one of the output errors and some bound is often
of interval computation and by returning an interval enclosug¥ailable on the largest regular error one is prepared to accept.
of j,(m, [p]). Moreover, ifj, — jq+1 is large then the reliability of the datum
y; that satisfieg, = |y; — ym, i(p)| for onep € S, is question-
VI. TEST CASE able since its presence strongly modifies the estimation results.

. . . These comments suggest to take the smadlesich that: i)j
Consider a two-exponential model where the relation be- 99 af Vq

tween the parameter vectprand the model output is given by Iti: %Coiatggz z:‘nt?\t ?eqalrir? Igz;tﬂoqu, and i) & is not on

Ym (Pst) = p1exp(—pat) + p3 exp(—pat). (12)

Since a permutation gf; with p3 and ofp, with p, does not
affect the model outpus,,,, the model is not globally identifi- ~ When the noise corrupting the data can be assumed to belong
able. Therefore, any reliable identification method should ledd a sequence of random variables that are independently uni-
to symmetrical solutions, if the search domain is large enoughrmly distributed over the intervaHé, 6], with § unknown,
Ten data pointg(1),...,y(10) have been generated as folminimax estimation is a standard approach for the identifica-
lows. First, a noise-free data vectpt was computed. Its ten tion of the model parameters, because the resulting estimated
components were obtained by evaluatipg(p*,tx) as given parameter vector belongs to the set of all maximum-likelihood
by (12) forp* = (20,0.8,—10,0.2)T andt, = 1/4k% k € estimates for any value éfsuch that this set is not empty. Min-
{1,...,10}. Noisy data were then obtained by adding to eadmax estimation is however seldom used in practice, because of
componeny; of y* the noisen,. = (|y;|+5) * i, whereny is  its well-known sensitivity to outliers. The procedure described
a random noise with a uniform distribution ir-Q.1, 0.1]. The in this paper makes minimax estimation robust to a prespeci-
resulting data vectgy® is theregulardata vector. A second datafied number of data points that can take arbitrary values. It does
vectory! was obtained by replacing by 30 iny?, and a third so in a guaranteed way, by enclosing the set of all such robust
data vectow? by replacingys by —30 iny!. Fore = 0.05 and minimax estimates in a union of boxes in parameter space, even
[po] = [—40,40] x [0,1] x [—40,40] x [0,1], the results ob- in the case where the model is nonlinear in its parameters and
tained by using RME as described in Section Il are summarizéfgk estimates are not unique. This has been illustrated by an ex-
in Table Ill, where #Sj is the number of boxes uﬂ';f and #split ample. To the best of our knowledge, there is no other method
is the number of bisections performed byNuize. All com- available in the literature to deal with this type of problem.
puting times (in s) are for a Pentium 133MHz. As expected, for There are many reasons why combinatorial complexity looms
a given data vectoy’, j,(p*) andj, (p) are decreasing when over any attempt at solving such a problem, and several mea-
increases. At each ruS,jr turns out to consist of two connectedsures were taken to limit it as much as possible. First, it should
components. One of them, denotedﬁy (1), belongs to the be stressed that the various combinations of ug mutliers
half-space wherg; > 0 and the second onféq+ (2) belongs to amongm data points are not considered in isolation, but collec-
the half-space wherg, < 0). The smallest boxes guaranteedively. The other measures for limiting complexity while pre-
to contain&’;r (1) (i.e.,the set associated wighr) are given in serving guaranteedness result from the combination of three
Table IV, which evidences the fact that reasonable estimates trels: interval analysisvhich provides guaranteed resulten-
obtained only provided thatis equal to or greater than the acstraint propagationto efficiently eliminate large parts of the
tual number of outlierg*. search space without requiring bisections, aatipolynomials
Various strategies can be thought of for the choicg,dhe to deal with Boolean connections between the constraints.
maximum number of tolerated outliers. A reasonable guide-The approach presented in this paper opens up new possibili-
line is to iterate the minimization of,(p) over [po] for ¢ = ties of research in this relatively young field, which should also
0,1,2,... until the results obtained lead one to believe thatlead to improvements in the algorithms for guaranteed nonlinear
is greater than the actual number of outligts No systematic estimation in the presence of outliers.
procedure exists for the detection@f Nevertheless, as illus- In this paper, we have assumed that ilie error equation
trated by the example in this section, if the optimizers are o — ym.: (p)| = j+ was decomposable into primitive con-

VII. CONCLUSION
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straints. Now, when the model outpyt, (p) is described by an

[19] R. E. Moore, Methods and Applications of Interval Anal-

algorithm containing if statements, or when it is defined as the___ ¥Ysis Philadelphia, PA: SIAM, 1979.

solution of a set of differential equations, this decomposition iézo]

“Special issue on bounded-error estimation: Issuént,J. Adapt. Con-
trol Signal Processingvol. 8, no. 1, pp. 1-118, 1994.

generally impossible. However, the main limitation of the ap-[21] “Special issue on bounded-error estimation: Issu¢r®,J. Adapt. Con-

proach is due to the exponential complexity ofN\MizE with

respect to the dimension pf As a result, only low-dimensional

trol Signal Processingvol. 9, no. 1, pp. 1-132, 1995.
[22] P.J.Rousseeuw and A. M. Lerd3pbust Regression and Outlier Detec-
tion. New York: Wiley, 1987.

problems can be considered, and an important challenge is e8] V. Saraswat, “Concurrent constraint programmingPinc. ACM Symp.

push the complexity barrier as much as possible.
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