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Guaranteed Robust Nonlinear Minimax Estimation
Luc Jaulin and Eric Walter

Abstract—Minimax parameter estimation aims at character-
izing the set of all values of the parameter vector that minimize the
largest absolute deviation between the experimental data and the
corresponding model outputs. It is well known, however, to be ex-
tremely sensitive to outliers in the data resulting, e.g., of sensor fail-
ures. In this paper, a new method is proposed to robustify minimax
estimation by allowing a prespecified number of absolute devia-
tions to become arbitrarily large without modifying the estimates.
By combining tools of interval analysis and constraint propaga-
tion, it becomes possible to compute the corresponding minimax
estimates in an approximate but guaranteed way, even when the
model output is nonlinear in its parameters. The method is illus-
trated on a problem where the parameters are not globally iden-
tifiable, which demonstrates its ability to deal with the case where
the minimax solution is not unique.

Index Terms—Constraint propagation, interval computation,
minimax estimation, nonlinear estimation, outliers, robust esti-
mation.

I. INTRODUCTION

WHEN the vector of the parameters of a model has to
be estimated from experimental data, the procedure to

be followed depends on the assumptions about the noise. If the
components of are assumed independently corrupted by an
additive noise uniformly distributed over the interval [, ],
with unknown, then a maximum-likelihood estimate ofis
obtained by minimizing the largest absolute deviation between
the data and the corresponding model outputs, which correspond
to minimax estimation. The resulting estimatebelongs to the
set of all parameter vectors that are consistent with any value
of large enough for the set to be nonempty. Moreover, the
corresponding largest absolute deviationis a lower bound for
, which provides useful information to anyone interested in

bounded-error parameter estimation. (See [6], [15], [18], [20],
[21], [25], and the references therein).

Minimax estimation is well known, however, to be extremely
sensitive to outliers, as a single of them may suffice to ruin the
estimate [22], [3]. Outliers are data that result of events not ac-
counted for by the model, such as sensor failures, transcription
errors or erroneous hypotheses on noise distribution. The pur-
pose of this paper is to present a new algorithm for computing
guaranteed robust minimax estimates, robust meaning here that
a prespecified number of absolute deviations are allowed to be-
come arbitrarily large, and guaranteed meaning that an outer ap-
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proximation of the set of robust minimax estimates is obtained.
The basic idea is akin to that in [16] and [3], but its implemen-
tation is radically new. It combines the tools ofinterval anal-
ysis andconstraint propagationin what is known asinterval
constraint propagation(ICP) [7], [8] to provide guaranteed re-
sults (contrary to [16]) for nonlinear models (contrary to [3]) in
the presence of outliers (contrary to [13]). Estimation methods
based on ICP are described in [14].

Some basic notions of ICP are recalled in Section III, and the
necessity of extending it to deal with robust minimax estimation
is stressed. Section IV describes a rather classical optimization
algorithm based on ICP. In order to allow the development of
an efficient reduction procedure, able to handle robust minimax
estimation, Section V introduces the notion of set polynomials.
To the best of our knowledge, this notion is new, at least in this
context. A test case is presented in Section V to demonstrate the
efficiency of the approach.

II. RELAXED MINIMAX ESTIMATOR

In what follows, the parameter vector is assumed
to belong to some possibly very large prior axis-aligned search
box [ ]. Let be the data vector, be the
associated model output vector and be the (abso-
lute) error vector defined as , where the absolute
value is taken componentwise. Denote bythe number of data
points where the error is allowed to become arbitrarily large.
Define the -max function from , where is an in-
teger with , as the function that associates with

its ( )th largest entry. By convention
for , we shall take – . For example, if

, then , ,
, , , and

. In a robust minimax context, the cost func-
tion to be used if outliers are assumed can be written

(1)

With any given and , therelaxed minimax estimator(RME)
associates the set . Since is a
decreasing function of, the minimum of over [ ] is
also a decreasing function of(i.e., ). The
set is increasing with (i.e.,

) and with (i.e.,
). Fig. 1 illustrates these properties

when the dimension of is 1. For readability, the dependency of
in is not mentioned. The set of all global minimizers of

over [ ] will be computed by the algorithm MINIMIZE , to
be presented in Section IV, which is based on interval constraint
propagation, briefly recalled in Section III
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Fig. 1. Whereasj (p) and|̂ are decreasing functions ofq, S (�) increases
with q and�.

III. I NTERVAL ARITHMETIC AND CONSTRAINT PROPAGATION

The approach to be employed enters into Apt’s chaotic iter-
ation framework [1] or into the Saraswat’s model [23]. It com-
bines two complementary tools, namely interval analysis [19]
and constraint propagation [17], [26], into what is known asin-
terval constraint propagation(ICP) [7], [8]. Note that interval
analysis is also used for reliable global optimization without
constraint propagation, see, e.g., [9], and [27] in a general con-
text, and [13] and [28] in a minimax context. Reliable global op-
timization based on ICP is often more efficient [24], [29]. More-
over, ICP can handle subsets of(or domains) that may not be
intervals. Although such domains are less easily manipulated
than intervals, they allow more accurate outer approximations
of sets.

A. Interval and Domain Arithmetics

A domain of is a subset of . Domain arithmeticis
a generalization to domains of the classical arithmetic for real
numbers. Let and be two domains, be an operator in
{ } and be a real function such as

By definition

(2)

When the domains to be handled are intervals, interval analysis
can be used to evaluate these quantities. Here, the domains
are assumed to consist of finite unions of intervals and in-
terval computation can be extended to computing with such
domains [10]. The main advantages of using domains instead
of intervals are that the set of domains is closed with respect
to the union operator and that domain computation makes
it possible to avoidhull pessimismwhen discontinuous or
multivalued functions are involved ([10], [13]). For instance,
with interval arithmetic , whereas with
domain arithmetic .

We shall callCartesian domainof the Cartesian product
of domains of , i.e., . The notion
of Cartesian domain can be interpreted as an extension of that
of axis-aligned box (or interval vector). This extension allows

a more accurate outer bounding of compact sets with discon-
nected parts. Note that an axis-aligned box is a Cartesian product
of intervals and, thus, a Cartesian domain. The set of all Carte-
sian domains of will be denoted by . Vector calculus
can be extended to Cartesian domains using interval arithmetic
[19], and the notion of inclusion function. Consider a func-
tion . An inclusion functionof is a function

such that

(3)

where . Domain arithmetic makes it
possible to compute inclusion functions for a very large class
of functions . The principle is to replace each occurrence of a
variable in the expression of by the corresponding domain
and each operator or basic function by its domain counterpart,
as defined by (2). The following example illustrates computa-
tion on domains and demonstrates the pessimism resulting from
multiple occurrences of variables in the expression of.

Example 1: Consider the function and the
domain , with and

. A possible inclusion function for is
, which is evaluated as follows:

If is rewritten as , a new inclusion func-
tion is obtained as , which is evaluated as
follows:

Note that , i.e., provides the
exact image of by whereas provides only an outer
approximation (because the two occurrences ofare treated
as if they were independent).

With domain computation, inclusion functions can thus be
obtained for any function for which an analytical expression
is available. We shall see in Section V-D how to obtain an inclu-
sion function for the cost function defined by (1), with the
help of the notion of set polynomials introduced in Section V.

B. Interval Constraint Propagation

Primitive constraintsare relations involving up to three real
variables that can be written in one of the three following forms:

unary constraint

binary constraint

ternary constraint

where is a domain of , is an elementary function such as
and is a binary operator such

as .
A constraint is and-decomposableif it can be decom-

posed into a finite set of primitive constraints related by



JAULIN AND WALTER: GUARANTEED ROBUST NONLINEAR MINIMAX ESTIMATION 1859

the Boolean operatorand. For instance, the constraint
is and-decom-

posable since it admits the following decomposition into eight
primitive constraints:

.

(4)

If is a function from to , and ,
ICP makes it possible to obtain, in a very efficient way, an outer
approximation of the set

(5)

by a Cartesian domain, provided that the constraint
is and-decomposable(see, e.g., [10], [5], and [4]).Contracting

with respect to means finding a Cartesian domainsuch
that .

Example 2: Consider the set defined by (5), where
, and . To contract ,

first decompose the constraint into the following set
of primitive constraints:

(C1)

(C2)

(C3)

(C4)

(C5)

The prior domains for the variables , , , , , and
are taken as ,

. For simplicity, these domains have been
chosen as intervals, but this is not required by the method. By
propagating these four constraints as long as contraction takes
place, one gets

Thus, is included

in the box .

TABLE I
CLASSICAL ICP-BASED ALGORITHM FOR

RELIABLE MINIMIZATION

When the constraints encountered are notand-decomposable,
the classical ICP approach, as presented above, does not apply
directly. For instance, the constraint involved in
the solution of the robust minimax estimation problem is not
and-decomposable, as illustrated by the following example.

Example 3: If , the constraint
can be expanded as

and and

and

or and

or and

and cannot be expressed as a set of primitive constraints related
by and.

An efficient adaptation of ICP to suchand-or-decomposable
problems will be made possible by the introduction of the new
notion of set polynomials in Section V. To implement RME, we
also need a reliable procedure for global optimization. A trivial
adaptation of a classical optimization algorithm [29], [24] will
be used. This is presented in the following section. The resulting
algorithm is particularly well suited to the use of ICP.

IV. M INIMIZE ALGORITHM

The problem to be solved in this section is the global min-
imization of a cost function over a box [ ]. Let be
the set of all global minimizers of over [ ] and be
an inclusion function for the cost function . The algorithm
MINIMIZE , presented in Table I, computes a list of boxes,
the union of which contains , and an interval containing the
global minimum . A local minimization procedure GODOWN,
similar to that presented in [12], is used at Step 4 to decrease the
upper bound for the minimum . Interval analysis is involved
at Steps 10 and 11 to compute an inclusion function
in order to enclose the range ofover the box [ ]. By taking
advantage of the availability of the upper bound, ICP is in-
volved at Step 5 to replace [] by a smaller box [] such that any
global minimizer in [ ] is also in [ ]. is a First-In–First-Out
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list of boxes containing the part of search space that has not yet
been studied. Any point of is still a potential candidate for
being a global minimizer. The real number is the width
below which boxes will not be bisected. The interval [] con-
tains the global minimum. It is computed by interval evalua-
tion of over all boxes of at Step 11. The lower bound of
the interval is denoted by .

In the context of robust minimax estimation, two problems
remain to be solved, namely getting an inclusion function for

as defined by (1) and adapting an ICP-based procedure to
the contraction of a box [] under the constraint , as
required by Step 5 of MINIMIZE . These two operations will be
based upon of a new type of object presented in Section V.

V. SET POLYNOMIALS

The problem considered in this section is the contraction of
the Cartesian domain associated with the vector subject
to the constraint when this constraint isand-or-de-
composable. This problem has to be solved to implement Step
5 of MINIMIZE where the constraint to be taken into account is

. The notions developed in this section will
also be used to obtain an inclusion function for the cost function

, as needed at Steps 10 and 11 of MINIMIZE . A procedure
to contract could in principle consist of three steps.

Step 1) Decompose the constraint into a set
of and-decomposableconstraints related by the
Boolean operatoror. For instance, the constraint
considered in Example 3 is decomposed as follows:

or
or

(6)
Step 2) Contract with respect to each of the constraints

taken independently. Thus, Cartesian domains
are obtained.

Step 3) Compute .
The disjunctive decomposition at Step 1), however, would

lead to a combinatorial explosion in our context. To avoid this,
the disjunctive form at Step 1) will be replaced by a specific de-
composition and the unions at Step 3) will be replaced by a spe-
cific set algorithm. The theoretical background needed to under-
stand this adaptation is presented in Sections V-A–V-C, via the
notion of set polynomials. In Section V-D, a new procedure is
given for contracting under the constraint
while avoiding combinatorial explosion.

A. Definitions

Let be the set of all subsets of . The set function
is inclusion monotonicif

For instance,
is inclusion monotonic, contrary to

, where is the complementary of in . Let
, be set indeterminates. The

construction of the set of all polynomials
in these indeterminates with coefficients in the set of Boolean
numbers is in principle illicit, because ( , ,

) is not a ring but only a semiring, since ( , ) is only
a monoid and not a group (see [11, p. 116]). By an abuse of
notation commonly committed, e.g., in the ( , ) commu-
nity [2], we shall nevertheless speak of as
a set of polynomials. One should keep in mind, however, that
some classical operations allowed for ring-based polynomials
are no longer valid. Any element of will
be called aset polynomial. An example of a set polynomial is

, which is an element
of . When there is no ambiguity, and

will be denoted more concisely by and , re-
spectively. Set polynomials are obviously inclusion monotonic.

To obtain an outer approximation of a set
where is inclusion monotonic, it suf-

fices to enclose each into a box (or more generally a
Cartesian domain) and then to compute .
A method for evaluating is proposed in
the following section.

B. Evaluation Over Cartesian Domains

Lemma 4 (Cartesian Expansion):Let and be Cartesian
domains. Then

(7)

and

(8)

Lemma 5 (Cartesian Decomposition):If
are Cartesian domains of , and is a set polynomial, then

is a subset of

This lemma is a direct consequence of Lemma 4. We shall only
give a sketch of its proof on an academic example, where .

Example 6: Assume that

(7) then implies that
and (8) implies that

When are Cartesian domains and is
a set polynomial, the smallest Cartesian domain containing

can be computed exactly by rewriting
in disjunctive form. However, an exact procedure to evaluate

it via the computation of a disjunctive form may become too
complex when the number of sets increases, because this
disjunctive form is usually longer than the initial form. This
will be avoided by using Lemma 5.
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Fig. 2. The grey box is the value of the set polynomialF (X;Y;Z) of
Example 7.

Example 7: If
, for the situation of Fig. 2,

is the box in grey.
Since is already in disjunctive form (a very special
case), the complexity of using the Cartesian decomposition
remains the same, but the result is now pessimistic

The resulting Cartesian domain thus consists of four boxes, and
is an outer approximation of the actual solution

.

C. Elementary Set Polynomials

We now focus attention on constraints of the form
, as needed by Step 5 of MINIMIZE . We first define symmetric

set polynomials and show how they govern the relations be-
tween theand-decomposable constraints of the robust minimax
estimation problem. We then propose a recursive definition of
symmetric polynomials, in order to derive an efficient algorithm
for their outer evaluation over Cartesian domains.

Definitions: A set polynomial is
symmetricif it is invariant under permutation. For instance,

is symmetric. By analogy with [11, p. 133], theelementary
symmetric set polynomialsare defined as

...
...

...

By convention, . We shall call theq-in-
tersectionof the sets , , as it is the set
of all ’s that belong to at least of these sets. Since

with
(9)

an enclosure of could be ob-
tained by expanding into its disjunctive form. Unfortunately,
this expansion gives rise to a combinatorial explosion. For in-
stance, if and , which corresponds to ten mea-
surements with at most four outliers, is the sum of 210 mono-
mials. This combinatorial explosion can be avoided by using the
next theorem, which provides a new way to evaluate ,

, efficiently and recursively over .
Theorem 8: Assume that are

available and that a new set has to be taken into account.
Then, can be obtained recursively as fol-
lows:

...
...

(10)
where and if .

In a ( , ) algebra, (10) can be interpreted as a linear dis-
crete-time state equation where the state vector is

T and the input is .
Proof: The proof is a direct application of Horner’s

scheme. To avoid introducing a new notation and tedious ma-
nipulations of indexes, we shall restrict ourselves to checking
(10) for

The following theorem gives three basic properties of the ele-
mentary set polynomials.

Theorem 9: The following properties hold true:

i) ;
ii)

iii)

Proof of i): is the sum of all mono-
mials of the form . Now,

is a monomial of .
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TABLE II
EVALUATION OF AN ENCLOSURE OF THE SETPOLYNOMIAL � OVER

m CARTESIAN DOMAINS

Thus, any monomial of is included in .
Therefore, .

Proof of ii):
. Now, from i), , so

.
Proof of iii): Set

. Factor with respect to
to get . In-

tersect both sides of this equation with to get
. Now, by

assumption, . Therefore,
.

In the context of bounded-error estimation, Theorem 9 can
be interpreted as follows: means that is consistent
with the th datum; i) if is consistent with at least data,
then it is also consistent with at least of them; ii)
if is consistent with at least of the first data, then
it is also consistent with at least of the first
data; iii) if there exists no consistent with at least of
the data and with theth datum, then theth datum (which is
interpreted as an outlier) can be removed from the data set and

can be replaced by to get a simpler definition of .
Evaluation Over Cartesian Domains:To implement (10),

one should use sets on which unions and intersections can be
computed or at least enclosed in computable outer approxima-
tions, such as Cartesian domains, boxes, ellipsoids or polytopes.
Unfortunately, outer approximation with such sets introduces
pessimism and the equality (10) becomes an inclusion. The
-INTERSECTION algorithm (given in Table II) computes a

Cartesian domain that encloses the set ,
, where the sets are Cartesian domains.

In the computer, , ,
is represented by a ( )-matrix, the entries of
which are Cartesian domains.

This algorithm will now be illustrated on the situation de-
scribed by Fig. 3, where the Cartesian domains to be considered
are boxes. For -INTERSECTION, respectively, yields
[ ] , [ ]
and [ ] (represented by
the black box in Fig. 3). The results obtained here are exact,
but in general they are pessimistic. To limit such a pessimism,
a possible improvement based Theorem 9iii) can be used. This
improvement remains to be implemented.

D. Application to Robust Minimax Estimation

In this paragraph, we show how set polynomials can be used
to contract [ ] under the constraint , as required by

Fig. 3. The black box is the 2-intersection of 9 boxes.

Step 5 of MINIMIZE in the context of robust minimax estimation,
and to obtain an inclusion function for, as required by Steps
10 and 11. The following algorithm contracts [], by taking
advantage of the fact that

see (9).

CONTRACT(in: [ ], ; out: [ );
1 for to , compute a Cartesian do-
main

such that ;
2 -I NTERSECTION( );
3 return [ ], the smallest box that con-
tains .

Since the constraint is and-decomposable,
can be obtained using interval constraint propagation as ex-
plained in Section III-B. To get an inclusion function for ,
consider the semiring (, , ). Denote the th elementary
symmetric polynomial in indeterminates by .
For instance

The cost function of (1) can then be expressed as
and (10) can be adapted to

this context to compute as

...

...

(11)

where , ; ,
, and . An inclusion function



JAULIN AND WALTER: GUARANTEED ROBUST NONLINEAR MINIMAX ESTIMATION 1863

TABLE III
FIRST PART OF THERESULTSOBTAINED BY THE ROBUSTMINIMAX ESTIMATOR

FOR THREE DATA SETS WITH 0, 1 AND 2 OUTLIERS, RESPECTIVELY, AND

FOR THREE VALUES OF q

for , can, thus, be derived from (11) by applying the rules
of interval computation and by returning an interval enclosure
of .

VI. TEST CASE

Consider a two-exponential model where the relation be-
tween the parameter vectorand the model output is given by

(12)

Since a permutation of with and of with does not
affect the model output , the model is not globally identifi-
able. Therefore, any reliable identification method should lead
to symmetrical solutions, if the search domain is large enough.
Ten data points have been generated as fol-
lows. First, a noise-free data vector was computed. Its ten
components were obtained by evaluating as given
by (12) for and ,

. Noisy data were then obtained by adding to each
component of the noise , where is
a random noise with a uniform distribution in [0.1, 0.1]. The
resulting data vector is theregulardata vector. A second data
vector was obtained by replacing by 30 in , and a third
data vector by replacing by 30 in . For and

, the results ob-
tained by using RME as described in Section II are summarized
in Table III, where # is the number of boxes of and #split
is the number of bisections performed by MINIMIZE . All com-
puting times (in s) are for a Pentium 133MHz. As expected, for
a given data vector , and are decreasing when
increases. At each run, turns out to consist of two connected
components. One of them, denoted by , belongs to the
half-space where and the second one belongs to
the half-space where . The smallest boxes guaranteed
to contain (i.e., the set associated with ) are given in
Table IV, which evidences the fact that reasonable estimates are
obtained only provided that is equal to or greater than the ac-
tual number of outliers .

Various strategies can be thought of for the choice of, the
maximum number of tolerated outliers. A reasonable guide-
line is to iterate the minimization of over [ ] for

until the results obtained lead one to believe that
is greater than the actual number of outliers. No systematic
procedure exists for the detection of. Nevertheless, as illus-
trated by the example in this section, if the optimizers are on

TABLE IV
SECOND PART OF THE RESULTS OBTAINED BY THE ROBUST MINIMAX

ESTIMATOR FOR THREE DATA SETS WITH 0, 1 AND 2 OUTLIERS,
RESPECTIVELY, AND FOR THREE VALUES OFq

the boundary of [ ] or if the value of is too large, it can be
suspected that there are at least outliers. Note that cor-
responds to one of the output errors and some bound is often
available on the largest regular error one is prepared to accept.
Moreover, if is large then the reliability of the datum

that satisfies for one is question-
able since its presence strongly modifies the estimation results.
These comments suggest to take the smallestsuch that: i)
is acceptably small, ii) is close to , and iii) is not on
the boundary of the search box [].

VII. CONCLUSION

When the noise corrupting the data can be assumed to belong
to a sequence of random variables that are independently uni-
formly distributed over the interval [ , ], with unknown,
minimax estimation is a standard approach for the identifica-
tion of the model parameters, because the resulting estimated
parameter vector belongs to the set of all maximum-likelihood
estimates for any value ofsuch that this set is not empty. Min-
imax estimation is however seldom used in practice, because of
its well-known sensitivity to outliers. The procedure described
in this paper makes minimax estimation robust to a prespeci-
fied number of data points that can take arbitrary values. It does
so in a guaranteed way, by enclosing the set of all such robust
minimax estimates in a union of boxes in parameter space, even
in the case where the model is nonlinear in its parameters and
the estimates are not unique. This has been illustrated by an ex-
ample. To the best of our knowledge, there is no other method
available in the literature to deal with this type of problem.

There are many reasons why combinatorial complexity looms
over any attempt at solving such a problem, and several mea-
sures were taken to limit it as much as possible. First, it should
be stressed that the various combinations of up tooutliers
among data points are not considered in isolation, but collec-
tively. The other measures for limiting complexity while pre-
serving guaranteedness result from the combination of three
tools: interval analysiswhich provides guaranteed results,con-
straint propagationto efficiently eliminate large parts of the
search space without requiring bisections, andset polynomials
to deal with Boolean connections between the constraints.

The approach presented in this paper opens up new possibili-
ties of research in this relatively young field, which should also
lead to improvements in the algorithms for guaranteed nonlinear
estimation in the presence of outliers.

In this paper, we have assumed that theth error equation
was decomposable into primitive con-
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straints. Now, when the model output is described by an
algorithm containing if statements, or when it is defined as the
solution of a set of differential equations, this decomposition is
generally impossible. However, the main limitation of the ap-
proach is due to the exponential complexity of MINIMIZE with
respect to the dimension of. As a result, only low-dimensional
problems can be considered, and an important challenge is to
push the complexity barrier as much as possible.
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