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Abstract

Interval constraint propagation methods have been showe &fficient and reliable to solve difficult nonlinear
bounded-error estimation problems. However they are densdl as unsuitable in a probabilistic context, where
the approximation of a probability density function by a satnot be accepted as reliable. This paper shows how
probabilistic estimation problems can be transformed @tget estimation problem by assuming that some rare
events will never happen. Since the probability of occureeaf those rare events can be computed, we can give
some prior lower bounds for the probability associated tatim set of the corresponding set estimation problem.

The approach will be illustrated on a parameter estimatiatlpm.
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. INTRODUCTION

Parameter set estimation deals with characterizing agaiefy small) set which encloses the parameter vegstor
of a model from data collected on the system [18]. In the odnié bounded-error estimation, the measurement
error is assumed to be bounded and characterizing the jposteasible set amounts to solve a set inversion
problem for which interval constraint propagation [14]7/]Inethods have been shown to be particularly efficient,
even when the model is nonlinear [11]. In a probabilistictegty the measurement error is not anymore described
by membership intervals, but byrobability density functiongpdf). When some prior pdf for is available, the
Bayes rule makes possible to obtain the posterior pdf gsge[7]). The set to be estimated becomes ithiaimal
volume credible sef?] and corresponds to the minimal volume set enclosing #s®@ate random vector with a
given probability. Unfortunately, this problem cannot kastcinto a set inversion problem and interval methods,
which can still be useful to characterize credible sets,[40% limited to small dimensional problems with few

data.

Here, the approach that will be considered is different. Wenot assume that some prior pdf are available for the
vector to be estimated. Instead, we fix a given probabildy, s which corresponds to the risk we accept to take
a priori. In practice is a tiny positive number. Then we choose a collection of erents for the error such
that the prior probability of occurrence of one of these évélower thana. Finally we solve the associated set
inversion problem using a set membership approach. To mwlkedge, this approach has never been proposed

before.

Interval methods have already been combined with prolstibiltheory [12] [6] in order to solve estimation
problems [1] [13]. The main difference between our approactl the above mentioned papers is that here, we
solve a traditional probabilistic estimation problem gsinterval tools and thus our approach is fully consistent

with traditional probabilistic estimation.

Section Il presents the principle of our new approach fobahilistic estimation that we nameafobabilistic-
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set estimationThe approach is then used in Section Il to deal with robastinear parameter estimation. The
principle of set inversion and interval analysis for setneation, needed to understand the resolution, is recalled

on Section IV. An illustrative test case is treated in Sectb Section VI then concludes the paper.

I[I. PROBABILISTIC-SET APPROACH FOR ESTIMATION

A parameter estimation problem can be represented by anraodel equation

e=f(y,p) =1, (p), (1)

where

« e € R™ is the error vector,
« y € R™ is the collected data vector, with the same dimension thamhich is assumed to be known exactly
a posteriori, and

« p € R" is the parameter vector to be estimated.

A parameter estimation problem amounts to findrom y and some assumptions on the ereorThe classical
approaches for parameter estimation are the Bayesianatistimand the set estimation that will now be recalled.
In a probabilistic approach, we generally assume that a prizbability distributiond T, [T are known fore, p.

The Bayes rule (see.qg.[7], [18], [9]) gives us the posterior probability distritbon function forp

Ie(fy (p)) 15(p)
Joern Te(fy () 5" (p).dp

I5(p) = ()

as illustrated by Figure 1.

In a set-membership context (see Figure 2), we generallynasshat the error vectar belongs to a prior s€
which corresponds to a# such thatlle(e) # 0, or equivalentlyE is the support of the random vecter The
following theorem provides the link between the Bayesiad e set approaches. Even if its use is classical in

the set-membership community, it is given here for the fimet to my knowledge.
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Fig. 1. Principle of the Bayesian estimation

Theorem. If E is the support of the errag and P support of the priomp, then the support of the posteripris

given by

P=f1(BE)NP. (3)

The setP is called theposterior feasible set
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Fig. 2. lllustration of the set membership approach

Proof. Equation (3) can easily be proven from the Bayes rule byntaktie supports of the probability distributions
that are involved. From (2), we have
I3%(p) £0 & Te(fy (p)) # 0 and IR (p) # 0
& f,(p) € 1;1(]0,00[) andp € P
& pef,'(E) andpeP

& pef I (E)NP.

From this theorem, we can conclude that the set-membergippach can be seen as less general than the
probabilistic approach. However, characteriz]/ﬂ\?lg; a set inversion problem which can be solved efficiently iand

a reliable way for a huge class of nonlinear functién3his is not the case for probabilistic approaches except fo

some specific situations, such as the linear-Gaussian Thsanost efficient techniques to solve the set inversion

problem are based on interval constraint propagation ndetho
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In this paper, contrary to other set-membership technigties support of the pdf ot is not assumed to be
bounded. The principle of the approach is to decompose tioe gpace into two subsets. A sub&bn which
we bet that the error vecter will belong and its complementary sBt The prior probability of the event ¢ E
is denoted byr. The sefE is chosen such that is almost equal to 1 and such that the likelihood is high der
The evente € E is considered as rare and we bet that it will not occur. Oneedtita vectow is collected, we
compute theposterior feasible set

P—£1(E). (4)

If now P is not empty, then we still bet that the rare event did not o@nd we conclude thap < P with a
probability of 7. If P = (), then we conclude the rare event occurred. In practice, vghtnailso suspect the model
is not accurate enough, or that outliers have corrupted #te set. We shall now give academic examples to

illustrate the principle of our approach.

Example 1. Assume that the model is described by the relagon p? + ¢, i.e,, e = y — p*> = f, (p) and that
II. is a normal distribution of the formVv (0,1). If we setE = [—6, 6] then, e will be outsideE, with a prior

probability of

1 6 e? 9
11— — e —— | de ~1.97 x 10™°. 5
=/ xp( 2) (5)

Assume that we collect the dage= 10. With the probabilistic-set approach, we get

P = f;'(B)=f"(-6,6])

= Vy—le = /10— [-6,6] (6)
= V[4,16] = [-4, —2] U [2,4].
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with a prior probability of1 — 1.97 x 1072, To apply Bayesian approach, we need a prior density prbtyabi

110" (p) for the parametep. Assume that it is given by a normal distributiovi (3, 1). The posterior pdf fop is

(£, (p))-1" (p)
Jyer ey (p)-I5™ (p)dp
Go-r?)? a2

710717 —:
e > e 2
T e (0 a2 0
[Te > e 2 .dp

pt—19p2—6p+109

~ 257 e 2

) =

This illustrates that the probabilistic-set approach isreneasy to perform than applying the Bayes rule, in a

nonlinear context [ |

Example 2. Consider the same example, but in a situation where theekamet 'e ¢ E" occurs. For instance, we

measurey = —10. The probabilistic-set approach gives

~ B
P=f," (E) =10, (8)
whereas
67£2072p222 o gp—2322
pos _ :
L ) oo (0= g2 ©)
[Te > e 2 dp

4_39p2 —6p+409
Lb# .

6.9305 x 10%3.e~

12

The probabilistic-set approach concludes to an inconsigfewhereas the Bayesian approach yields to precise

posterior pdf forp. Now, in practice, the huge factor (he#®30 5 x 10%3) is often interpreted as an inconsisteni.

Example 3. The probabilistic-set approach can easily be extendethdcsituation where the error is a vector.

Figure 3 illustrates a situation wheegeis of dimension 2. Assume that
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Fig. 3. lllustration of the probabilistic-set approach

and thate; andes are independent. Then, the joint pdf fer, e2) satisfies the probabilities given on the following

table.
e\ | [moo, -1 [=L1] [1,2] [2,0]
(3, o0] 0.04 0.08 0.04 0.04
[—2,3] 0.12 024 012 0.12

[~00,—2] | 0.04 0.08 0.04 0.04

As a consequence, the prior probability #to belong to the grey set
E=Rx[-23]) U ([-1,1] xR) U ([1,2] x [3,00])

is given by

0.0840.04 +0.12 + 0.24 4+ 0.12 + 0.12 + 0.08 = 0.8.

If we assume that ¢ E is a are event (here the probability(£), the posterior feasible set will He = f;l (E)

with a prior probability of0.8. |

Remark 1:Representing the pdi. for the error by boxes with an associated probability, asithted by Figure

3, can be interpreted as a discretizationlRf The resulting object can be represented padential cloudg15],
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error bounding
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Fig. 4. Error bounding for a gaussian univariate probabfiiinction

p-boxes[3] or Dempster-Shafer structures [4], [5]. However, substeactions will not be needed here and we

limit ourselves to the use of classical probabilistic tlyear |

FromIl,, we can find some feasible dgtfor e associated with a given probability. The procedure whiavisies
E from e will be called error bounding.For instance, for a normal random variable, it is naturalaketthe

confidence interval (see Figure 4) fbr

For a normal random vector, we have different choices forditer bounding. As illustrated by Figure 5 for a
two-dimensional random vector, we can take a disk (which tomfidence region), a square (good for interval

methods), or a cross (more robust with respect to outliedsadso suited to interval algorithms).

When outliers occur, the errors should not be representea Graussian distribution, but by heavy tailed distri-
butions or by sums of Gaussian distributions. For suchibigions, the confidence regions are non convex and
should not be represented by boxes or disks. Figure 6 ditestithe error bounding for a random veatot (e, es)
wheree; andes are both independent and satisfy a probability distriluiomposed by the sum of two Gaussian

distributions.
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Fig. 5. Error bounding for a normal probability distributidunction
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Fig. 6. Error bounding for a white random vecithe components; of which follow a gaussian sum distribution.
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I1l. ROBUST REGRESSION

Robust regression is designed to circumvent some limitatad traditional parametric methods when outliers occur
in the set of data [16]. In this section, we will show how thelmbilistic-set approach can be used for estimation

problems where outliers are involved. Consider again ther enodel

e=fy (p). (10)

We shall assume that is white (i.e., all its components;,i € {1,...,m} are independent and identically
distributed) Assume that the prior probability ferto belong to the interval—emax, emax| iS €qual tor. Theith
component ofe is said to be arinlier if e; € [—emax, emax] @nd an outlier otherwise. Thus the probability tor
to be an inlier ist (it does not depend o). The numbelk of inliers follows a binomial distribution. Therefore,
the probability of having exactly inliers amongm is

m!

Wi (12)

B(k’ m’ﬂ-) =

As a consequence, the probability of having strictly mom@nti outliers is

m—q—1

q,mwtj:efZﬁkmw (12)
k=0

Now, the mean for the binomial distribution with trials is m.7 and its standard deviation igmm(1 — ). If
m, is large, the binomial distribution is approximately elgteathe normal distribution\V\ (m.7r, mm(1l — 71')).

The probability that there exists more tharmutliers is thus

~ (g, m, ) ~ % <1 +erf <m (12m77rrzl—q7r) 1)) : (13)

Example. For instance, ifn = 1000, ¢ = 900, 7 = 0.2, we gety (¢, m, ) = 7.04 x 10716, Thus, if 80% of the

e; are outlier, having more than 900 outliers over 1000 databeagseen as a rare event. The graph of the function

v (g, 1000, 0.2) is represented on Figure 7. [ |
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Fig. 7. Graph of the functior (¢, 1000, 0.2) which provides the probability of having more tharouliers

The robust regression approach amounts to choosing tHeé seall e € R™ such that the number of outliers is

smaller (or equal) thap, i.e.,
E = {e € R™, card{i,e; ¢ [—€max, €max)} < ¢} - (14)

The posterior feasible s@ = f;l (E) will thus contain the true parameter vector with a prior foitity of

1—~(g,m,m).

IV. SET INVERSION WITH INTERVAL ANALYSIS

This section presents the basic notion needed to underbtamdhe set inversion problem
P = {p|fy(p) € B} = £, (E) (15)

can be solved with interval analysis. Interval arithmesiainumerical tool originally developed in order to quantify

the effect of finite-precision arithmetic on results obtairby a computer [14]. Interval arithmetic extends classica



SECOND SUBMISSION TO JOURNAL OF STATISTICAL THEORY AND PRAGCE 13

operators on real numbers to intervals in a natural way. Tiis] = [z, z"] and[y] = [y, y "],

2]+ = & +y 2" +y']
2] -y = [ —y" 2" —y7] (16)
[2]-[y] = [min(z7y", 27y 2Ty, 2Ty "),
max(z~y~,z y T, aty ,ztyt)).
For example, we havf1, 2] +[-3,4])-[-1,5] = [-2,6]-[-1, 5] = [-10, 30]. As another example, let us consider
the real functionf(z) = 2%+ 2z +4. An interval evaluation forf is [f]([z]) = [z]-[z] +2[z] +4. For [z] = [-3,4],
we have:
[F1[=34]) = [-3,4]-[-3,4] +2[-3,4] +4 (17)
= [-12,16] + [6,8] +4 = [—14, 28]. (18)

Note that the actual image by of the interval[z], f([—3,4]) = [3,28] is a subset of the interval evaluation
[f1([-3,4]) = [—14,28]. This illustrates that interval evaluation is usually pesstic [14]. A box or vector

interval [p] of R" is defined as the Cartesian productrofntervals.

] = [pr,p7] x - x [y, 0] (19)

It can be proven (see [14]) that the interval evaluafiyi([p]), applied on a given expression fif, encloses the

setfy ([p]), i.e.

v [p], fy ([p]) C [fy]([p)- (20)

The width w([p]) of a box[p] is the size of its largest side. For instance, the width ofitwe[p] = [1, 2] x [-1, 3]

is equal to4. A principal planeof [p] is a symmetry plane dfk] normal to a side of maximum length. Tisect

a box [p] means to cut it along one of its principal planes. Bisecfinp= [1,2] x [—1, 3] produces two boxes
[p] (1) = [1,2] x [-1,1] and [p] (2) = [1,2] x [1,3]. The algorithm /1A (Set Inverter Via Interval Analysis)
computes a list of boxes the union of which encloses the isalsetP. Note that SIVIA can also compute some

boxes that are proved to be insitle but here, for the sake of simplicity, a simpler version o¥18 is given.
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SiviA uses the following test to decide if a given bfgy is outside the solution s@t
fyl([P)NE=0 = [p|nP=0. (21)

SIVIA is given by the following table where the accuracys a small positive real number ar®ét"™ is a list of

boxes which is initially empty.

Algorithm SiviA ([p])

1 if [fy]([p]) NE =0, then return
2 If w([p]) < e, {store [p] into P return};
3 Bisect[p] into [p](1) and [p](2);

4 Svia([p](1)); SIVIA ([p](2));

SIVIA is first called for[p] = [p](0), where[p](0) is a box which contains the solution et After completion

of the algorithm, we hav® c P+.

Remark 2:When the boxE to be inverted is a singletofie} (for example when dealing with error-free data),
the solution sefP is often reduced to a singletofp} which is easily found by SIVIA or by other punctual
approaches. When two or more solutions exist|I& detects all of them in a guaranteed way, contrary to other

punctual approaches.

Remark 3:The algorithm can be made much more efficient by using intewastraint propagation, which is not

described here.
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V. TEST CASE

Consider a set ofn = 500 data generated as follows
yi = p1sin(pat;) +e;, With a probability0.2

= ripexp(rat;) +€;, With a probability0.2

= n with a probability0.6
wheret; = 0.02 % (i + 1), ¢ € {1,500}, e; is a white signal uniformly distributed inside-0.1,0.1] and n; is
a white signal normally distributed with a mean of 2 and a dsad deviation of 3. For the generation of the
simulated data, we tools = (2,2)" andr = (4, —0.4)". The set of data is depicted on Figure 8(a). Now, assume
that we only know that; = p; sin (p2t;) + e;, with a probability0.2 and that we have no idea of what happen
otherwise. Let us now try to estimate andp. from the data. A priori, we know that the probability of gagi
an outlier is lower thar).8. Assume that we want to compute a feasible setpfavhich encloses the true value

for p with a probability greater thaf.95. We should take
g=min{q | v(q1,500,0.2) <1—0.95}.

Recall thaty (¢1,500,0.2) represents the probability of having more thanoutliers. Sincey is decreasing with
respect tay, we easily gety = 414, via a dichotomy method. We will thus assume a minimung ef 414 outliers.

The resulting feasible sdt (see Figure 8(c) in black inside the two circles) enclopesith a prior probability
greater thar —~ (414,500, 0.2) = 0.953 . The two connected componentsfbhre due to the fact that the model
is not globally identifiable. The grey segments of Figure) 8épresent the boxes generated by the interval set
inversion algorithm. The associated filtered data are sgmted on 8(b), in black. The resulting computing time

is less than 5 seconds.

Comparison with a Monte-Carlo approach. The interval approach has been compared with a basic Moatie-C
method which can also be used to solve set inversion problEanghe same problem, with the same data and the

same number of assumed outliers (ye= 414), the Monte-Carlo method was not able to find a single feasibl
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Fig. 8. (a) available data, (b) filtered data, (c) the feas#w#t in black inside the two circles has two connected coeisn

point, after ten minutes. To obtain feasible points, the Ineinof allowed outliers was increased upge= 460
for 500 data. The results obtained for 100000 test pointsshosvn on Figure 9. The number of feasible points

that have been found around the true valuegds small and the estimation is poor.

The C++ Builder 5 source codes including the interval andMioaite-Carlo algorithm corresponding the test case
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as well as the data are available at the following link

16
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Fig. 9. Results obtained by the Monte-Carlo method

www. ensi eta. fr/jaulin/probintO.htm

VI. CONCLUSION

In this paper, we have presented a new approach for idetivficavhich combines interval propagation methods
with a probabilistic representation of uncertainty. Themridea is to transform a probabilistic problem into a set
inversion problem. It made possible to solve nonlinear abilistic estimation problems in a robust and reliable
way. The main contribution with respect to other classio&trival-based methods is that our approach is able to
provide a probability associated to computed set. Contt@rgther robust Monte-Carlo based methods (such as
the Ransac algorithm [8] widely used in computer vision) algorithm is deterministic and provides guaranteed
results if the assumptions are satisfied (in the context efhper, the probability of having the assumptions

satisfied was assumed to be known).
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A possible extension of the approach is to make the prior deasible sef depend on a parametere [0, 1],
wherea represents the probability for the error vectoto belong toE. The resulting parametrized SBf«) can
then be interpreted ascoud [15] and can easily be represented thropghential cloudsThe proposed approach

can then be extended to compute a posterior feasible (ﬁ’c{ud for p.
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