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Abstract

Interval constraint propagation methods have been shown tobe efficient and reliable to solve difficult nonlinear

bounded-error estimation problems. However they are considered as unsuitable in a probabilistic context, where

the approximation of a probability density function by a setcannot be accepted as reliable. This paper shows how

probabilistic estimation problems can be transformed intoa set estimation problem by assuming that some rare

events will never happen. Since the probability of occurrence of those rare events can be computed, we can give

some prior lower bounds for the probability associated to solution set of the corresponding set estimation problem.

The approach will be illustrated on a parameter estimation problem.
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I. I NTRODUCTION

Parameter set estimation deals with characterizing a (preferably small) set which encloses the parameter vectorp

of a model from data collected on the system [18]. In the context of bounded-error estimation, the measurement

error is assumed to be bounded and characterizing the posterior feasible set amounts to solve a set inversion

problem for which interval constraint propagation [14], [17] methods have been shown to be particularly efficient,

even when the model is nonlinear [11]. In a probabilistic context, the measurement error is not anymore described

by membership intervals, but byprobability density functions(pdf). When some prior pdf for is available, the

Bayes rule makes possible to obtain the posterior pdf (see,e.g., [7]). The set to be estimated becomes theminimal

volume credible set[2] and corresponds to the minimal volume set enclosing the associate random vector with a

given probability. Unfortunately, this problem cannot be cast into a set inversion problem and interval methods,

which can still be useful to characterize credible sets [10], are limited to small dimensional problems with few

data.

Here, the approach that will be considered is different. We do not assume that some prior pdf are available for the

vector to be estimated. Instead, we fix a given probability, say α, which corresponds to the risk we accept to take

a priori. In practice,α is a tiny positive number. Then we choose a collection of rareevents for the error such

that the prior probability of occurrence of one of these events if lower thanα. Finally we solve the associated set

inversion problem using a set membership approach. To my knowledge, this approach has never been proposed

before.

Interval methods have already been combined with probabilistic theory [12] [6] in order to solve estimation

problems [1] [13]. The main difference between our approachand the above mentioned papers is that here, we

solve a traditional probabilistic estimation problem using interval tools and thus our approach is fully consistent

with traditional probabilistic estimation.

Section II presents the principle of our new approach for probabilistic estimation that we namedprobabilistic-
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set estimation. The approach is then used in Section III to deal with robust nonlinear parameter estimation. The

principle of set inversion and interval analysis for set estimation, needed to understand the resolution, is recalled

on Section IV. An illustrative test case is treated in Section V. Section VI then concludes the paper.

II. PROBABILISTIC-SET APPROACH FOR ESTIMATION

A parameter estimation problem can be represented by an error model equation

e = f (y,p) = fy (p) , (1)

where

• e ∈ Rm is the error vector,

• y ∈ Rm is the collected data vector, with the same dimension thane, which is assumed to be known exactly

a posteriori, and

• p ∈ Rn is the parameter vector to be estimated.

A parameter estimation problem amounts to findp from y and some assumptions on the errore. The classical

approaches for parameter estimation are the Bayesian estimation and the set estimation that will now be recalled.

In a probabilistic approach, we generally assume that a prior probability distributionsΠe,Π
prior
p are known fore,p.

The Bayes rule (seee.g. [7], [18], [9]) gives us the posterior probability distribution function forp

Πpost
p (p) =

Πe(fy (p)).Π
prior
p (p)∫

p∈Rn
Πe(fy (p)).Π

prior
p (p).dp

. (2)

as illustrated by Figure 1.

In a set-membership context (see Figure 2), we generally assume that the error vectore belongs to a prior setE

which corresponds to alle such thatΠe(e) �= 0, or equivalentlyE is the support of the random vectore. The

following theorem provides the link between the Bayesian and the set approaches. Even if its use is classical in

the set-membership community, it is given here for the first time, to my knowledge.
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Fig. 1. Principle of the Bayesian estimation

Theorem. If E is the support of the errore andP support of the priorp, then the support of the posteriorp is

given by

P̂ = f−1y (E) ∩ P. (3)

The setP̂ is called theposterior feasible set.
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Fig. 2. Illustration of the set membership approach

Proof. Equation (3) can easily be proven from the Bayes rule by taking the supports of the probability distributions

that are involved. From (2), we have

Πpost
p (p) �= 0 ⇔ Πe(fy (p)) �= 0 andΠprior

p (p) �= 0

⇔ fy (p) ∈ Π−1e (]0,∞[) andp ∈ P

⇔ p ∈ f−1y (E) andp ∈ P

⇔ p ∈ f−1y (E) ∩ P.

�

From this theorem, we can conclude that the set-membership approach can be seen as less general than the

probabilistic approach. However, characterizingP̂ is a set inversion problem which can be solved efficiently andin

a reliable way for a huge class of nonlinear functionsf . This is not the case for probabilistic approaches except for

some specific situations, such as the linear-Gaussian case.The most efficient techniques to solve the set inversion

problem are based on interval constraint propagation methods.
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In this paper, contrary to other set-membership techniques, the support of the pdf ofe is not assumed to be

bounded. The principle of the approach is to decompose the error space into two subsets. A subsetE on which

we bet that the error vectore will belong and its complementary setE. The prior probability of the evente ∈ E

is denoted byπ. The setE is chosen such thatπ is almost equal to 1 and such that the likelihood is high overE.

The evente ∈ E is considered as rare and we bet that it will not occur. Once the data vectory is collected, we

compute theposterior feasible set

P̂ = f−1y (E) . (4)

If now P̂ is not empty, then we still bet that the rare event did not occur and we conclude thatp ∈ P̂ with a

probability ofπ. If P̂ = ∅, then we conclude the rare event occurred. In practice, we might also suspect the model

is not accurate enough, or that outliers have corrupted the data set. We shall now give academic examples to

illustrate the principle of our approach.

Example 1. Assume that the model is described by the relationy = p2 + e, i.e., e = y − p2 = fy (p) and that

Πe is a normal distribution of the formN (0, 1) . If we setE = [−6, 6] then,e will be outsideE, with a prior

probability of

1− 1√
2π

∫ 6

−6
exp

(
−e

2

2

)
de ≃ 1.97× 10−9. (5)

Assume that we collect the datay = 10. With the probabilistic-set approach, we get

P̂ = f−1y (E) = f−1y ([−6, 6])

=
√
y − [e] =

√
10− [−6, 6] (6)

=
√
[4, 16] = [−4,−2] ∪ [2, 4].
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with a prior probability of1 − 1.97 × 10−9. To apply Bayesian approach, we need a prior density probability

Πprior
p (p) for the parameterp. Assume that it is given by a normal distributionN (3, 1). The posterior pdf forp is

Πpost
p (p) =

Πe(fy (p)).Π
prior
p (p)∫

p∈R
Πe(fy (p)).Π

prior
p (p)dp

=
e−

(10−p2)2

2 .e−
(p−3)2

2

∫
∞

−∞
e−

(10−p2)2

2 .e−
(p−3)2

2 .dp

(7)

≃ 2.57 e−
p4−19p2−6p+109

2 .

This illustrates that the probabilistic-set approach is more easy to perform than applying the Bayes rule, in a

nonlinear context. �

Example 2. Consider the same example, but in a situation where the rareevent "e /∈ E" occurs. For instance, we

measurey = −10. The probabilistic-set approach gives

P̂ = f−1y (E) = ∅, (8)

whereas

Πpost
p (p) =

e−
(20−p2)2

2 .e−
(p−3)2

2

∫
∞

−∞
e−

(10−p2)2

2 .e−
(p−3)2

2 dp

(9)

≃ 6.930 5× 1023.e− p4−39p2−6p+409

2
.

The probabilistic-set approach concludes to an inconsistency, whereas the Bayesian approach yields to precise

posterior pdf forp. Now, in practice, the huge factor (here6.930 5×1023) is often interpreted as an inconsistency.�

Example 3. The probabilistic-set approach can easily be extended to the situation where the error is a vector.

Figure 3 illustrates a situation wheree is of dimension 2. Assume that

Pr (e1 ≤ −1) = 0.2, Pr (e2 ≤ −2) = 0.2,

Pr (e1 ∈ [−1, 1]) = 0.4, Pr (e2 ∈ [−2, 3]) = 0.6,

Pr (e1 ∈ [1, 2]) = 0.2, Pr (e2 ≥ 3) = 0.2,

Pr (e1 ≥ 2) = 0.2,
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Fig. 3. Illustration of the probabilistic-set approach

and thate1 ande2 are independent. Then, the joint pdf for(e1, e2) satisfies the probabilities given on the following

table.

[e2]\[e1] [−∞,−1] [−1, 1] [1, 2] [2,∞]

[3,∞] 0.04 0.08 0.04 0.04

[−2, 3] 0.12 0.24 0.12 0.12

[−∞,−2] 0.04 0.08 0.04 0.04

As a consequence, the prior probability fore to belong to the grey set

E = (R× [−2, 3]) ∪ ([−1, 1]×R) ∪ ([1, 2]× [3,∞[)

is given by

0.08 + 0.04 + 0.12 + 0.24 + 0.12 + 0.12 + 0.08 = 0.8.

If we assume thate /∈ E is a are event (here the probability is0.2), the posterior feasible set will bêP = f−1y (E)

with a prior probability of0.8. �

Remark 1:Representing the pdfΠe for the error by boxes with an associated probability, as illustrated by Figure

3, can be interpreted as a discretization ofΠe. The resulting object can be represented viapotential clouds[15],
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Fig. 4. Error bounding for a gaussian univariate probability function

p-boxes[3] or Dempster-Shafer structures [4], [5]. However, such abstractions will not be needed here and we

limit ourselves to the use of classical probabilistic theory. �

FromΠe, we can find some feasible setE for e associated with a given probability. The procedure which provides

E from e will be called error bounding.For instance, for a normal random variable, it is natural to take the

confidence interval (see Figure 4) forE.

For a normal random vector, we have different choices for theerror bounding. As illustrated by Figure 5 for a

two-dimensional random vector, we can take a disk (which is aconfidence region), a square (good for interval

methods), or a cross (more robust with respect to outliers and also suited to interval algorithms).

When outliers occur, the errors should not be represented bya Gaussian distribution, but by heavy tailed distri-

butions or by sums of Gaussian distributions. For such distributions, the confidence regions are non convex and

should not be represented by boxes or disks. Figure 6 illustrates the error bounding for a random vectore = (e1, e2)

wheree1 ande2 are both independent and satisfy a probability distribution composed by the sum of two Gaussian

distributions.
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Fig. 5. Error bounding for a normal probability distribution function

Fig. 6. Error bounding for a white random vectore the componentsei of which follow a gaussian sum distribution.
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III. ROBUST REGRESSION

Robust regression is designed to circumvent some limitations of traditional parametric methods when outliers occur

in the set of data [16]. In this section, we will show how the probabilistic-set approach can be used for estimation

problems where outliers are involved. Consider again the error model

e = fy (p) . (10)

We shall assume thate is white (i.e., all its componentsei, i ∈ {1, . . . ,m} are independent and identically

distributed) Assume that the prior probability forei to belong to the interval[−emax, emax] is equal toπ. The ith

component ofe is said to be aninlier if ei ∈ [−emax, emax] and an outlier otherwise. Thus the probability forei

to be an inlier isπ (it does not depend oni). The numberk of inliers follows a binomial distribution. Therefore,

the probability of having exactlyk inliers amongm is

β(k,m, π) =
m!

k! (m− k)!π
k. (1− π)m−k . (11)

As a consequence, the probability of having strictly more than q outliers is

γ (q,m, π)
def
=

m−q−1∑

k=0

β(k,m, π). (12)

Now, the mean for the binomial distribution withm trials ism.π and its standard deviation is
√
mπ(1− π). If

m, is large, the binomial distribution is approximately equal to the normal distributionN
(
m.π,

√
mπ(1− π)

)
.

The probability that there exists more thanq outliers is thus

γ (q,m, π) ≃ 1

2

(
1 + erf

(
m (1− π)− q − 1√

2mπ(1− π)

))
. (13)

Example. For instance, ifm = 1000, q = 900, π = 0.2, we getγ (q,m, π) = 7.04× 10−16. Thus, if 80% of the

ei are outlier, having more than 900 outliers over 1000 data canbe seen as a rare event. The graph of the function

γ (q, 1000, 0.2) is represented on Figure 7. �



SECOND SUBMISSION TO JOURNAL OF STATISTICAL THEORY AND PRACTICE 12

Fig. 7. Graph of the functionγ (q, 1000, 0.2) which provides the probability of having more thanq ouliers

The robust regression approach amounts to choosing the setE of all e ∈ Rm such that the number of outliers is

smaller (or equal) thanq, i.e.,

E = {e ∈ Rm, card{i, ei /∈ [−emax, emax]} ≤ q} . (14)

The posterior feasible set̂P = f−1y (E) will thus contain the true parameter vector with a prior probability of

1− γ (q,m, π) .

IV. SET INVERSION WITH INTERVAL ANALYSIS

This section presents the basic notion needed to understandhow the set inversion problem

P̂ = {p | fy(p) ∈ E} = f−1y (E) (15)

can be solved with interval analysis. Interval arithmetic is a numerical tool originally developed in order to quantify

the effect of finite-precision arithmetic on results obtained by a computer [14]. Interval arithmetic extends classical
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operators on real numbers to intervals in a natural way. Thus, if [x] = [x−, x+] and [y] = [y−, y+],

[x] + [y] = [x− + y−, x+ + y+]

[x]− [y] = [x− − y+, x+ − y−]

[x] · [y] = [min(x−y−, x−y+, x+y−, x+y+),

max(x−y−, x−y+, x+y−, x+y+)].

(16)

For example, we have([1, 2]+[−3, 4]) · [−1, 5] = [−2, 6] · [−1, 5] = [−10, 30]. As another example, let us consider

the real functionf(x) = x2+2x+4. An interval evaluation forf is [f ]([x]) = [x] · [x]+2[x]+4. For [x] = [−3, 4],

we have:

[f ]([−3, 4]) = [−3, 4] · [−3, 4] + 2[−3, 4] + 4 (17)

= [−12, 16] + [−6, 8] + 4 = [−14, 28]. (18)

Note that the actual image byf of the interval [x], f([−3, 4]) = [3, 28] is a subset of the interval evaluation

[f ]([−3, 4]) = [−14, 28]. This illustrates that interval evaluation is usually pessimistic [14]. A box or vector

interval [p] of Rn is defined as the Cartesian product ofn intervals.

[p] =
[
p−1 , p

+
1

]
× · · · ×

[
p−n , p

+
n

]
. (19)

It can be proven (see [14]) that the interval evaluation[fy]([p]), applied on a given expression offy, encloses the

set fy([p]), i.e.

∀ [p] , fy([p]) ⊂ [fy]([p]). (20)

Thewidthw([p]) of a box[p] is the size of its largest side. For instance, the width of thebox [p] = [1, 2]× [−1, 3]

is equal to4. A principal planeof [p] is a symmetry plane of[x] normal to a side of maximum length. Tobisect

a box [p] means to cut it along one of its principal planes. Bisecting[p] = [1, 2] × [−1, 3] produces two boxes

[p] (1) = [1, 2] × [−1, 1] and [p] (2) = [1, 2] × [1, 3]. The algorithm SIVIA (Set Inverter Via Interval Analysis)

computes a list of boxes the union of which encloses the solution setP̂. Note that SIVIA can also compute some

boxes that are proved to be insidêP, but here, for the sake of simplicity, a simpler version of SIVIA is given.
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SIVIA uses the following test to decide if a given box[p] is outside the solution set̂P:

[fy]([p]) ∩ E = ∅ ⇒ [p] ∩ P̂ = ∅. (21)

SIVIA is given by the following table where the accuracyε is a small positive real number andP+ is a list of

boxes which is initially empty.

Algorithm SIVIA ([p])

1 if [fy]([p]) ∩ E = ∅, then return;

2 If w([p]) < ε, {store [p] into P+; return};

3 Bisect[p] into [p](1) and [p](2);

4 SIVIA ([p](1));SIVIA ([p](2));

SIVIA is first called for[p] = [p](0), where[p](0) is a box which contains the solution setP̂. After completion

of the algorithm, we havêP ⊂ P+.

Remark 2:When the boxE to be inverted is a singleton{e} (for example when dealing with error-free data),

the solution set̂P is often reduced to a singleton{p} which is easily found by SIVIA or by other punctual

approaches. When two or more solutions exist, SIVIA detects all of them in a guaranteed way, contrary to other

punctual approaches.

Remark 3:The algorithm can be made much more efficient by using interval constraint propagation, which is not

described here.
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V. TEST CASE

Consider a set ofm = 500 data generated as follows

yi = p1 sin (p2ti) + ei, with a probability0.2

= r1 exp (r2ti) + ei, with a probability0.2

= ni with a probability0.6

where ti = 0.02 ∗ (i + 1), i ∈ {1, 500}, ei is a white signal uniformly distributed inside[−0.1, 0.1] and ni is

a white signal normally distributed with a mean of 2 and a standard deviation of 3. For the generation of the

simulated data, we tookp = (2, 2)T andr = (4,−0.4)T. The set of data is depicted on Figure 8(a). Now, assume

that we only know thatyi = p1 sin (p2ti) + ei, with a probability0.2 and that we have no idea of what happen

otherwise. Let us now try to estimatep1 andp2 from the data. A priori, we know that the probability of getting

an outlier is lower than0.8. Assume that we want to compute a feasible set forp which encloses the true value

for p with a probability greater than0.95. We should take

q = min {q1 | γ (q1, 500, 0.2) < 1− 0.95} .

Recall thatγ (q1, 500, 0.2) represents the probability of having more thanq1 outliers. Sinceγ is decreasing with

respect toq, we easily getq = 414, via a dichotomy method. We will thus assume a minimum ofq = 414 outliers.

The resulting feasible set̂P (see Figure 8(c) in black inside the two circles) enclosesp with a prior probability

greater than1− γ (414, 500, 0.2) = 0.953 . The two connected components ofP̂ are due to the fact that the model

is not globally identifiable. The grey segments of Figure 8(c) represent the boxes generated by the interval set

inversion algorithm. The associated filtered data are represented on 8(b), in black. The resulting computing time

is less than 5 seconds.

Comparison with a Monte-Carlo approach. The interval approach has been compared with a basic Monte-Carlo

method which can also be used to solve set inversion problems. For the same problem, with the same data and the

same number of assumed outliers (i.e.q = 414), the Monte-Carlo method was not able to find a single feasible
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Fig. 8. (a) available data, (b) filtered data, (c) the feasible set in black inside the two circles has two connected components .

point, after ten minutes. To obtain feasible points, the number of allowed outliers was increased up toq = 460

for 500 data. The results obtained for 100000 test points areshown on Figure 9. The number of feasible points

that have been found around the true value forp is small and the estimation is poor.

The C++ Builder 5 source codes including the interval and theMonte-Carlo algorithm corresponding the test case

as well as the data are available at the following link
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Fig. 9. Results obtained by the Monte-Carlo method

www.ensieta.fr/jaulin/probint0.html

VI. CONCLUSION

In this paper, we have presented a new approach for identification which combines interval propagation methods

with a probabilistic representation of uncertainty. The main idea is to transform a probabilistic problem into a set

inversion problem. It made possible to solve nonlinear probabilistic estimation problems in a robust and reliable

way. The main contribution with respect to other classical interval-based methods is that our approach is able to

provide a probability associated to computed set. Contraryto other robust Monte-Carlo based methods (such as

the Ransac algorithm [8] widely used in computer vision) ouralgorithm is deterministic and provides guaranteed

results if the assumptions are satisfied (in the context of the paper, the probability of having the assumptions

satisfied was assumed to be known).



SECOND SUBMISSION TO JOURNAL OF STATISTICAL THEORY AND PRACTICE 18

A possible extension of the approach is to make the prior error feasible setE depend on a parameterα ∈ [0, 1],

whereα represents the probability for the error vectore to belong toE. The resulting parametrized setE (α) can

then be interpreted as acloud [15] and can easily be represented throughpotential clouds. The proposed approach

can then be extended to compute a posterior feasible cloudP̂ (α) for p.
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