
Chapter 1
A simple controller for line following of sailboats

Luc Jaulin and Fabrice Le Bars

Abstract This paper proposes a simple controller for sailboat robots. The resulting
controller is simple to implement and its parameters are easy to tune. Its complexity
is low enough to be applicable for sailing robots with very limited computation
power. The presentation contains all the necessary details to allow a fast and reliable
implemention of a sailbot robot controller which follows a line. The paper also
presents a simple collision avoidance strategy based on interval analysis.

1.1 Introduction

This paper deals with the problem of controlling a sailboat robot. It describes in a
pedagogical way a controller that has been made generic enough to be used for a
large class of sailboat robots. Note that it is the controller that has been implemented
on the sailboat robot Vaimos [1] and has been proved to be very efficient and robust
in several convincing experiments. We did our best to make the controller under-
standable by students that are not specialists in sailboat robotics. Our problem is
motivated by the microtransat challenge [2][20] where autonomous sailboat robots
have to cross the Atlantic ocean from East to West. Figure 1.1 illustrates the control
loop to be considered in this paper. Sailboats are nonlinear hybrid systems involving
strong perturbations such as waves. Moreover, to our knowledge, no realistic state
equations are available for sailboats. For these reasons, existing methods from con-
trol theory [14] may not be appropriate for building reliable controllers for sailboat
robots. Now, sailboats have been designed for thousand of years to be easily con-
trolled by humans. A pragmatic approach that mimics the control strategy of sailors
is thus chosen here to build reliable controllers.

The paper is organized as follows. Section 2 describes the pragmatic controller.
An extension taking into account that the Earth is not flat is then considered in
Section 3. In Section 4, an elementary collision avoidance strategy is proposed. A
conclusion is given in Section 5.

1

Administrateur
Sticky Note
@InProceedings{Jaulin_IRSC2012,  author =  {L. Jaulin and F. Le Bars},  title =  {{A simple controller for line following of sailboats}},  booktitle =  {5th International Robotic Sailing Conference},  publisher = {Springer},  year = {2012},  pages = {107--119},  address = {Cardiff, Wales, England}}



2 Jaulin and Le Bars

Fig. 1.1 Controller of a sailboat robot

1.2 Controller

A classical approach to build controllers is to take a realistic model of the system to
be controlled (such as [6] for the sailboat) and then to use classical control methods
to get the controller. Here, we follow a pragmatic approach influenced by the po-
tential field strategy proposed by [18] for sailboat robots (see also [4]). The sailboat
is assumed to have three sensors and two actuators. The controller will have some
parameters which are easy to tune, some reference variables and one binary state
variable. Let us now describe all of them.

Sensors. The headingθ of the robot is measured by a compass. The angle of the
wind ψ is returned by a weather vane (even if this sensor can sometimes be omitted
as shown in [22]). The positionm is given by a GPS.

Actuators. The inputs of the robot are the angle of the rudderδ r and the maxi-
mum angle for the sailδ max

s (which is directly related to the length of the mainsheet).
Parameters. δ

max
r is the maximal angle of the rudder (we shall setδ

max
r = π

4 ), r
is the cutoff distance (i.e., we want that the distance of the boat to the line be less
thanr; we shall chooser = 50m),γ∞ is the incidence angle (we takeγ∞ =

π

4 ) andζ

is the close hauled angle (we chooseζ = π

3 ).
References. Two pointsa;b which define the line to be followed.
State variable. This will be a discrete variableq2 f�1;1g corresponding to the

favored tack.
We propose the following algorithm to describe the controller [12]. This algo-

rithm (presented in [11] in a theoretical form) is given in its low level form to allow
a fast and reliable implementation by anyone who wants to build a controller for
sailboat robots.
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Function in: m;θ ;ψ;a;b; out: δ r ;δ
max
s ; inout:q

1 e= det
�

b�a
kb�ak ;m�a

�
2 if jej> r

2 thenq= sign(e)
3 ϕ = atan2(b�a)
4 θ

� = ϕ� 2:γ∞
π
:atan

�
e
r

�
5 if cos(ψ�θ

�)+cosζ < 0
6 or (jej< r and (cos(ψ�ϕ)+cosζ < 0))
7 thenθ̄ = π+ψ�q:ζ :
8 elseθ̄ = θ

�

9 end
10 if cos

�
θ � θ̄

�
� 0 thenδ r = δ

max
r :sin

�
θ � θ̄

�
11 elseδ r = δ

max
r :sign

�
sin
�
θ � θ̄

��
12 δ

max
s = π

2 :

�
cos(ψ�θ̄)+1

2

�
:

The controller has one state variableq2 f�1;1g. This is why it is both an input
and an output variable of the algorithm.

Step 1. We compute the algebraic distance of the boat to the line. Ife> 0 the
robot is on the left of the line and ife< 0, it is on the right. In practice, since the
Earth is not flat, it is important to have a reasonable distance betweena andb (less
than 100km). In the formula, the determinant between two vectors is defined by

det(u;v) = u1v2�v1u2.

Step 2. If jej> r
2 = 25m, we are quite far from the line and the tack variableq is

allowed to change its value. If for instancee> 25m, thenq will be set to 1 and will
keep this value untile<�25m.

Step 3. We compute the angleϕ of the line to be followed (see Figure 1.2). In
the statement, atan2(u) = atan2(u1;u2) represents the angle of the two-dimensional
vectoru with respect to East.

Step 4. We compute the nominal angleθ
� (see Figure 1.2) given by

θ
� = ϕ� 2:γ∞

π
:atan

�e
r

�
:

This expression forθ � makes the line attractive. Whene= �∞, we have θ
� =

ϕ � 2:γ∞
π
:
�
�π

2

�
= ϕ � γ∞ , i.e., the robot has a heading which corresponds to the

angleγ∞. For the cutoff distancee= �r, we haveθ
� = ϕ � 2:γ∞

π
:π4 = ϕ � γ∞

2 and
for e= 0, θ

� = ϕ, which corresponds to the direction of the line. As illustrated by
Figure 1.3, some directionsθ � may be inconsistent with the current wind.

Step 5. If cos(ψ�θ
�) + cosζ < 0; the courseθ � corresponds to a direction

which is too close to the wind which the boat is unable to follow (see Figure 1.4).
The courseθ � is thus inconsistent with the wind. If this happens, we choose a close
hauled mode, i.e., the new feasible direction becomesθ̄ = π +ψ � ζ (at Step 7).
Figure 1.5 represents the corresponding vector field. Thin arrows correspond to the
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Fig. 1.2 Nominal vector fieldθ
� that the robot has follow when possible. The variableγ∞ corre-

sponds to the incidence angle when the distance to the boat is large (jej> 500m).

Fig. 1.3 The normal field may be inconsistent with the wind (bold arrow); The line to be followed
corresponds to thex-axis.

nominal field and thick arrows correspond to the corrected field (when the latter
is different from the nominal field) In this representation, we have removed the
hysteresis effect induced by the tack variableq (it is equivalent to saying that we
always haveq= sign(e)).

Step 6.This step implements what we call thekeep close hauled strategy. If
jej < r and cos(ψ �ϕ) + cosζ < 0, we force the close hauled mode even if the
route θ̄ is feasible. For efficiency reasons, when the line is against the wind, we
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Fig. 1.4 Some directions for the sailboat are not feasible. These unfeasible courses forms the no-go
zone painted grey.

Fig. 1.5 Vector field provided by the algorithm if we remove Step 6. Thin arrows correspond to
nominal routes. Thick arrows correspond to corrected routes when the nominal route is not feasible.



6 Jaulin and Le Bars

Fig. 1.6 Vector field provided by the algorithm including Step 6. Thin arrows correspond to nom-
inal routes. Thick arrows correspond to corrected routes based on the keep close hauled strategy.

do not want to loose against the wind. This is illustrated by Figure 1.6 where the
conventions are those of Figure 1.5. Note that in this figure we tookζ = π

3 (which
corresponds to a boat that has difficulties in going upwind in a close hauled mode)
which makes the line against the wind. A video with more explanations can be found
at [9].

Step 7. We are in the close-hauled mode and we choose.θ̄ = π +ψ �q:ζ (the
wind direction plus or minus the close hauled angleζ ). The hysteresis variableq
makes it possible to keep the current tack for 25 more meters to the line even if the
line to be followed has been crossed.

Step 8. If the nominal route is satisfactory, we keep it.
Step 10. At this level, the feasible coursēθ has been chosen and we want to tune

the rudder. If the robot has a consistent direction, we perform a proportional control
with respect to the error sin

�
θ � θ̄

�
. This is illustrated by Figure 1.7, Quarters 1 and

2.
Step 11. If the robot does not have a consistent direction, i.e. cos

�
θ � θ̄

�
< 0,

the rudder is tuned at the maximum (see Figure 1.7, Quarters 3 and 4).
Step 12. The length of the mainsheet is tuned with respect to the cardioid relation

δ
max
s = π

2 :

�
cos(ψ�θ̄)+1

2

�
[12]. Note that ifψ � θ̄ = �π (the boat is wind ahead),

δ
max
s = 0 whereasδ max

s = π

2 if the wind comes from abeam.
Remark. In practice, in a direct mode (i.e. whenϕ corresponds to a feasible

course), a bias of 10 meters could occur, i.e. the distance to the line does not con-
verge to 0. An integrator term could avoid this bias. To implement the integrator, it
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Fig. 1.7 Four quarter technique for the tuning of the rudder to go in the routeθ̄ . Quarters 1 and
2, we have cos

�
θ � θ̄

�
� 0 and a proportional control is applied; Quarters 3 and 4, we have

cos
�
θ � θ̄

�
� 0 and a bang-bang control is chosen; Quarters 2 and 3, we have sin

�
θ � θ̄

�
� 0

then we turn left (δ r > 0); Quarters 1 and 4, we have sin
�
θ � θ̄

�
� 0 then we turn right (δ r < 0).

suffices to replace Step 4 by the two following statements:�
z= z+α �dt �e

θ
� = ϕ� 2:γ∞

π
:atan

�
e+z

r

�
wheredt is the sampling time. The variablez corresponds to the value of the in-
tegrator and converges to the bias we had without the integrator. The coefficientα

should be small enough to avoid any change in the behavior of the controlled sail-
boat. For instance, if fore= 10m for 100 sec. we want a correction of 1m, we shall
takeα = 0:001. As soon as the distance to the line is higher than 50 meters (during
the initialization, for instance), if the the robot switches to another line (as it is the
case when a line is validated), or if the robot switches to a close hauled mode, the
integratorz should be forced to 0.

1.3 Earth is not flat

We now want to take into account the fact that the Earth is not flat. We shall now
adapt the controller of the previous section to our new situation. Denote by`x and`y
the longitude and the latitude of a point which is located at the surface of the Earth.
The transformation into the geographic coordinate system is given by
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Fig. 1.8 Geographic reference frame

T :

�
`x
`y

�
!

0@x
y
z

1A=
0@ρ cos̀ ycos̀ x

ρ cos̀ ysin`x
ρ sin`y

1A (1.1)

whereρ = 6371000m is the radius of the Earth (see Figure 1.8).
Consider three pointsa;b;m at the surface of the Earth (see Figure 1.9). The

vector

n=
a^b
kakkbk

is normal to the plane(oab) and has a norm equal to 1. The algebraic distance from
m to the plane(oab) is given by

e=mT:n:

Let us differentiate the relation (1.1) We get0@dx
dy
dz

1A= J:

0@d`x
d`y
dρ

1A
where

J=

0@�ρ cos̀ ysin`x �ρ sin`ycos̀ x cos̀ ycos̀ x

ρ cos̀ ycos̀ x �ρ sin`ysin`x cos̀ ysin`x
0 ρ cos̀ y sin`y

1A :
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Fig. 1.9 Line (ab) to be followed

This formula can be used to find the the geographic coordinates of the cardinal
directions. For instance, the vector corresponding to the East is given by the first
column. Equivalently, we are able to build a East-North-Elevation frameR1 around
the robot (in grey on Figure 1.9). The corresponding rotation matrix is obtained by
normalizing each column of the Jacobian matrixJ:

R=

0@�sin`x �sin`ycos̀ x cos̀ ycos̀ x

cos̀ x �sin`ysin`x cos̀ ysin`x
0 cos̀ y sin`y

1A :
The transformation relation to move from the geographic frameR0 to the robot
frameR1 is

vjR1
= RT:vjR0

: (1.2)

To getϕ, take the vectorb�a, express it in theR1 (using (1.2)) frame, project it
into the(i; j) frame (by selecting the two first rows) and take its argument (using the
atan2function). This gives

ϕ = atan2
�

M :(b�a)jR0

�
;

where

M =

�
�sin`mx cos̀ m

x 0
�cos̀ m

x sin`my �sin`mx sin`my cos̀ m
y

�
:

The resulting controller is given by the following table
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Function in : θ ;ψ; `ax; `
a
y; `

b
x ; `

b
y ; `

m
x ; `

m
y ;

out: δ r ;δ
max
s ; inout:q

1 a=T
�
`ax; `

a
y

�
;b=T

�
`bx ; `

b
y

�
;m=T

�
`mx ; `

m
y

�
;

2 e=mT: a^b
kakkbk ;

3 if jej> r
2 thenq= sign(e) ;

4 M =

�
�sin`mx cos̀ m

x 0
�cos̀ m

x sin`my �sin`mx sin`my cos̀ m
y

�
;

5 ϕ = atan2(M :(b�a)) ;
6 θ

� = ϕ� 2:γ∞
π
:atan

�
e
r

�
;

7 if cos(ψ�θ
�)+cosζ < 0

8 or (jej< r and (cos(ψ�ϕ)+cosζ < 0))
9 thenθ̄ = π+ψ�q:ζ ;
10 elseθ̄ = θ

�;
11 end;
12 if cos

�
θ � θ̄

�
� 0 thenδ r = δ

max
r :sin

�
θ � θ̄

�
;

13 elseδ r = δ
max
r :sign

�
sin
�
θ � θ̄

��
;

14 δ
max
s = π

2 :

�
cos(ψ�θ̄)+1

2

�
:

1.4 Avoiding collisions

In this section, we assume again (as in Section 1.2) that the Earth can be approxi-
mated by a plane on which a Cartesian frameOxyis available. Consider the situation
wherem other boats are detected at timet = 0 by our robot, for instance using an
AIS (Automatic Identification System). Note that the timet = 0 is chosen as the
reference time and does not correspond to the beginning of the mission. We assume
that we measure the speed and the position of these boats with a known accuracy.
The speed is considered as constant. More precisely, the position of all these boats
is assumed to satisfy

mi (t) = ai :t+bi ; i 2 f1; : : :mg

whereai and bi are vectors ofR2 which correspond to the speed vector and the
initial position of each boat. Since we measure these two quantities with a known
accuracy, we have two boxes

�
ai
�

and
�
bi
�

which encloseai andbi , respectively.
Moreover, we assume that the trajectory of our robot is described by

m0 (t) = a0:t+b0:

The two vectorsa0 andb0 can be obtained by taking into account the characteristics
of the line to be followed (see Section 1.2) and the speed of our robot (which can
be estimated from the previous GPS measurements). Again, we assume that we
have two boxes

�
a0
�

and
�
b0
�

which enclosea0 andb0. We shall propose a method
based on interval analysis [17] [13] [21] to prove that our robot’s trajectory is safe.
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Interval analysis is a numerical tool able to deal with nonlinear problems involving
uncertainties (see, e.g. [5], [15], [10], [16] and [19] in the context of robotics). It
has also been used in the context of sailboat robotics [8]. First, recall some basic
interval operations that will be used later.

[x�;x+]+ [y�;y+] = [x�+y�;x++y+]
[x�;x+]� [y�;y+] = [x��y+;x+�y�]
[x�;x+]� [y�;y+] = [min(x�y�;x+y�;x�y+;x+y+);max(x�y�;x+y�;x�y+;x+y+)]:

For instance
[2;3]� [�1;2]+ [3;4] = [�3;6]+ [3;4] = [0;10] :

Proposition 1. If for all i 2 f1; : : :mg ;8<:
0 =2

��
a0

x

�
�
�
ai

x

��
� [0; tmax]+

�
bi

x

�
�
�
b0

x

�
or

0 =2
��

a0
y

�
�
�
ai

y

��
� [0; tmax]+

�
bi

y

�
�
�
b0

y

�
or

0 =2
��

a0
y

�
�
�
ai

y

��
�
��

bi
x

�
�
�
b0

x

��
�
��

a0
x

�
�
�
ai

x

��
�
��

bi
y

�
�
�
b0

y

��
then the trajectory of the robot is collision free inside the time interval[0; tmax] :

Proof. Our trajectory iscollision-freeinside an interval[0; tmax] if

8i 2 f1; : : :mg ;8t 2 [0; tmax] ;mi (t) 6=m0 (t) :

By taking the contrapositive of this proposition, we get that if the system8<:
�
a0�ai

�
:t+b0�bi = 0;

t 2 [0; tmax]
a0 2

�
a0
�
;b0 2

�
b0
�
;ai 2

�
ai
�
;bi 2

�
bi
�
;

or equivalently 8>>>><>>>>:

�
a0

x�ai
x

�
t+bi

x�b0
x = 0�

a0
y�ai

y

�
t+bi

y�b0
y = 0

t 2 [0; tmax]
a0

x 2
�
a0

x

�
;b0

x 2
�
b0

x

�
;a0

y 2
�
a0

y

�
;b0

y 2
�
b0

y

�
ai

x 2
�
ai

x

�
;bi

x 2
�
bi

x

�
;ai

y 2
�
ai

y

�
;bi

y 2
�
bi

y

� (1.3)

has no solution for alli 2 f1; : : :mg, then our trajectory is collision free. Now, from
the two first lines of (1.3), we get�

a0
y�ai

y

��
bi

x�b0
x

�
�
�
a0

x�ai
x

��
bi

y�b0
y

�
= 0:

The fundamental theorem of interval analysis [17] applied on the three equations
terminates the proof. �

Method for avoiding collisions.We propose to taketmax= 10min and apply the
following procedure every minute:
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Step 1. Normal mode. Using proposition 1, check if the current course (with
angleϕ) that is followed by the robot is collision free. If it is not the case, go to Step
2.

Step 2. Anchor mode. Anchor (virtually) the robot for 10 minutes. Go to Step 1.

1.5 Conclusion

In this paper we have presented a simple controller to allow a sailboat robot to follow
a line. The controller is easy to understand, implement, test and debug, compared
to other more sophisticated controllers such as the one developed by Guillou [7] or
by Bruder et. al. [3]. All computations can be performed using any cheap and low-
powered microcontrollers, which is a key point in the context of sailboat robotics
where the energy is highly limited. The controller can easily be adapted to build
controllers which are less generic, but more efficient since they can be tuned on a
particular sailboat. A simple collision avoidance strategy based on interval analysis
has also been presented in the last part of the paper.
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