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Abstract: This paper proposes a new method for recognition of geometrical shapes (such as
lines, circles or ellipsoids) in an image. The main idea is to transform the problem into a bounded
error estimation problem and then to use an interval-based method which is robust with respect
to outliers. The approach is illustrated on an image taken by an underwater robot where a
spheric buoy has to be detected. The results will then be compared to those obtained by the
more classical generalized Hough transform.
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1. INTRODUCTION

The problem to be considered in this paper is to extract
known shapes such as ellipses, circles or lines from an
image Russ [2002] Bovik [2000]. Fig. 1 represents a photo
taken by the underwater robot Sauc�isse (Fig. 2) that
participated in the SAUC�E (Student Autonomous Un-
derwater Competition, European) competition that took
place in July 2008 in Brest, France. For more information,
see

www.dstl.gov.uk/news_events/competitions/sauce/

On Fig. 1 we have a spheric buoy that had to be detected
by the robot in order to touch it. In this paper, we search
for an automatic method to detect some given geometrical
shapes in the image and also return the parameters of the
shape. For instance, in Fig. 1, the shape to be extracted is
a circle and has three parameters: the two coordinates of
the center and the radius. The �rst steps to be performed
before the shape extraction are a preprocessing of the
image Bazeille [2008] followed by an edge detection Canny
[1986]. The resulting black-and-white image is represented
on Fig. 3. The principle of the edge detection is to compute
the modulus of the gradient of the image and then to
threshold the resulting gradient image. All edge points (in
white) of the edge image could potentially belong to the
edge of a shape. The approach to be considered here is to
�nd the parameters of a chosen shape that are consistent
with a given percentage of the edge points. For our buoy
example, the shape will be a circle.

Section 2 shows that our shape extraction problem trans-
lates into an implicit parameter estimation problem which
requires a resolution robust with respect to outliers. Some
notions on interval propagation are presented on Section 3.
These notions are then used on Section 4 to build a robust
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Fig. 1. A spheric buoy taken by the underwater robot
Sauc�isse

Fig. 2. Sauc�isse robot inside a swimming pool
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Fig. 3. Image after an edge detection

interval based set estimation algorithm. Some results are
given on Section 5 and Section 6 concludes the paper.

2. APPROACH

2.1 Set estimation

In a bounded-error estimation context Walter and Pron-
zato [1997], a parameter estimation problem can generally
be cast into the problem of characterizing a set de�ned by

P =
\

i2f1;:::;mg

fp 2 Rnp ;9y 2 [y](i); f (p;y) = 0g| {z }
Pi

(1)

where p is the parameter vector, [y](i) � Rny is the
ith measurement box and f : Rnp � Rny ! Rnf is the
model function (latter we will see that nf can be greater
than 1). The set Pi is the set of all parameter vectors
that are consistent with the ith measurement vector. This
estimation problem can be quali�ed as implicit because
of it involves an implicit equation f (p;y) = 0. In the
particular situation where y can be isolated, i.e., f (p;y) =
0, g (p) = y, we get

P=
\

i2f1;:::;mg

fp 2 Rnp ;g (p) 2 [y](i)g| {z }
Pi

=
\

i2f1;:::;mg

g�1 ([y](i)) ;

and the problem becomes a set inversion problem Jaulin
and Walter [1993].

Example: Consider the example taken from Jaulin and
Walter [1999] where one wants to �nd the set of parameter
vectors p = (p1; p2)T such that the graph of the function

20 exp(�p1t)� 8 exp(�p2t);
goes through all ten boxes of Fig. 4. For this problem, the
model function is

f (p;y) = 20 exp(�p1y1)� 8 exp(�p2y1)� y2;
and the boxes [y](1); : : : ; [y](10) are those represented on
Fig. 4.

2.2 Shape extraction as a set estimation problem

Consider the shape function (which is analog to the model
function presented above)

Fig. 4. Parameter estimation problem

f :

�
Rnp � R2 ! Rnf
(p;y) ! f (p;y) :

The R2 space corresponds to the image, the vector y to a
pixel of this image and p is the parameter vector of the
chosen shape. We de�ne the shape associated with p as
follows

S (p) def=
�
y 2 R2; f (p;y) = 0

	
:

Consider a set of (small) boxes in the image

Y = f[y](1); : : : ; [y](m)g :
Each of this box is assumed to intersect the edge of the
shape we want to extract.

Remark: In our buoy example, Y corresponds to small
boxes with center the edge points in Fig. 3 and with a
width of 2 pixels. Since we want to extract a circle, the
shape function is

f (p;y) = (y1 � p1)2 + (y2 � p2)2 � p23:
The parameter vector is p = (p1; p2; p3)

T where p1; p2 are
the coordinates of the center of the circle and p3 is its
radius.

The feasible set P is the set of all p such that the
corresponding shape crosses all boxes [y](i). Now, in our
shape extraction problem, a lot of boxes [y](i) do not
correspond to the shape and should then be considered as
outliers. As a consequence, except in atypical situations,
the resulting feasible set P is empty. The following section
explains how one can robustify the estimation process with
respect to some outliers.

2.3 Robust set estimation

Consider m sets X1; : : : ;Xm of Rn. The q-relaxed intersec-

tion denoted by
fqg\
Xi is the set of all x 2 Rn which belong

to all Xi�s, except q at most. Fig. 5 illustrates this notion
for m = 6 and q = 2; 3; 4. For this example, we have

f0g\
Xi =

f1g\
Xi = ;;

f5g\
Xi =

[
Xi and

f6g\
Xi = R2:

In the same way, we de�ne the q relaxed feasible set as



Fig. 5. Illustration (in gray) of the q-relaxed intersection
the 6 sets X1; : : : ;X6 where q 2 f2; 3; 4g

Pfqg def=
fqg\

i2f1;:::;mg

fp 2 Rnp ;9y 2 [y](i); f (p;y) = 0g :

(2)
The characterization of Pfqg can be done e¢ ciently using
interval techniques.

3. INTERVAL PROPAGATION

With an interval approach, a random variable x of R is
often represented by an interval [x] which encloses the
support of its probability function. This representation
is of course poorer than that provided by its probability
density distribution, but it presents several advantages. (i)
Since an interval with non zero length is consistent with
an in�nite number of probability distribution functions, an
interval representation is well adapted to represent random
variables with imprecise probability density functions. (ii)
An arithmetic can be developed for intervals, which makes
it possible to deal with uncertainties in a reliable and easy
way, even when strong nonlinearities occur. (iii)When the
random variables are related by constraints (i.e., equations
or inequalities) a propagation process (which will be ex-
plained later) makes it possible to get e¢ cient polynomial
algorithms to compute intervals that are guaranteed to
contain all feasible values for the random variables.

3.1 Interval arithmetic

An interval is a closed and connected subset of R. Consider
two intervals [x] and [y] and an operator � 2 f+;�; :; =g,
we de�ne [x] � [y] as the smallest interval which contains
all feasible values for x�y, if x 2 [x] and y 2 [y] (see Moore
[1979]). For instance

[�1; 3] + [2; 5] = [1; 8];
[�1; 3]:[2; 5] = [�5; 15];
[�1; 3]=[2; 5] = [�1

2
;
3

2
]:

If f is an elementary function such as sin; cos; : : : we de�ne
f([x]) as the smallest interval which contains all feasible
values for f(x), if x 2 [x]:

Fig. 6. Illustration of the propagation procedure

3.2 Contractors

Consider a constraint C (i.e., an equation or an inequality),
some variables x1; x2; : : : involved in C and prior interval
domains [xi] for the xi�s. Interval arithmetic makes it
possible to contract the domains [xi] without removing
any feasible values for the xi�s. For instance, consider the
equation x3 = x1+x2 where the domains for x1; x2; x3 are
given by [x1] = [�1; 5]; [x2] = [�1; 4] and [x3] = [6;1].
These domains can be contracted to [�x1] = [2; 5]; [�x2] =
[1; 4] and [�x3] = [6; 9]. The resulting interval calculation is
as follows:

x3 = x1 + x2 ) z 2 [6;1] \ ([�1; 5] + [�1; 4])
= [6;1] \ [�1; 9] = [6; 9]:

x1 = x3 � x2 ) x 2 [�1; 5] \ ([6;1]� [�1; 4])
= [�1; 5] \ [2;1] = [2; 5]:

x2 = x3 � x1 ) y 2 [�1; 4] \ ([6;1]� [�1; 5])
= [�1; 4] \ [1;1] = [1; 4]:

This contraction procedure can be performed with much
more complex constraints. A contraction operator is called
a contractor.

3.3 Propagation

When several constraints are involved, the contractions
are performed sequentially, until no more signi�cant con-
traction can be observed (see Jaulin et al. [2001], for more
details). To illustrate the propagation process, consider the
three following equations8<: (C1) : y = x2

(C2) : xy = 1
(C3) : y = �2x+ 1:

Using interval propagation, we want to prove that this
system has no solution. To each of the variables, we assign
the domain [�1;1]. Then, we contract the domains
with respect to the constraints in the following order:
C1; C2; C3; C1; C2 and we get empty intervals for x and
y. A geometric interpretation of the propagation is given
on Fig. 6. The resulting interval computation is as follows.

(C1)) y 2 [�1;1]2 = [0;1]
(C2)) x 2 1=[0;1] = [0;1]
(C3)) y 2 [0;1] \ ((�2) :[0;1] + 1)

= [0;1] \ ([�1; 1]) = [0; 1]
x 2 [0;1] \ (�[0; 1]=2 + 1=2) = [0; 1

2
]

(C1)) y 2 [0; 1] \ [0; 1=2]2 = [0; 1=4]
(C2)) x 2 [0; 1=2] \ 1=[0; 1=4] = ;

y 2 [0; 1=4] \ 1=; = ;:



3.4 Forward-backward propagation

The interval propagation method converges to a box which
contains all solution vectors of our set of constraints. If
this box is empty, it means that there is no solution. It
can be shown that the box to which the method converges
does not depend on the order to which the contractors
are applied Jaulin et al. [2001], but the computing time is
highly sensitive to this order. There is no optimal order
in general, but in practice, one of the most e¢ cient is
called forward-backward propagation. It consists in writing
the equation under the form f(p;y) = 0. Then, using
interval arithmetic, the intervals are propagated from
p;y to 0 in a �rst step (forward propagation) and, in a
second step, the intervals are propagated from 0 to p;y
(backward propagation). As an illustration, consider again
our shape extraction problem on the buoy image. The
following forward-backward contraction algorithm returns
the smallest box [�p] which encloses the setn

p 2 [p];9y 2 [y]; (y1 � p1)2 + (y2 � p2)2 � p23 = 0
o
:

FB(in: [y]; [p], out: [�p])
1 [d1] := [y1]� [p1] ;
2 [d2] := [y2]� [p2] ;
3 [c1] := [d1]

2
;

4 [c2] := [d2]
2
;

5 [c3] := [p3]
2
;

6 [e] := [0; 0] \ ([c1] + [c2]� [c3]) ;
7 [c1] := [c1] \ ([e]� [c2] + [c3]) ;
8 [c2] := [c2] \ ([e]� [c1] + [c3]) ;
9 [c3] := [c3] \ ([c1] + [c2]� [e]) ;
10 [�p3] := [p3] \

p
[c3];

11 [d2] := [d2] \
p
[c2];

12 [d1] := [d1] \
p
[c1];

13 [�p2] := [p2] \ ([y2]� [d2]) ;
14 [�p1] := [p1] \ ([y1]� [d1]) ;

where [d1]; [d2]; [c1]; [c2]; [c3]; [e] are intermediate interval
variables of the algorithm. Steps 1 to 6 form the forward
propagation and Steps 7 to 14 form the backward step.

4. ROBUST SET ESTIMATION ALGORITHM

4.1 Relaxed intersection

Since the q-relaxed intersection can be written as a
combination of unions and intersections, it is inclusion
monotonic, i.e.,

(X1 � Y1; : : : ;Xm � Ym))
fqg\

i2f1;:::;mg

Xi �
fqg\

i2f1;:::;mg

Yi:

This inclusion monotonicity is illustrated by Fig. 7 in the
case where the Yi�s are boxes. Note that the q-relaxed
intersection of m boxes is not necessarily a box, but we
can easily compute the smallest box which contains the
relaxed intersection.

Computing the q relaxed intersection of m boxes has a
polynomial complexity, if the dimension n of the boxes
is �xed (see, e.g., B. Rosgen [2007]), but the complexity
of this problem is exponential with respect to n. Fig.
8 illustrates the principle of such an algorithm. First,
generate (2m� 1)n boxes as on the sub�gure (b). Select

Fig. 7. Illustration of the inclusion monotonicity of the q-
relaxed intersection (in dark grey for the Xi�s and in
light grey for the Yi�s)

Fig. 8. Illustration of the principle of polynomial method
which computes the smallest box which contains the
q-relaxed intersection of m boxes. Here, q = 1;m = 3:

all boxes whose centers belong to at least m � q of the
m initial boxes Finally, take the enveloping box of all
selected boxes.

4.2 Algorithm

We shall now present an algorithm to characterize the q-
relaxed feasible set Pfqg Jaulin and Walter [2002], Jaulin
[2008]. The principle of the method is illustrated by Fig.
9. Fig 9,(a) represents the sets Pi with the solution set
Pfqg (hatched), representing the q-relaxed intersection we
would like to enclose (here, q = 1). For each i; we �rst
enclose the sets [p]\Pi by boxes [p](i) as represented with
dash line boxes on Fig 9,(b). On Fig 9,(c), the two grey
boxes represents the q-relaxed intersection of the boxes
[p](i). We compute a box enclosure (hatched box) of this
q-relaxed intersection. On Fig 9,(d), we are in the same
situation as we were on Fig 9,(a). The current box [p]
still encloses Pfqg but is now smaller. The process can be
iterated once more as illustrated by Fig 9,(e) and Fig 9,(f).
We will then converge to a steady box. The accuracy of the
enclosure can be controlled by allowing several bisections
of the current box [p] into subboxes and by iterating the



Fig. 9. Principle of the contraction procedure for the
relaxed set inversion problem

contraction procedure on each subbox. The corresponding
algorithm is given by Table 1.

Table 1. Algorithm for solving the relaxed set
inversion problem

Algorithm Enclose(in: [p]; [y](1); : : : ; [y](m); q, out: [�p])
1 L := f[p]g ;
2 repeat
3 pull ([p];L) ;
4 while the contraction are signi�cant
5 for i = 1 to m; compute [p](i) enclosing [p] \ Pi

6 [p] :=

24 fqg\
i2f1;:::;mg

[p](i)

35
7 end repeat
8 bisect [p] and push the resulting boxes into L
9 until all boxes of L have a width smaller than ":
10 [�p] = t (L)

Step 1: The list L contains boxes, the union of which
encloses Pfqg. It is initialized with the single box [p].

Step 2: A repeat-until loop is run until all boxes of L have
a width smaller that a given accuracy ".

Step 3: The largest box is pulled out from the list.

Step 4: The contraction procedure is iterated until no
more signi�cant contraction can be produced.

Step 5: For all i, a box [p](i) enclosing [p] \ Pi is
computed. For the application presented in this paper,
a single forward-backward contraction procedure (see the
example of Section 3.4) is implemented.

Fig. 10. Extraction of the circle for di¤erent q

Step 6: A box enclosing the q-relaxed intersection of the
[p](i)�s is computed. Here, [A] represents a the smallest
box enclosing the set A.

Step 8: The current box is bisected into two smaller boxes.
These two boxes are pushed at the end of the queue L.
Step 10: The algorithm returns the smallest box [�p]
enclosing all boxes stored in L (represented here by the
box union operator t).

5. RESULTS

Let us apply the interval method to our shape extraction
problem for di¤erent values of q. We get Fig. 10. Sub�gures
(a),(b),(c) represent circles consistent with 30%; 20%; 19%
of the data, respectively. The computing time is less than
15 seconds. These results are comparable to those obtain
by a classical generalized Hough transform approach de-
voted to circle extraction Kimme et al. [1975].

An improvement suggested by O�Gorman and Clowes
O�Gorman and Clowes [1976], in the context of the Hough
transform Duda and Hart [1972], is to take into account the
fact that local gradient of the image intensity is orthogonal
to the edge (See Fig. 11).



Fig. 11. Gradient of the buoy image (zoom)

Let us append the direction y3 of the gradient (in radian)
to the measurement vector y = (y1; y2)

T . We thus have
a three dimensional measurement vector y = (y1; y2; y3)

T .
The gradient condition translates into

det

0B@
@f (p;y)

@y1
cos (y3)

@f (p;y)

@y2
sin (y3)

1CA = 0:

For the circle detection, since f (p;y) = (y1 � p1)2 +
(y2 � p2)2 � p23, this condition becomes

(y1 � p1) sin (y3)� (y2 � p2) cos (y3) = 0:
The model function to be considered for circle detection
becomes

f (p;y) =

�
(y1 � p1)2 + (y2 � p2)2 � p23

(y1 � p1) sin (y3)� (y2 � p2) cos (y3)

�
:

This new condition introduces new outliers: the edge
points that are on the actual shape, but that do not satisfy
the gradient condition. For our problem, we are able to be
consistent with 20% of the edge points. But the computing
time is now signi�cantly reduced since it is now less that 2
seconds instead of 15 seconds when the gradient condition
was not used.

6. CONCLUSION

In this paper, a new method for image shape extraction has
been presented. The problem has been transformed into
a parameter estimation problem. Since the corresponding
estimation problem is nonlinear and is corrupted by many
outliers, a classical robust interval method has been used.
The Builder 5 C++ code is available at

www.ensieta.fr/jaulin/cpp_hough.zip

A classical approach for extracting geometrical shapes is
based on the generalized Hough transform. The method
is very similar to that presented in this paper except that
it uses point methods instead of intervals. In short, the
principle is to compute the Hough transform de�ned by
� (p) = card fi 2 f1; : : : ;mg;9y 2 [y](i); f (p;y) = 0g ;
and then to keep all p such that � (p) is higher than a given
threshold m� q. Instead, our approach directly solves the
inequality � (p) � m� q.
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