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Abstract: This paper proposes a method to characterize the space explored by a mobile
robot during a mission. Because of localization uncertainty, the area osculated by a sensor at a
given time is uncertain too. The problem is modeled by using intervals to represent trajectory
uncertainties and a “visibility function” to describe the area in view at a given time. A set-
inversion method is then applied to compute a “guaranteed visible area” and a “possible visible
area” with respect to positioning uncertainty. A bracketing of the actual explored area between
a “guaranteed explored area” and a “possible explored area” for the whole mission is finally
obtained by respectively taking the union of the guaranteed and possible areas. Results from a
simulated underwater exploration mission are presented.
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1. INTRODUCTION

Mobile robots are often the only safe way to perform mea-
surements and observations in dangerous, hard to reach
or extreme environments, like underwater or radioactive
areas. The development of autonomous robots has also
led to new applications in domestic environments. Some
missions require a robot to fully cover a defined area with
its embedded sensors or actuators. This is the case for
mapping, search and recovery of lost items, but also lawn-
mowing and vacuum-cleaning.

Estimation of the area that has been sensed (or touched
by the robot’s tool) enables to assess the completion
of an area-covering mission. Since tools and sensors are
attached to the body-frame of the robot, the area that
has been covered during the mission is linked to the
robot’s trajectory. Estimation of the robot’s explored area
thus depends on trajectory accuracy. The uncertainty of
position estimates needs to be taken into account when
trying to characterize the explored area.

Set-membership methods have successfully been used to
reliably deal with uncertainty, especially in non-linear
problems. They have been employed for localization of
robots (see, e.g, Meizel et al. [2002] for an initial local-
ization problem with string non-linearities, Caiti et al.
[2002] for an underwater positioning system, and Drevelle
and Bonnifait [2012] for fault detection and identification
applied to GPS), but also simultaneous localization and
mapping (Jaulin [2011]). Problems such as state estima-
tion of non-linear systems have successfully been addressed
(Raıssi et al. [2004]) even in the presence of fleeting data
(Le Bars et al. [2011]), and interval based methods have
been applied in control of uncertain dynamical systems
(Rauh et al. [2008]).

In this paper, an interval-based set-membership method is
proposed to compute the area explored by a mobile robot
and characterize its uncertainty. The explored area prob-
lem is introduced in Section 2. In Section 3, intervals and
associated tools for solving set-inversion problems are pre-
sented. The explored area characterization with uncertain
localization is then detailed and solved by using interval
methods in Section 4. Finally, in Section 5, the method
is applied to two simulated test cases of representative
underwater exploration missions, and experimental results
are reported.

2. PROBLEM STATEMENT

Let us consider a mobile robot equipped with actuators
and sensors. The robot is classically represented by the
following state equations{

ẋ(t) = f (x(t),u(t))
y(t) = g (x(t)) ,

(1)

where x denotes the robot’s state vector (e.g. position,
velocity...), u is the input vector and y is the observation
vector. The robot’s evolution is modeled by the function f
and g is the observation function.

The robot uses a sensor for searching or mapping, that can
cover a given area. The area auscultated by the robot’s
sensor depends on its technology, geometry and physics,
but also on the robot’s state (position, velocity...). Let V
be the set-valued function that returns the area which is
in the robot’s field of view at each time. V is defined as

V (t) =
{
z ∈ R2 : v (z,x(t)) ≤ 0

}
. (2)

The set V (t) is called the visible area at time t, i.e. the
points of the sensed space that are in the range of the
robot’s sensor (Fig. 1). The visible area is defined by the
visibility function v, such that v (z,x(t)) is negative if and
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only if the point z of the sensed space is in the range of
the sensor for the given the robot state x(t).

Fig. 1. Visible areas at times t and tk, and current explored
area M(t).

As the robot moves, its visible area changes accordingly,
which enables to explore space. Let M(t) be the map of
the current explored area at time t, i.e the set of all points
in the sensed space that have been in the range of the
robot’s sensor at least once until time t. It is shown in red
in Figure 1. M(t) is the union of all the visible areas over
the whole trajectory, from the mission start t0 to current
time t:

M(t) =
⋃

τ∈[t0,t]

V(τ). (3)

The mission’s explored area M is the area that has been
covered by the robot’s sensor at the end of the exploration
mission. With tf denoting the time at the end of mission,
the mission’s explored area is defined such as M = M(tf ).
In this paper, the terms explored area refer to the mission’s
explored area.

In practice, due to measurement noise and model inaccu-
racies, the robot trajectory is uncertain. This uncertainty
can be represented by covariance in Bayesian filtering
methods, or by a set of possible values. In this paper, we
use intervals to model uncertainty. Next section presents
intervals and some basic tools to manipulate them.

3. INTERVAL ANALYSIS AND SET-INVERSION

3.1 Interval analysis

Interval analysis (Moore [1966], see Jaulin et al. [2001]
for algorithms and applications) is based upon computa-
tions with intervals and their multidimensional extension,
interval vectors (or boxes). Intervals and boxes are easy
to represent and manipulate with computer algorithms,
contrarily to arbitrary sets. The set of real intervals is
denoted IR, and the set of n-dimensional boxes is IRn.
In this paper, real intervals are written between brackets
such as [x] = [x, x], where x is the lower bound and x is
the upper bound of [x]. Boxes are in bold: the vectors x
and x are respectively the lower and upper bounds of the
box [x] = [x,x].

The width of an interval is defined as width([x]) = x− x.
The width of a box is the width of its longest interval
component: width([x]) = maxi width([xi]).

Interval arithmetic allows performing computations on
intervals and boxes thanks to the interval extension of
classical real arithmetic operators +,−,× and ÷.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y]

In the same way, elementary functions such as tan, sin
and exp can be extended to intervals. This is done by
returning the smallest interval covering the range of the
input through the function.

The image of a box by a function f : Rn → Rm is generally
not itself a box, but an arbitrary set. This problem is
solved using the so-called inclusion functions: The interval
function [f ] from IRn to IRm is an inclusion function for
f if the image of [x] by f is included in the image of [x] by
[f ], i.e.

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]).

The natural inclusion function obtained by replacing each
operator in the expression of the function by its interval
counterpart.

3.2 Extensions of intervals

In addition to real intervals and boxes, closed intervals
can be defined for different sets of mathematical objects,
providing they form a complete lattice.

Tubes The set F = {f : R → R̄n} of all functions
from R to R̄n is a complete lattice with the partial order
f ≤ g⇔ ∀t ∈ R, f(t) ≤ g(t). An interval of F is an interval
of functions, called a tube.

Set intervals Since the set 2R̄
n

of all subsets of R̄n is
a complete lattice with the partial order ⊂, set intervals
can also be defined. A set interval contains all sets that
are subsets of its upper-bound and supersets of its lower-
bound.

3.3 Set inversion and subpavings

The set inversion problem consists in determining the set
X = f−1([y]) such as X = {x | f(x) ∈ [y])}, where [y] is a
known interval vector. To approximate compact sets in a
guaranteed way, subpavings can be used. A subpaving of
Rn is the union of non-empty and non-overlapping boxes
of Rn.

X

X

X

Fig. 2. Approximation of a set X between an inner
subpaving X and an outer subpaving X

The solution X = f−1([y]) can be approximated in a guar-
anteed way by using interval analysis. The Set Inversion
Via Interval Analysis algorithm (SIVIA) (Jaulin et al.
[2001]) computes two subpavings X and X such that X ⊆



X ⊆ X, i.e a set interval [X,X] that contains the solution
(Fig. 2). The algorithm starts from an arbitrarily big initial
box, and consists in recursively testing the inclusion of a
box in the solution set. If the box cannot be proven to be
inside or outside the solution set, then it is bisected into
two boxes. SIVIA is described in Algorithm 1. It uses a
list of boxes L that is generally implemented as a stack,
so that the algorithm employs a depth-first strategy. The
parameter ε controls the sharpness of the approximation
between the two subpavingsX andX. The algorithm stops
when the width of boxes falls below ε.

Algorithm 1 SIVIA(in: [x0], [f ], [y], ε, out: X,X)

X ← ∅; X ← ∅ // inner and outer subpavings
push([x0],L)
while L is not empty

[x]←grab the first box of L
if [f ]([x]) ∩ [y] = ∅ then

continue
else if [f ]([x]) ⊂ [y] then

X ← X ∪ [x]
else if width([x]) < ε then

X ← X ∪ [x]
else

([x1], [x2])← bisect([x])
push [x1] into L; push [x2] into L

endif
end
return [X,X]

4. EXPLORED AREA CHARACTERIZATION

4.1 Explored area with an uncertain trajectory

As previously stated, we aim to characterize the explored
area, given an uncertain robot trajectory. Let us introduce
the robot trajectory tube [x](t) which encloses the robot
trajectory, i.e ∀t ∈ [t],x(t) ∈ [x](t). This tube is a bounded
estimate of the robot state at each time. The uncertain
explored area mapping problem is now defined as follows:

x(t) ∈ [x](t)
V (t) =

{
z ∈ R2 : v (z,x(t)) ≤ 0

}
M (t) =

⋃
τ∈[t0,t]

V(τ).
(4)

Uncertainty about the robot state leads to uncertainty
about its visible area. We thus define the guaranteed visible
area V∀ as the set of points that have necessarily been
observed, regardless of the robot’s state uncertainty:

V∀ (t) =
{
z ∈ R2 : ∀x ∈ [x](t), v (z,x) ≤ 0

}
(5)

The guaranteed visible area is the set of points in the
sensed space for which the visibility function is negative
for all states in the state uncertainty domain. Similarly,
the possible visible area V∃ is the set of all the points that
may have been in the robot’s field of view:

V∃ (t) =
{
z ∈ R2 : ∃x ∈ [x](t), v (z,x) ≤ 0

}
(6)

A point of the sensed space belongs to the possible visible
area if it exists a state in the state uncertainty domain for
which the visibility function of this point is negative.

V∀ (t) and V∃ (t) form a bracketing of the actual visible
area V (t). They can be seen as the lower and upper bounds
of a set interval that contains the visible area:

∀t ∈ [t],V∀ (t) ⊂ V (t) ⊂ V∃ (t) (7)

Proof. Let us first prove that V∀ (t) ⊂ V (t):

p ∈ V∀(t) (5)⇔ ∀x ∈ [x](t), v (p,x) ≤ 0

x(t)∈[x](t)⇒ v (p,x(t)) ≤ 0

⇒ p ∈ V(t)

Now let us prove that V (t) ⊂ V∃ (t):

p ∈ V(t) ⇔ v (p,x(t)) ≤ 0

x(t)∈[x](t)⇒ ∃x = x(t) ∈ [x](t), v (p,x) ≤ 0

(6)⇒ p ∈ V∃(t)

V∀

V∃

[x]

Fig. 3. V∀ (in red) and V∃ (union of yellow and red) for
increasing position uncertainty (black squares).

Figure 3 shows the guaranteed and possible visible area of
an omnidirectional sensor with v (z,x) = ‖z− x‖2 − r2,
where r is the maximum range of the sensor. V∀ and
V∃ are plotted for state-uncertainty boxes of increasing
width. It illustrates the erosion of the guaranteed visible
area as state uncertainty increases, and simultaneously
the expansion of the possible visible area with growing
uncertainty. With large state uncertainty, the guaranteed
visible area becomes empty (see lower-right of Fig. 3).

The notion of guaranteed and possible areas extends to
the explored areas, by taking the union over time. The
guaranteed explored area M∀ is defined as the union of all
the guaranteed visible areas

M∀ =
⋃

t∈[t0,tf ]

V∀(t), (8)

and the possible explored area M∃ is defined as the union
of all the possible visible areas over time

M∃ =
⋃

t∈[t0,tf ]

V∃(t). (9)

Thus, a bracketing of the actual explored area M is given
by

M∀ ⊂M ⊂M∃. (10)

4.2 Quantifier elimination

The ∀ and ∃ quantifiers appear in the expressions of the
guaranteed and possible visible areas V∀(t) and V∃(t)



given by equations (5) and (6). Solving set-inversion prob-
lems that involve quantifiers can be quite inefficient. To
simplify the visible areas computations, quantifier-free ex-
pressions of V∀(t) and V∃(t) are derived in this sub-section.

We consider a sensor that sees inside a robot-centered disk
of radius r. It can be described by the following visibility
function:

v (z,x) = (z1 − x1)
2

+ (z2 − x2)
2 − r2. (11)

Let us denote by [v] (z, [x]) the natural inclusion function
for v with respect to x.

[v] (z, [x]) = (z1 − [x1])
2

+ (z2 − [x2])
2 − r2. (12)

Since v is continuous and the xi’s occur only once in the
expression of v, we have (Moore [1966])

[v] (z, [x]) = {v (z,x) ,x ∈ [x]} , (13)
The guaranteed visible area condition ∀x ∈ [x], v (z,x) ≤ 0
from formula (5) is equivalent to

[v] (z, [x]) ⊂ [−∞, 0]. (14)
Inclusion (14) is thus true when the upper bound v of
[v] (z, [x]) is negative:

z ∈ V∀ (t)⇔ v (z, [x]) ≤ 0. (15)

Similarly, by using the natural inclusion function [v], the
possible visible area formula (6), ∃x ∈ [x], v (z,x) ≤ 0 can
be rewritten

[v] (z, [x]) ∩ [−∞, 0] 6= ∅. (16)
which can be also expressed as a negativity condition on
the lower bound v of [v]:

z ∈ V∃ (t)⇔ v (z, [x]) ≤ 0. (17)

This way, quantifiers have been eliminated from the ex-
pressions V∀ (t) and V∃ (t). The visible areas are now
defined by inequalities involving the bounds of [v] (z, [x]).
Expressions of the upper bound v and and of the lower
bound v and can be derived by using symbolic interval
arithmetic (Jaulin and Chabert [2010]). The lower bound
is given by

v (z, [x]) = H((z1−x1)(z1−x1)) min
(

(z1−x1)2,(z1−x1)
2
)

+H((z2−x2)(z2−x2)) min
(

(z2−x2)2,(z2−x2)
2
)
−r2 (18)

where H denotes the Heaviside step function. The expres-
sion obtained for the lower bound is

v (z, [x]) = max
(

(z1 − x1)
2
,
(
z1 − x1

)2)
+ max

(
(z2 − x2)

2
,
(
z2 − x2

)2)− r2 (19)

4.3 Explored area mapping

It has been shown in Section 4.1 that the explored area M
is bracketed between the guaranteed explored area M∀ and
the possible explored area M∃ such that M∀ ⊂ M ⊂ M∃.
Similarly, the visible area V(t) is bracketed between the
guaranteed visible area V∀(t) and the possible visible area
V∃(t) such that V∀(t) ⊂ V(t) ⊂ V∃(t).

Visible area Visible areas are arbitrary sets whose shape
depends on sensor aperture, environment and robot state.
Such arbitrary sets cannot be precisely described by a
single box, but they can be approximated to any desired
precision by subpavings.

At each time t, the SIVIA algorithm can be used to com-
pute a bracketing of the guaranteed visible area between
an inner subpaving V∀(t) and an outer subpaving V∀(t).
Similarly, a guaranteed approximation of the possible vis-
ible area between the two subpavings V∃(t) and V∃(t) can
be computed. We thus have

V∀(t) ⊂ V∀(t) ⊂ V∀(t) (20)

V∃(t) ⊂ V∃(t) ⊂ V∃(t) (21)

From (20) and (21), we obtain a bracketing of V(t) between
the two subpavings V∀(t) and V∃(t) such that

V∀(t) ⊂ V(t) ⊂ V∃(t). (22)

The visible area V(t) is thus known to be inside the
set-interval [V(t)] made of a lower-bound V∀(t) of the
guaranteed visible area and an upper-bound V∃(t) of
the possible visible area. Figure (4) shows the fusion of
the SIVIA computed set-intervals for V∀(t) and V∃(t) to
obtain a bracketing of V(t).

[V∀(t)]

[V(t)]

[V∃(t)]

Fig. 4. The guaranteed visible area set-interval [V∀(t)]
and the possible visible area set-interval [V∀(t)] are
combined to obtain a bracketing of V(t).

Explored area As previously described in (8), the guar-
anteed explored area is the union of all guaranteed visible
areas over the duration of the mission: M∀ =

⋃
t∈[t] V∀(t).

Let us define M∀ =
⋃
t∈[t] V∀(t), the union of all the com-

puted inner subpavings of V∀. From the inclusion relation
V∀(t) ⊂ V∀(t) of (20), by applying the union operation, we
obtain M∀ ⊂ M∀. Similarly, let M∃ =

⋃
t∈[t] V∃(t) be the

union of the computed outer subpavings of the possible
visible areas. Equations (9) and (21) lead to M∃ ⊂ M∃.
Hence we have the inclusion relation

M∀ ⊂M∀ ⊂M ⊂M∃ ⊂M∃. (23)

The computed solution [M∀,M∃] thus form a set interval
that contains the actual explored area M.

5. EXPERIMENTAL VALIDATION

5.1 Underwater exploration simulation

To validate experimentally the proposed method, let us
characterize the exploration of an area by an autonomous
underwater vehicle (AUV). The mission of the AUV is to
explore and fully cover a 500 m× 300 m rectangular target



area. Exploration is done with a sensor whose range is a
40-meter radius disk.

An AUV simulator has been developed in C++ with Qt
and OpenGL (Fig 5). The simulated AUV is equipped with
a GPS receiver, an Inertial Measurement Unit (IMU) and a
Doppler Velocity Log (DVL). The DVL provides the robot
with speed measurements, either relative to water or to the
seafloor.

Fig. 5. 3D display of the AUV simulator. The green
box is the position uncertainty domain of the AUV
positioning algorithm.

A set-membership estimator-predictor provides real-time
onboard positioning. This system computes a box in which
the submarine is located. The center of the box is used as a
point position estimate, and fed to the control system. The
AUV is programmed to follow a “lawnmower pattern” that
covers the target area. The spacing between the lanes in
the reference trajectory is lower than the maximum spac-
ing allowed by the sensor theoretical maximum range, in
order to have some exploration overlap between successive
lanes. This enables to cope with small navigation errors
and also with environment effects on sensor performances.

All navigation data is saved and retrieved at the end of the
mission for post-processing. Moreover, the true explored
area is also computed by the simulator, which enables
comparison with the computed solution sets.

Two test-cases have been simulated, both corresponding
to a 30-minute mission:

• In the first test-case, the AUV starts from surface,
where GPS is available, then dives to perform its
exploration mission, and finally returns to surface
when the mission is finished. Since GPS is not avail-
able underwater, there are only two position fixes: at
the beginning and the end of the mission. When the
AUV is underwater, positioning is only done by dead-
reckoning.
• The second test-case is similar to the first, but an
acoustic ranging system made of two GPS buoys has
been deployed. Now, position fixes are also available
underwater, which enables higher accuracy in posi-
tioning.

Figure 6 shows the trajectories actually followed by the
AUV in the two test-cases, along with the reference “lawn-
mower pattern” trajectory. The actual explored area M

is shown in green. Since the AUV is controlled from the
center of its estimated position box, positioning errors
induce errors in the followed trajectory. Without acoustic
positioning during the mission, the AUV clearly drifts from
the reference trajectory, which leads to uncovered zones in
the bottom-left of the target area (Fig. 6a). In the second
test-case, with acoustic positioning, the reference trajec-
tory is more closely followed by the AUV, which provides
a near perfect coverage of the target area (Fig. 6b).

(a) Case 1: GPS and dead-reckoning

(b) Case 2: GPS, inertial and acoustic

Fig. 6. Actual trajectory of the AUV (thick blue line),
reference trajectory (dashed line) and actual explored
area (light green area). The rectangle represents the
target area.

5.2 Results

Figure 7 shows in light blue the real-time estimated
position boxes of the AUV in the two test cases. The boxes
are consistent with the actual robot position during the
whole mission. In the first test case, position boxes width
increases with time since the robot only relies on dead-
reckoning for localization (Fig. 7a). Contrarily, positioning
uncertainty is prevented from growing in test case 2 thanks
to the use of an acoustic localization system (Fig. 7b).

Before applying the explored area characterization algo-
rithm, the AUV trajectory is post-processed with con-
straint propagation (Benhamou et al. [1999]). The AUV
motion model is applied to contract the position uncer-
tainty boxes in backward order, from the end of the mission
to the start. This enables to retro-propagate the final
GPS position fix to the whole trajectory. Moreover, in the
second test-case, acoustic positioning corrections are also
propagated back in time. The trajectory tubes obtained
after post-processing are shown in dark blue in Figure 7.
The second half of the first test case is greatly improved
(Fig. 7a), the second test case is less improved since real-
time positioning was already rather precise (Fig. 7b).



(a) Case 1: GPS and dead-reckoning

(b) Case 2: GPS, inertial and acoustic (the two dots above the target
area are buoys positions)

Fig. 7. Real-time estimated position tubes (painted in light
blue), post-processed position tubes (dark blue) and
true trajectory (black line). The rectangle represents
the target area.

The guaranteed explored area M∀ and the possible ex-
plored area M∃ are computed from the post-processed tra-
jectories of both test cases. Computation of the explored
area for the 30-minute long simulated mission takes less
than a minute on a standard computer. Since M∀ ⊂ M∃,
they can both be represented on the same figure. Figure 8
shows the guaranteed explored area in red; the possible
explored area corresponds to the union of red and yellow.
The outline of the actual explored area M is drawn in
black. It can be seen of the figure that the computed M∀
and M∃ form a bracketing of M, such that M∀ ⊂M ⊂M∃.

Comparison of Fig. 8a with Fig. 8b clearly shows the
influence of positioning uncertainty (i.e. the width of the
trajectory tube) on the possible and guaranteed explored
areas. Areas of the computed guaranteed and possible
explored areas in both test cases are reported in Table 1.
In the second test case, thanks to the improved positioning
accuracy, the guaranteed explored area M∀ is more than
three time larger than in the first test case. Moreover, the
possible explored area is also tightened in the second test
case. Indeed, while only 24.4% of the possible explored
area has been guaranteed in the first test case, 88.9% of the
computed M∃ belongs to the guaranteed explored area in
the second test case. Reduction of positioning uncertainty
has thus a great impact on explored area uncertainty.

Two other interesting figures for mission assessment are
presented in Table 1: the parts of the target area that
have been possibly and guaranteedly explored. In both

(a) Case 1: GPS and dead-reckoning

(b) Case 2: GPS, inertial and acoustic

Fig. 8. Guaranteed explored area (red), Possible explored
area (union of yellow and red) and actual explored
area border (black).

Table 1.

Test case 1 Test case 2
Area of M∀ 51,865 m2 157,578 m2

Area of M∃ 212,827 m2 177,220 m2

Part of M∃ covered by M∀ 24.4% 88.9%
Part of target covered by M∃ 100% 100%
Part of target covered by M∀ 32.0% 99.7%

test cases, the whole target area belongs to the possible
explored area. This means that, with the given positioning
uncertainty, it is not possible to prove that a portion of
the target area has not been covered. In the first test case,
only 32% of the target area has been proven to have been
explored. But in the second test case, 99.7% of the target
is proven to have been explored. Moreover, contrarily to
the first test case where the non-guaranteed explorer area
is mostly located in the center of the mission zone, in the
second test case, the 0.3% of the target area that have not
been guaranteedly explored are located on the edge of the
target rectangle.

With a sensor that provides images or than can detect
landmarks, the remaining possible but not guaranteed
explored area can be assessed by searching in the gathered
data for overlap between two successive passes of the robot
near the same area. Without analysis of the gathered data,
the computed exploration map can also be used to plan a
second mission to fill uncovered areas.



6. CONCLUSION

An interval based method has been presented to char-
acterize the area explored by a robot. Due to localiza-
tion uncertainty, the method computes a set interval that
brackets the actual explored area between a guaranteed
explored area and a possible explored area. As positioning
uncertainty increases, the guaranteed explored area gets
smaller and the possible explored area grows. Inversely, the
computed explored area interval tightens as positioning
uncertainty decreases.

Experimental results on a simulated 30-minute underwater
exploration mission shows the feasibility of the approach,
yielding results in less than a minute. The computed set-
interval of the explored area can be used after a search
mission to ensure that space has been fully covered,
to manually check possible but non-guaranteed explored
areas, and to plan a complementary mission if necessary.
Another use is for system design and mission planning, to
ensure that positioning system accuracy and programmed
navigation trajectory enable full exploration of a target
area.

Future work will be focused on application to cooperative
exploration with multiple robots and on improvement of
the guaranteed explored area by the use of additional
constraints.
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