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Range-Only SLAM With Occupancy Maps:
A Set-Membership Approach

Luc Jaulin

Abstract—This paper proposes a new set-membership approach to solve
range-only simultaneous localization and mapping (SLAM) problems in
the case where the map is described by an arbitrary occupancy set (i.e.,
we do not assume that the map is composed of segments, punctual marks,
etc.). The principle is to transform the SLAM problem into a hybrid con-
straint satisfaction problem (CSP), where the variables can either be real
numbers, vectors, trajectories, or subsets of R

n . An extension of existing
constraint propagation methods is then proposed to solve hybrid CSPs in-
volving set-valued variables. A simulated test case is then proposed to show
the feasibility of the approach.

Index Terms—Interval analysis, interval propagation, localization, oc-
cupancy map, set-membership estimation, simultaneous localization and
mapping (SLAM).
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I. INTRODUCTION

The simultaneous localization and mapping (SLAM) problem [19]
for an autonomous robot moving in an unknown environment is to
build a map of this environment while simultaneously using this map
to compute its location. The history and critical issues of SLAM are
discussed in [10]. SLAM methods can be classified in two categories
[27], which are referred to as feature-based SLAM and location-based
SLAM. Feature-based SLAM assume that the map is composed of a
set of features together with their Cartesian location. The map has,
thus, a parametric structure where the features are points, segments,
corners, or any other parametric shape [1]. The way to handle uncertain
location vectors when using geometric features of the environment
as map elements is defined in [25]. Many implementations use the
segment [24] or the line as the main kind of feature, and some of them
use corners or edges modeled as points. The feature-based SLAM
problem can be cast into a state-estimation problem by including the
feature parameters among the state variables [8], [22]. Probabilistic
techniques (Kalman filtering, Bayesian estimation, and particle filters)
[27] or set membership approaches (where sets can be representedby
parallelotopes [6], [7] or by boxes [13]) have been proven to solve
efficiently the feature-based SLAM problem. Now, feature-based maps
are not well suited to model nonstructured environments, as it is the case
for underwater robotics where landmarks have no particular geometric
shape. Location-based maps offer a label to any location in the world.
They contain information not only about obstacles in the environment
but about the absence of obstacles as well. A classical location-based
map representation is known as occupancy map [9] (also called pose-
based map). They assign to each point of the world an occupancy value
(a Boolean number or a probability of occupancy) that specifies whether
or not a pose is occupied by an obstacle. When the occupancy value is
binary, the map can be represented by a subset M (that will be called
the map in this paper) that distinguishes free from occupied terrain.
The robot’s pose must always be in the free space, i.e., outside M.
The corresponding SLAM problem contains some unknown variables
which are subsets of R

q , where q = 2 or 3, depending of the dimension
of the robot’s environment (2-D or 3-D), and it cannot be cast into a
state-estimation problem anymore. The problem has a totally different
nature and is much harder to solve than when it is possible to detect
parametric shapes. It becomes even more difficult when the map is only
perceived through omnidirectional rangefinders, which only returns the
distance to the closest obstacle with no angle information. The use of
such a range-only sensor precludes easy matching between detected
points of the map. From an academic point of view, the omnidirectional
range-only posed-based SLAM can be seen as a canonical problem: It
is the simplest and most significant representative of a large class of
SLAM problems that cannot be solved yet. The development of tools
to solve properly and efficiently this problem will be useful to solve
many other SLAM problems.

This paper proposes the first set-membership method to deal with
the pose-based range-only SLAM problem in the case where the map is
represented by an occupancy set. It first shows that the SLAM problem
can be transformed into a hybrid constraint satisfaction problem (CSP)
where the variables are subsets of R

q . Then, this paper extends existing
contractor methods in order to deal with problems involving sets. This
can be done thanks to the notion of set intervals recently introduced
in [14]. This paper is organized as follows. Section II proposes a
formulation for the pose-based SLAM and presents the particular
case where telemeters that measure distances between the robot and
the map are considered. Section III introduces the principle of hybrid
constraint propagation. Section IV shows how the range-only SLAM
can be solved with contractor tools. In order to illustrate the principle
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Fig. 1. Impact, covering, and dug zones.

of the approach, a testcase is treated in Section V. Finally, Section VI
concludes this paper.

II. FORMULATION OF THE RANGE-ONLY SIMULTANEOUS

LOCALIZATION AND MAPPING

A range-only simultaneous localization and map building problem
can be described by{

ẋ (t) = f (x (t) ,u (t)) (evolution equation)
z (t) = d (x (t) , M) (map equation)

(1)

where t ∈ [t] ⊂ R is the time, x ∈ R
n is the state vector, u ∈ R

m is
the input vector (in general associated with proprioceptive sensors),
f : R

n × R
m → R

n is the evolution function, and d is the map func-
tion. The set M ∈ C (Rq ) is the occupancy map, where C (Rq ) denotes
the set of all compact sets of R

q and q is the dimension of the map (two
or three in practice). The scalar z is an exteroceptive measurement
collected by robot (for instance, by a sonar telemeter) and provides
some information on M. The map M is unknown and should be re-
constructed together with the state x. In this paper, a set-membership
approach will be considered, i.e., we shall assume that u(t), z(t) are
known to belong to some known intervals [u] (t), [z] (t). We shall also
assume that the map function d : R

n × C (Rq ) → R
+ corresponds to

a rangefinder, i.e., for all x, M1 , M2 , we have{
d (x, M1 ∪ M2 ) = min {d (x, M1 ) , d (x, M2 )}
d (x, ∅) = +∞.

(2)

This assumption will provide us some conditions that will be used to
characterize the map M. Note that most rangefinders (laser, infrared,
or ultrasound based) satisfy condition (2), whereas cameras (although
often used for SLAM, see, e.g., [4], where Davison proposed a vision-
based real-time SLAM) do not. Moreover, since the observations are
only made by relative measurements between the robot and the envi-
ronment, the initial state vector is assumed to be known. Define the
function δx : R

q → R as

δx (a) = d (x, {a}) (3)

where {a} denotes the singleton containing a. For a given state vector
x and a given measurement z, we define the following sets:

covering zone δ−1
x ([0,∞[) = {a, δx (a) < ∞}

impact zone δ−1
x ({z}) = {a, δx (a) = z}

dug zone δ−1
x ([0, z[) = {a, δx (a) < z} (4)

where {z} denotes the singleton containing z. Fig. 1 represents a robot
equipped with a rangefinder that can only detect points of the map

Fig. 2. Inconsistent situation where the impact zone at time t3 is enclosed
inside the zones dug at times t1 and t2 .

inside an ellipse. The white ellipse on the left figure corresponds to
δ−1
x ([0,∞[). The thick arc on the right figure corresponds to the set

δ−1
x ({z}), where z = d (x, M) and M = M1 ∪ M2 . The part of the

ellipse painted dark gray corresponds to δ−1
x ([0, z[). The following

two theorems will be used by our interval method to solve the range-
only SLAM problem.

Theorem 1 (dug zone) : Denote by x the state vector of the robot at
a given time t, we have

z = d (x, M) ⇒ δ−1
x ([0, z[) ∩ M = ∅. (5)

Proof: The proof is by contradiction. Assume that i) z = d (x, M);
ii) a ∈ δ−1

x ([0, z[); and iii) a ∈ M. We have ii) ⇔ δx (a) ∈ [0, z[
(3)⇔ d (x, {a}) < z

(i)⇔ d (x, {a}) < d (x, M) . Now, since a ∈ M,
we have {a} ⊂ M, and thus d (x, {a}) ≥ min {d (x, {a}) , d (x, M)}
(2)
= d (x, M∪{a}) (iii)

= d (x, M) . We have thus proved d (x, {a}) <
d (x, M) and that d (x, {a}) ≥ d (x, M). �

The set D =
⋃

t∈[t ] δ
−1
x (t) ([0, z(t)[) is called the dug space. A direct

consequence of Theorem 1 is that D is inside the free space and thus
does not intersect the map.

Theorem 2 (Impact Zone): For all x, the impact zone intersects the
map, i.e,

z = d (x, M) ⇒ δ−1
x ({z}) ∩ M �= ∅.

Proof: We have z = d (x, M)
(2)
= minm∈Md (x, {m}) (recall that

M is compact). Denote by a one minimizer of d (x, {m}) over M. We
have z = d (x, {a}), and thus, a ∈ δ−1

x ({z}) . Therefore, a belongs to
both δ−1

x ({z}) and M. �
Fig. 2 illustrates the principle of the resolution method that will

be proposed to solve our SLAM problem. The robot poses painted
white represent the actual poses of the robot at times t1 , t2 with the
corresponding dug zones. From Theorem 1, we have

(
δ−1
x (t1 ) ([0, z (t1 ) [) ∪ δ−1

x (t2 ) ([0, z (t2 ) [)
)
∩ M = ∅

which provides an outer approximation M
+ of M represented by the

light gray zone that covers a large part of the workspace. Since

δ−1
x (t3 ) ({z (t3 )}) ⊂ δ−1

x (t1 ) ([0, z (t1 ) [) ∪ δ−1
x (t2 ) ([0, z (t2 ) [)
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we have δ−1
x (t3 ) ({z (t3 )}) ∩ M = ∅, and thus, from Theorem 2,

we conclude that the dark gray pose at time t3 is inconsistent.
Theorem 1 will be used for the map building (since it is able to find an
outer approximation M

+ of M), whereas Theorem 2 will be used for
the localization (since it is able to remove inconsistent poses). This is
the main idea of the contraction approach proposed in the next sections.

III. HYBRID CONSTRAINT PROPAGATION

Constraint propagation is a numerical method to solve nonlinear
problems. In the literature, the unknown variables are Boolean numbers,
integers, or real numbers. This section explains its principle and extends
the classical technique in order to allow us to solve more general
problems (such as those where the variables are functions or sets). This
extension is necessary to solve our SLAM problem.

A. Lattices

A lattice (E ,≤) is a partially ordered set, which is closed under least
upper and greatest lower bounds (see [3] for more details). The least
upper bound (or infimum) of x and y is called the join and is denoted
by x ∨ y. The greatest lower bound (or supremum) is called the meet
and is written as x ∧ y.

Example: The set R
n is a lattice with respect to the partial order

relation given by x ≤ y ⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi . We have

x ∧ y = (x1 ∧ y1 , . . . , xn ∧ yn )

x ∨ y = (x1 ∨ y1 , . . . , xn ∨ yn ) (6)

where xi ∧ yi = min (xi , yi ), and xi ∨ yi = max (xi , yi ) .
A lattice E is complete if for all (finite of infinite) subsets A of E , the

least upper bound (which is denoted ∧A) and the greatest lower bound
(which is denoted ∨A) belong to A. When a lattice E is not complete,
it is possible to add new elements (corresponding the supremum or
infimum of infinite subsets of E that do not belong to E) to make it
complete. For instance, the set R is not a complete lattice, whereas R =
R ∪ {−∞,∞} is. By convention, for the empty set, we set ∧∅ = ∨E
and ∨∅ = ∧E . The product of two lattices (E1 ,≤1 ) and (E2 ,≤2 ) is the
lattice (E ,≤) that is defined as the set of all (a1 , a2 )∈ E1 × E2 with the
order relation (a1 , a2 ) ≤ (b1 , b2 ) ⇔ ((a1 ≤1 b1 ) and (a2 ≤2 b2 )) .

B. Intervals

A closed interval (or interval for short) [x] of a complete lattice E is
a subset of E that satisfies [x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} . Both ∅
and E are intervals of E . An interval is a sublattice of E . An interval [x]
of E will also be denoted by [x] = [∧[x],∨[x]]E . For example, the sets
∅ = [∞,−∞]R; R = [−∞,∞]R; [0, 1]R; and [0,∞]R are intervals of
R; the set {2, 3, 4, 5} = [2, 5]N is an interval of the set of integers N;
and the set {4, 6, 8, 10} = [4, 10]2N is an interval of 2N. The interval
hull (or hull, for short) of a subset A of E is the smallest interval of E
which contains A. We shall now introduce the notions of tubes and set
intervals that will be used to solve the range-only SLAM problem.

Tubes: The set F of all functions from R to R̄
n is a complete lattice

with the following partial order f ≤ g ⇔ ∀t ∈ R, f (t) ≤ g(t). An
interval of F is called a tube [18], [21].

Set intervals: The set P (Rn ) of all subsets of R
n is a complete

lattice with respect to the inclusion ⊂.
Fig. 3 illustrates the notions of tubes and set intervals. In Fig. 3(left),

the function f is bracketed by two stair functions f−, f+ . In the
computer, the interval [f−, f+ ] is represented as a list of boxes. In
Fig. 3(right), the uncertain set X is approximated by the set interval
[X−, X+ ] , where X

− is the union of black boxes, and X
+ is the union of

Fig. 3. Interval function (or tube) and a set interval.

Fig. 4. Hybrid contractor C1 associated with the hybrid constraint c1 (x, A) .
The hybrid box [x] × A is contracted into the hatched box.

black and white boxes. The two bounds X
−, X+ of the interval [X−, X+ ]

are represented in the computer as union of boxes (or subpavings [26]).

C. Contractors

Many problems of estimation, control, robotics, etc., can be rep-
resented by a continuous CSP [17]. A CSP [29] is composed of a set
of variables V = {x1 , . . . , xn } , a set of constraints C = {c1 , . . . , cm },
and a set of interval domains {[x1 ], . . . , [xn ]} . Each variable xi should
belong to a complete lattice (Ei ,≤i ). When the lattices Ei have a dif-
ferent nature, the CSP is said to be hybrid. The Cartesian product of all
interval domains of a hybrid CSP is called a hybrid box. In the context
of this paper, a hybrid CSP will be considered and the xi ’s will be
real numbers, vectors, subsets of R

n , or trajectories (i.e., functions of
time). Propagation techniques contract as much as possible the inter-
val domains for the variables without losing a solution [2], [28]. They
have been shown to be efficient in several robotic applications such
as localization [20], state estimation [11], or parametric SLAM [13].
Denote by [x] the Cartesian product of all domains [xi ]. A contractor
associated with the constraint ci is an operator Ci such that

(ci ∩ [x]) ⊂ Ci ([x]) (completeness)

Ci ([x]) ⊂ [x] (contractance). (7)

Fig. 4 shows a hybrid contractor associated with the hybrid constraint
c1 (x, A) . The x-axis corresponds to the lattice R

n , whereas the y-
axis corresponds P (Rn ) the set of subsets of R

n . The discretization
illustrates that only a finite number of elements of R

n and P (Rn )
can be represented by the computer. More precisely, these machine
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Fig. 5. If the two sets A, B belong to the set intervals [A],[B] of (a) and (b),
then the sets A ∩ B, A ∪ B, A\B, (A ∪ B) \ (A ∩ B) will belong to the set
intervals of (c)–(f).

numbers are floating-point vectors for R
n and subpavings (i.e., union of

boxes with floating point vectors as vertices). The hybrid box [x] × [A]
has two components, namely, the box [x] and the set interval [A] .
The bounds of [x] are x− and x+ , whereas the bounds of [A] are
the sets A

− and A
+ . Since (c1 (x, A) ∩ ([x] × [A])) ⊂ C1 ([x] , [A])

and C1 ([x] , [A]) ⊂ [x] × [A], the completeness and the contractance
properties are satisfied.

To solve ahybrid CSP, the principle of the propagation is to contract
all hybrid boxes [x] by calling all available contractors C1 , . . . , Cm

until a fixed point is reached.

IV. RESOLUTION

The implementation of the contractors that are described in
Section III-C requires an implementation of an arithmetic for set
intervals [14]. This arithmetic makes it possible to easily handle
uncertain sets (such as the map for our SLAM problem), as illus-
trated in Fig. 5 (for the graphical representation of a set interval
[A] = [A−, A+ ] = {A, A− ⊂ A ⊂ A

+ }, the black boxes are inside
A

−, the gray boxes are outside A
+ , and the white boxes are inside

A
+ and outside A

−). If the two sets A, B belong to the set inter-
vals [A],[B] [see Fig. 5(a) and (b)], then the sets A ∩ B, A ∪ B, A\B,
(A ∪ B) \ (A ∩ B) will belong to the set intervals shown in Fig. 5(c)–
(f), respectively. The set interval arithmetic can be used to contract
set intervals with respect to some constraints. Consider, for exam-
ple, the constraint A ∩ B = ∅ between the two sets A, B, and assume
that A ∈ [A] , B ∈ [B]. The contractions of [A] , [B] are given by the
following operations: [A] := [A−, A+ \B

−] and [B] := [B−, B+ \A
−] .

Note that in the case of Fig. 5, it is not possible to find A ∈ [A] and
B ∈ [B] such that A and B are disjoint. The contractions will pro-
vide set intervals with bad ordered bounds (i.e., A

− �⊂ A
+ \B

− and
B
− �⊂ B

+ \A
−). Such set intervals do not contains any set and should,

thus, be interpreted as empty.
Our range-only SLAM problem can be cast into a hybrid CSP. The

unknown variables are the trajectoryx(t), the map M, and the dug space
D. Since they have a different nature, the resulting CSP is hybrid. The
constraints of the hybrid CSP are as follows:

1) ẋ (t) = f (x (t) ,u (t))

2) D =
⋃

t∈[t ] δ
−1
x (t) ([0, z(t)[) ;

3) D ∩ M = ∅;
4) δ−1

x (t) ({z(t)}) ∩ M �= ∅.

⎫⎬
⎭ : z (t) = d (x (t) , M)

Fig. 6. Constraint diagram of the SLAM problem.

Constraints 2–4 correspond to a decomposition of the map constraint
z (t) = d (x (t) , M). This decomposition, which is a consequence of
Theorems 1 and 2, is necessary to build the corresponding contractors.
The prior domains for the set variables M and D are the set intervals
[M] = [D] = [∅, Rq ] that enclose all subsets of R

q . It translates the fact
that no prior information on the map and the dug space is available. The
prior domain for the trajectory x(t) is a tube [x] (t). For the SLAM
problem to be considered later, we have [x] (t) = R

n for t > 0 and
[x] (0) will be a singleton, which means that the initial state x (0) is
known without any error.

Our CSP is composed of four constraints, the diagram of which
is depicted in Fig. 6. To each constraint, we have to build a con-
tractor. The first one C1 ([x] (t)) contracts the tube [x] (t) with re-
spect to the evolution equation ẋ (t) = f (x (t) ,u (t)). Recall that
a bounded tube [u] (t) for u (t) is assumed to be known. The tube
[x] (t) can be contracted without losing a feasible value by an inter-
val integration [5], [12], [23] using a forward and a backward prop-
agation. The hybrid contractor C2 ([D] , [x] (t)) is related to the hy-
brid constraint D =

⋃
t∈[t ] δ

−1
x (t) ([0, z(t)[). It makes possible to con-

tract the set interval [D]. The contractor C3 ([D] , [M]) associated with
the constraint D ∩ M = ∅ yields contractions of the set interval [M]
(see [14] for more explanations about this contractor). The hybrid
contractor C4 ([M] , [x] (t)), which is associated with the constraint
δ−1
x (t) ({z(t)}) ∩ M �= ∅ that should be satisfied for all t, provides con-

tractions for the tube [x] (see [16] for more about this contractor).
The resulting propagation algorithm is given in the following table.

For a given precision, the complexity of contractor-based propagation
methods is polynomial if all contractors have a polynomial complexity.
Now, some of the contractors that are used have a complexity which
is exponential with respect to q, the dimension of the map (which is
equal to 2 or 3). Now, since q can be considered as a fixed parameter,
the complexity of the method is polynomial with respect to all other
parameters of the problem (size of the world, time of the mission, etc.).

V. TESTCASE

In order to illustrate the behavior of the algorithm presented in
Section IV, consider a mobile robot described by the following range-
only SLAM equations:⎧⎨

⎩
ẋ1 (t) = u1 (t) cos (u2 (t))
ẋ2 (t) = u1 (t) sin (u2 (t))
z (t) = d (x (t) , M) .

(8)
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Fig. 7. (Left) Actual trajectory of the robot. (Right) Corresponding dug space.
The frame box corresponds to [−10, 10] × [−10, 10] .

The inputs of the system are the speed u1 and the heading u2 of the
robot. The measurement z corresponds to the closest distance of the
robot to the map which could have been obtained by using a omnidirec-
tional (with angular aperture of 2π) sonar. The quantities u1 , u2 , and z
are measured every 0.1 s with an error of 0.01 ms−1 , 0.01 rads−1 , and
0.01 m, respectively. The initial state, which is taken as x = (0, 0)T , is
assumed to be known. Fig. 7 provides a simulation of the robot moving
inside an unknown map. As shown in Fig. 7, the map is composed
by segments but this is not required by the method. The shape of the
map could be arbitrary and no parametric representation of the map is
needed. The gray zone in the right part of Fig. 7 represents the unknown
dug space D. It means that, in the ideal situation where the trajectory
x(t) is known exactly, the map M can be approximated by D (in the
sense that M ∩ D = ∅).

An illustration of the interval propagation method is depicted in
Fig. 8, which has been computed in about 15 min with a classical laptop.
Fig. 8(a), (c), (e), (g), and (i) shows the computed tubes [x] (t) (painted
gray) with the true path (painted black) of the robot. As expected, the
true path is always included inside the tube [x] (t). Fig. 8(b), (d), (f),
(h), and (j) corresponds to inner approximations (painted gray) of the
dug space D. The segments of the true map are also represented to
illustrate how accurate is the approximation of the map. The width w
of the tubes [x] (t) is given in Fig. 9. After the first call to C1 (see Step
3), we get the tube shown in Fig. 8(a). The error increases linearly as
shown in Fig. 9(a). After running all contractions, we get Fig. 8(b) as an
inner approximation of the dug space D. After a second run of the loop,
we get Fig. 8(c) and (d). A third and fourth run yields Fig. 8(e)–(h).
The fixed point that is reached is depicted in Fig. 8(i) and (j). As shown
in Fig. 9, the width of the tube [x] decreases. Oscillations with respect
to t are due to the fact that on the right part of the room (which was
first observed), the robot succeeds to have a more accurate localization
than on the left part of the room. When the right part of the room was
observed for the first time, the robot did not accumulate uncertainties
in its localization and was thus able to get an accurate map. When the
robot came back to the right part, it was then able to take advantage
of the accurate mapping to improve its localization. This is consistent
with the loop-closure effect classically observed in a SLAM context.
An educational windows program associated with this testcase with all
C++ codes is made available [15].

Remark: Let us now give more details concerning the very begin-
ning of the contraction procedure. At the first step, the contractor C1

contracts the tube [x] (t) by propagating forward the knowledge of the
initial condition x(0). The corresponding tube [x] (t) is represented in
Fig. 8(a). The contractor C2 contracts the set interval [D]. More pre-
cisely, it provides an inner approximation D

− of the dug space (i.e., all
points in D

− are obstacle free). The contractor C3 contracts the set in-
terval [M]. More precisely, it performs the contraction M

+ = M
+ \D

−.

Fig. 8. (a), (c), (e), (g), and (i) Contraction of the tube [x] (t) during the
propagation. (b), (d), (f), (h), and (j) Evolution of the approximation the dug
space D.

The contractor C4 contracts the tube [x] (t) (see Fig. 6). At this level,
the tube [x] (t), which is represented in Fig. 10 (top left), appears to
be the same as before the call to C4 [see Fig. 8(a)]. This is due to
the fact that only small parts of [x] (t) have been contracted, and due
to the superposition of all boxes, the contractions are not visible. The
width w ([x] (t)) of the tube is similar to the previous one (almost lin-
ear), except for some t (illustrated by the clouds inside the two ellipses
at the bottom of Fig. 10). In Fig. 10 (top right), the subtube of [x] (t)
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Fig. 9. Width of the tubes [x] (t) represented on the left part of Fig. 8.

Fig. 10. First step of the propagation procedure. (Left) Tube [x] (t) obtained
by propagating the initial vector. (Right) Part of the tube [x] (t) that has been
contracted by removing values x (t) that are inconsistent with the distance z(t)
between the robot and the dug space. (Bottom) Widths of the tube [x] (t) with
respect to the contractions.

contracted by C4 is represented. The black zone corresponds to the part
of [x] (t) that has been removed by C4 , and the gray zone corresponds
the subtube after contraction. Each inconsistent point of the black zone
is such that the disk of radius z(t) is strictly inside the current inner
approximation D

− of the dug space.

VI. CONCLUSION

This paper has presented a new contractor method to solve the SLAM
problem in the case where the map cannot be represented by a para-
metric structure. In such a case, the map can be represented as a set of
an infinite number of punctual marks or equivalently by arbitrary com-
pact subsets of R

q . As a consequence, the SLAM problem encloses
unknown variables that are sets of R

q and containing an uncount-
able number of elements. To solve these type of set-valued nonlinear
problems with set-membership methods is not easy and atypical in
the robotic or control community. An extension of existing contractor
methods has then been proposed in order to allow using contractors
associated with set-valued variables. The principle of the resulting
hybrid contractor approach for SLAM has been illustrated through a
range-only offline SLAM testcase with simulated data. To the author’s

knowledge, no other existing deterministic method could solve a simi-
lar problem.

However, even if the principle of solving the pose-based range-
only SLAM in a reliable way has been demonstrated, the proposed
technique exhibits some limitations: 1) When outliers occur during
the mission, the trajectory tube quickly becomes an empty tube and no
more estimation of the map and the trajectory can be produced anymore;
2) the approach cannot be easily extended to situations where moving
obstacles exist in the environment; 3) a prior box enclosing the map
and the trajectory is needed, which is not well suited for exploration;
4) it is computationally expensive to match representation of the space
with subpavings; and 5) the method is only able to perform offline
SLAM, which is not suited for real-time applications. Further research
is, therefore, necessary to make the approach effective to solve online
SLAM problems that involve real robots.
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Online Trajectory Generation: Straight-Line Trajectories

Torsten Kröger, Member, IEEE

Abstract—A concept of online trajectory generation for robot motion
control systems that enables instantaneous reactions to unforeseen sensor
events was introduced in a former publication. This concept is now ex-
tended with the important feature of homothety. Homothetic trajectories
are 1-D straight lines in a multidimensional space and are relevant for all
straight-line motion operations in robotics. This paper clarifies 1) how on-
line concepts can be used to generate homothetic trajectories and 2) how we
can instantaneously react to (sensor) events with homothetic trajectories.
To underline the practical relevance, real-world experimental results with
a seven-degree-of-freedom (DOF) robot arm are shown.

Index Terms—Homothety, online trajectory generation (OTG), robot
motion control, sensor integration.

I. INTRODUCTION AND PROBLEM FORMULATION

Homothetic trajectories belong to the most common ones in com-
mercially available robotic manipulator control. They represent a mo-
tion along a 1-D straight line in a multidimensional space (Euclidian
space, Euler space, spherical coordinates, joint space, etc.). If we con-
sider a mechanical system with multiple degrees of freedom (DOFs)
that is equipped with one or more sensors delivering digital and/or
analog sensor signals, it is an essential feature to instantaneously react
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to unforseen sensor signals and events. In [1], a framework for the
online generation of time-synchronized robot motion trajectories was
introduced, which generates trajectories from arbitrary initial states
of motion. This paper now extends the framework of [1] by enabling
phase-synchronized (homothetic) trajectories that are generated within
low-level control cycle (typically, 1 ms or less).

Let us define a trajectory Mi (t), which is calculated at a discrete-
time instant Ti , as

Mi (t) =
{ (1mi (t), 1Vi

)
, . . . ,

(
lmi (t), lVi

)

. . . ,
(

L mi (t), LVi

) }
(1)

where the elements lmi (t) are the matrices of the motion polynomials

lmi (t) =
(

l �pi (t), l�vi (t), l�ai (t), l�ji (t)
)

=
(

l
1 �mi (t), . . . , l

k �mi (t), . . . , l
k �mi (t)

)T
. (2)

Here, K is the total number of DOFs, and a trajectory segment l of a
single DOF k is described by the motion polynomials

l
k �mi (t) =

(
l
k pi (t), l

k vi (t), l
k ai (t), l

k ji (t)
)

(3)

where l
k pi (t) represents the position progression, l

k vi (t) represents the
velocity progression, l

k ai (t) represents the acceleration progression,
and l

k ji (t) represents the jerk progression. According to (1), a com-
plete trajectory is described by L segments, and each segment l is
accompanied by a set of time intervals

lVi =
{

l
1ϑi , . . . , l

k ϑi , . . . , l
k ϑi

}
where l

k ϑi =
[
l−1

k ti ,
l
k ti

]
(4)

such that a single set of motion polynomials l
k �mi (t) is only valid within

the interval l
k ϑi .

In [2], a good introduction about homothety is given, and in [3],
it is applied to robot trajectory generation. To generate homothetic
trajectories in the K-dimensional space, we can take an arbitrary DOF,
i.e., κ ∈ {1, . . . , K}, as the reference DOF and design the trajectory
parameters, such that the condition

∀ (k, l) ∈ {1, . . . , K} × {1, . . . , L}
l
k vi (t) = k �i · l

κ vi (t) with t ∈ l
k ϑi (5)

is fulfilled. This naturally also implies that

∀ (k, l) ∈ {1, . . . , K} × {1, . . . , L}
l
k ai (t) = k �i · l

κ ai (t)
l
k ji (t) = k �i · l

κ ji (t)
l
k di (t) = k �i · l

κ di (t)

⎫⎬
⎭ with t ∈ l

k ϑi (6)

are fulfilled. The constant vector

��i = (1�i , . . . , k �i , . . . , k �i )
T with κ �i = 1 (7)

defines the ratios between the reference DOF κ and all other DOFs
{1, . . . , K}\{κ}. Usually, homothetic trajectories are generated as
described by (5)–(7): A scalar function specifies the velocity progres-
sion for one DOF, which is referred to as a reference DOF, and the
motion of the other DOFs is calculated by the use of ��i [3].

Fig. 1 illustrates the path of a simple 2-DOF point-to-point mo-
tion with zero velocities in �P0 and �P trgt

0 . One can clearly recognize
the differences between the phase-synchronized (homothetic), time-
synchronized (cf., [1]), and nonsynchronized trajectories. In particular,
the elements of the kinematic motion constraints

Bi =
(

�V m ax
i , �Am ax

i , �Jm ax
i , �Dm ax

i

)
(8)
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