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Abstract: Characterizing the set of all parameter vectors such that their image by a

vector function belongs to a given set is a set-inversion problem. The algorithm SIVIA (Set

Inversion Via Interval Analysis) makes it possible to perform this task in an approximate

but guaranteed way. In the examples treated so far, the function to be inverted was given

either explicitly or by a sequential algorithm. In this paper, this approach is extended to

the case of branching algorithms involving if statements. As an illustration, the static

localization of a robot from bounded-error range measurements is considered. The notion

of remoteness, introduced for an archetypal but realistic sonar model, allows this problem

to be cast into the set-inversion framework.

Keywords: Bounded errors, Interval analysis, Nonlinear estimation, Robot localization,

Set-inversion.

1. Introduction

The problem considered in this paper is the characterization of the set

S = fp j f(p) 2 Yg; (1.1)
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where p is a �nite-dimensional parameter vector, f a vector function and Y a given set,
for instance a box in some data space. S may alternatively be de�ned as

S = f�1(Y); (1.2)

so its characterization may be seen as a problem of set inversion [10]. The algorithm SIVIA

(for Set Inversion Via Interval Analysis) has been proposed to allow an approximate but

guaranteed characterization of S by bracketing it between inner and outer sets of boxes
in parameter space. Its complexity is analyzed in [11], and its convergence in [10]. It has

been applied, e:g :, to guaranteed nonlinear parameter estimation [10] and robust stability

analysis [24].

In the implementation of SIVIA, interval analysis was used to extend sequential algo-

rithms on real numbers to intervals. By sequential algorithm, we mean an algorithm for

which the sequencing of the execution of the instructions does not depend on the values

of the input variables. Examples of non-sequential algorithms are branching algorithms

which involve if statements (either explicitly or implicitly via while do or repeat until

statements). Classical interval analysis no longer provides a ready-made methodology

for the interval extension of branching algorithms. However, if then else statements can

often be eliminated from the code by using Kearfott�s function � [13], for which interval

extensions are available. We shall call a �-algorithm any algorithm in which all if then

else statements can thus be eliminated.

In this paper, we extend set inversion to �-algorithms, and apply the resulting method-

ology to the guaranteed localization of a robot during a static phase, based on a �nite

number of range measurements by exteroceptive sensors. For a general presentation of

robot navigation based on sonars, see [16]. It is well known that static localization is very

di¢ cult to perform automatically, because of the variety of the associations that can be

made between measurements and landmarks of the environment. It is however a prereq-

uisite to tracking displacements of the robot via recursive state estimation based, e.g.,

on extended Kalman �ltering [14] or bounded-error set estimation [18]. It is also required

whenever the state estimator turns out to have failed, e.g., after a sequence of collision-

avoidance steps. For the time being, in the absence of speci�c beacons and additional

sensors, no systematic, e¢ cient and rigorous method exists to automatically estimate the

initial con�guration of the robot, i.e., its position and orientation. We shall see that set

inversion makes it possible to perform this task automatically and systematically, thereby
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increasing the autonomy of the robot. The delicate problem of data association will be

solved as a by-product of the procedure and the uncertainty associated with sonar mea-

surements will be taken into account. The simulation algorithm used to compute the

vector of measurements to be expected for a given con�guration will be shown to be a

�-algorithm, so its inversion will be a direct application of the methodology advocated

here.

The paper is organized as follows. Section 2 recalls the very few notions of interval com-

putation needed and that of a � function. A new version of SIVIA, more e¢ cient and

recursive, is presented in Section 3. Section 4 shows how the localization of a robot

from on-board sonar measurements can be formulated as a problem of set inversion for a

�-algorithm and compares this approach with those available in the literature.

2. Interval analysis

Interval arithmetic was originally developed [21] to quantify the e¤ect of �nite-precision

arithmetic on results obtained with a computer. It extends classical operators and func-

tions on real numbers to intervals. In what follows, real variables will be denoted by

lower-case letters, intervals by upper-case letters and vector intervals (or boxes) by bold

upper-case letters. The notation used is explained in details at the end of the paper.

The next example shows how to compute the interval evaluation of the distance of a

point to a line along a vector. This quantity will be useful for the localization problem of

Section 4.

Example 1. The distance from m to (ab) along the unit vector �!u is

`�!u (m; (ab)) =

�����(yb � ya)xm + (xa � xb)ym + xbya � xaybh�!ab;�!u i

����� : (2.1)

If
�!
U = [0:5; 1]� [0:5; 1] and M = [1; 2]� [1; 3] contain �!u and m, and if a = (6; 1)T and

b = (4; 8)T, then `�!u (m; (ab)) belongs to the interval

L�!
U
(M; (ab))=

��� 7[1;2]+2[1;3]�44�2[0:5;1]+7[0:5;1]

���= ��� [7;14]+[2;6]�44[�2;�1]+[3:5;7]

���= ����[24;35][1:5;6]

���= [4; 70=3]: (2.2)

}
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To evaluate the interval counterpart of a function de�ned by a sequential algorithm it

su¢ ces to replace each statement by its interval counterpart. However, many functions

incorporated in models used in control or in robotics are nonsequential, because of phe-

nomena such as saturation or encounters with mechanical stops or because of the interplay

between continuous and discrete parts of hybrid systems. As a result, branching appears

in the algorithms describing the models, and a speci�c methodology is needed to deal with

if then else statements in an interval context. Although this methodology is rather classi-

cal in interval analysis, it seems absent from the control literature, and will be presented

before applying it to the localization problem.

Extending the Boolean test involved in the if statement to intervals requires a three-valued

logic [20]. Denote the set of all Booleans by B = f0; 1g, where 0 stands for false and 1 for
true. An interval Boolean is an element of IB = f0; [0; 1]; 1g, where [0; 1] means that the
variable is indeterminate. All usual operations on sets, such as union or intersection and

logical computations apply to interval Booleans. For instance, if (A and B) is denoted

by A ^ B, and (A or B) by A _ B, then ([0; 1] _ 1) ^ ([0; 1] _ 0) = 1 ^ [0; 1] = [0; 1]:

Intersection and union should not be confused with the logical operators and and or. For

instance, [0; 1] \ 1 = 1, whereas [0; 1] ^ 1 = [0; 1]: Three-valued logic makes it possible to
extend tests involving points) to intervals. Let IRn be the set of all n-dimensional real

boxes (or vectors of real intervals). An inclusion test for the Boolean function (or test)

t : Rn ! B is a function T : IRn ! IB such that T (P) = a; with a 2 B; implies that
8p 2 P; t(p) = a: The inclusion test can be seen as a counterpart for Boolean functions
of the inclusion function [21] for real functions. An inclusion test is inclusion monotonic

if P � Q =) T (P) � T (Q):

Example 2. Consider the test t(p) = (p 2 D), where D is a given set. An inclusion-

monotonic inclusion test associated to t(p); and denoted by T (P) = (P 2D); is

if P � D; then (P 2D) = 1;
if P \ D = ;; then (P 2D) = 0;
otherwise (P 2D) = [0; 1]:

(2.3)

}

The inclusion test T 0 is stronger that the inclusion test T if 8P 2 IRn; T 0(P) � T (P):

Example 3. Consider a test t(p) = (f(p) � 0): Assume that two interval counterparts
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F1 and F2 are available for f . They are associated with the two inclusion tests T1(P) =

(F1(P) 2 R+) and T2(P) = (F2(P) 2 R+): A stronger inclusion test is T3(P) = T1(P) \
T2(P). This illustrates the potential advantage of considering several tests in parallel. }

Example 4. To bisect a box P means to cut it along a symmetry plane normal to a side

of maximum length. This generates two boxes P1 and P2 such that P = P1 [ P2. If T
is inclusion monotonic, then the test T 0 de�ned by T 0(P) := T (P1) [ T (P2) is stronger
than T; because T (P1) and T (P2) may both be equal to 0 or to 1 even if T (P) = [0; 1].

This suggests that bisecting boxes may help resolve ambiguous situations, an idea that is

the corner-stone of SIVIA. }

Once Boolean tests have been extended to intervals, it remains to be decided which branch

of the algorithm should be executed. Kearfott�s � function, �rst mentioned in [13], is a

possible way of eliminating the problem. If x is a real vector and y and z are two real

numbers, then �(x; y; z) is equal to y if x � 0 and to z otherwise. Its interval counterpart
is given by

�(X; Y; Z) =

8>><>>:
Y if (X � 0) = 1
Z if (X � 0) = 0
Y [ Z otherwise

: (2.4)

3. SIVIA

SIVIA (Set Inverter Via Interval Analysis) [10] is a branch-and-bound algorithm that

characterizes the set S of all feasible parameter vectors in some prior box of interest P0
by partitioning P0 into three subpavings (list of nonoverlapping boxes). The �rst one S�

consists of boxes proved to be inside S, the second one of boxes proved to be outside S,
and the last one �S of boxes for which no conclusion could be reached. The solution set
can thus be bracketed between inner and outer sets: S� � S � S� [�S:

The main advantage of the new version to be presented below is that it drastically de-

creases the number of boxes to be stored. As the multiplication of these boxes is the main

factor limiting the complexity of the problems that can be handled, this is a major achieve-

ment. Recursive implementation makes it possible to obtain this result without increasing

computing time. The new version also takes advantage of the notion of inclusion tests

5



introduced in the previous section. S is assumed to be de�ned by a Boolean function t(p)
that takes the value true if and only if p is acceptable, i.e., S = fp j t(p) = 1g = t�1(1):
Assume that an inclusion test T for t is available. If a box P satis�es T (P) = 1, then it is

inside S and stored in S�. If T (P) = 0; then P is outside S and discarded. Otherwise, it
will be split into subboxes, unless it is smaller than a given required accuracy parameter

", in which case it will be put in �S. SIVIA, presented on Table 1, calls a recursive
function CLASSIFY, which performs most of the work. In what follows, the width w(P)

of a box is the length of its largest side(s).

SIVIA

Step 0 �S := ;; S�:= ;;
Step 1 c0 := CLASSIFY(P0);

Step 2 If c0 = 1 then S�:= {P0};
Step 3 If c0 = [0; 1] then �S := {P0};
Step 4 return �S,S�;

CLASSIFY(P)

Step 1 If T (P) = 0 or 1; return(T (P));

Step 2 If w(P) < "; return([0; 1]);

Step 3 Bisect P to get P1 and P2;

Step 4 c1 := CLASSIFY(P1); c2 := CLASSIFY(P2);

Step 5 If c1 = c2; return(c1);

Step 6 If c1 = [0; 1], store P1 into �S;
Step 7 If c2 = [0; 1], store P2 into �S;
Step 8 If c1 = 1, store P1 into S�;
Step 9 If c2 = 1, store P2 into S�;
Step 10 return(;):

Table 1: New recursive version of SIVIA.

CLASSIFY has two roles. The �rst one is to improve the strength of the test T (P) by

considering smaller boxes and taking advantage of inclusion monotonicity. This role has

been ful�lled when return takes place at Step 1, 2 or 5. In either case, CLASSIFY refrains

from storing P in the corresponding subpaving, in the hope that it may be possible to

reunite it later with another box via Step 5, thereby decreasing the number of boxes to be

stored. Numerical experiments have shown that this reduction may be very substantial

indeed. The second role of CLASSIFY is to store boxes in the appropriate subpavings.
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This is performed by Steps 6 to 9. Note that when c1 = 0 (resp. c2 = 0), the box P1
(resp. P2) is eliminated. Returning ; at Step 10 indicates to the calling program that P

or its subboxes have all been classi�ed and need no longer be considered. Step 2 makes

the algorithm �nite by forbidding bisection ad in�nitum.

To illustrate the procedure, assume that at Step 5, c1 = c2 = 1. Rather than storing P1
and P2 individually in S�, it is much more e¢ cient to keep them united in their father

box P. This reasoning can be carried over several generations of subboxes obtained by

bisection; in the limit, P0 may end up as a single box in S�. Assume now that at Step
5 c1 = [0; 1] and c2 = ;. This means that P2 has been classi�ed and that P1 has been
partitioned into (possibly many) ambiguous boxes, the widths of which are smaller that

". P1 cannot be reunited with P2 and must be stored (as a single box) into �S. The
value ; is then returned to the calling program, which indicates that the current box P
can be dropped from further consideration. If the calling program was CLASSIFY (at

Step 4), then P will become either P1 or P2 in the calling program and c1 or c2 will take

the value ;.

In this new version, the stack that was explicit in the previous nonrecursive version of

SIVIA is made implicit by using recursivity.

4. Robot localization

The problem of the guaranteed localization of a robot considered in this section is similar

to that described in [17], where much less detail was provided on the methodology. Lo-

calizing a robot in a 2D environment means estimating its con�guration p = (x; y; �)T,

where (x; y) is the position of the origin of the robot frameM and � is the heading angle

of the robot, both in the world frame W (see Figure 4.1).

Various approaches have been proposed in the literature to deal with the localization

problem where the distances from some robot sensors to some landmarks are measured,

and we shall only present recent contributions. If it can be assumed that data association

has already been performed, i.e., that the correspondence between the landmarks and

the sensors is known, then algorithms running in time linear in the number of landmarks

can be found [2]. Local methods especially suitable for processing sonar scans obtained

by ultrasonic sensors are proposed in [25] and [26], they also require the robot to be

already approximately localized. These assumptions seems however fairly unrealistic when
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Figure 4.1: World frame W and robot frame M. The parameters to be estimated are
those of the con�guration of the robot, i.e., x, y and �. The segment with endpoints a
and b represents a given landmark.

nothing is known a priori of the actual position of the robot. They are not required by

[9], where a clustering technique maximizing the number of measurements consistent

with a given con�guration of the robot is proposed. Nor are they required by [4], where

a global Monte Carlo method is shown to be more accurate and less memory-intensive

than more classical grid-based methods. The main limitation of these two approaches is

that no guarantee can be provided about their results. An approach to providing such

a guarantee can be found in [8], where a combination of stochastic and set-theoretic

uncertainty is considered. Although it is mentioned that extension to multivariable cases

would be possible, the method is developed for a one dimensional problem and thus not

applicable to our problem where dimp is equal to three.

The set-inversion approach advocated in this paper is able to localize the robot in a global

and guaranteed way, without requiring any prior data association. We are not aware of any

other method that could make similar claims in a multidimensional case. The approach

is illustrated in the case where the distance measurements are computed from to the

time-lag between reception and emission of ultrasonic waves emitted by sonars.

4.1. Localization as a problem of set inversion

The notation to be used for the various geometrical entities involved is summarized at the

bottom of the paper. The con�guration of the robot is assumed to be in some prior box of
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interest P0 in con�guration space, large enough to contain all con�gurations of interest.

The landmarks of the environment are assumed to be jmax oriented segments [ajbj], the

collection of which constitutes the map. Each of these segments has a �xed location in

W. By convention, when going from aj to bj, the re�ecting face of the segment is on the

left. A necessary condition for a signal sent by a sonar located at s to be re�ected by the

segment [ajbj] is then that s be on the left side of [ajbj], i.e.,

s 2 �ajbj = fm j det(�!maj;
�!
mbj) > 0g: (4.1)

The robot is equipped with imax on-board sonars. Each sonar emits a ultrasonic wave,

measures the time-lag between emission and reception of the wave re�ected or di¤racted

by the environment and converts it into a distance, assuming knowledge of the speed

of sound. As illustrated by Figure 4.2, the ith sonar is installed on the vehicle at the

coordinates (~xs(i); ~ys(i)) in M, and the orientation of its emission axis is speci�ed by

the angle ~�s(i). The ith sonar returns a measurement d(i) of the distance from s(i), the

location of the ith sonar in W, to some unknown landmark at least partly located in its
emission cone. To take measurement inaccuracy into account, with each data point d(i)

is associated a feasible interval Di = [d(i)(1 � �i); d(i)(1 + �i)], where �i is the relative
precision of the ith measurement, assumed to be known. Each measurement is assumed to

be the result of a single specular re�ection (multiple re�ections are not taken into account

for the time being).

With each sonar, an emission cone C can be associated, characterized as

C(s;�!u1;�!u2) = fm 2 R2 j det(�!u1;�!sm) � 0 anddet(�!u2;�!sm) � 0g; (4.2)

where s is its vertex, with coordinates those of the sonar, and �!u1 and �!u2 are unit direction
vectors. Each sonar is such that the aperture of the emission cone is smaller than �=2.

This implies that h�!u1;�!u2i > 0. Moreover, by convention, �!u1 and �!u2 are chosen such that
det(�!u1;�!u2) > 0. For any given con�guration p = (x; y; �)T, and any given sonar with

coordinates ~xs and ~ys and orientation ~�s, the coordinates of the vertex of C in W are

s =

"
x

y

#
+

"
cos(�) � sin(�)
sin(�) cos(�)

#" exs
~ys

#
; (4.3)
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Figure 4.2: Characterization of a measurement performed by a given sonar. The sonar s
returns the measurement d of the distance from s to an unknown landmark ajbj at least
partly located in its emission cone:

and the coordinates of the unit direction vectors in W are

�!u1 =
"
cos(� + ~�s � )
sin(� + ~�s � )

#
and �!u2 =

"
cos(� + ~�s + )

sin(� + ~�s + )

#
; (4.4)

where  denotes the half aperture of C. These characteristics of C depend on the con�g-
uration p and sonar i considered. We should thus have written ~xs(i), ~ys(i), ~�s(i), s(i;p),
�!u1(i;p) and �!u2(i;p). In what follows, however, this dependence will be omitted wherever
possible to simplify notation.

De�ne the remoteness of a cone C = C(s;�!u1;�!u2) from an oriented segment [ab] by

r(s;�!u1;�!u2; a;b) = 1 if s =2 �ab or [ab] \ C = ;;
= min k�!smk otherwise.

m 2 [ab] \ C
(4.5)

The remoteness is thus the distance that would be reported by the sonar s if the envi-

ronment consisted only of [ab]. When [ab] is outside the emission cone C, or when it is
not properly oriented, the distance is considered as in�nite. It would be easy to modify

the de�nition of the remoteness to take into account additional knowledge such as the

existence of blind zones.
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Given the error bounds, a con�guration p is consistent with the measurement interval Di

associated with the ith sonar if and only if

fi(p) , min r(s(p);�!u1(p);�!u2(p); aj;bj)
j 2 f1; � � � ; jmaxg

2 Di: (4.6)

This amounts to saying that there exists a landmark consistent with the measurement

and that no other landmark would have led to a shorter range measurement.

Remark 1. If the segment [aj;bj] illuminated by the ith sonar was known a priori,

as assumed by most classical localization methods, the minimization involved in (4.6)

could be dropped, and the localization algorithm to be presented could still be used,

while requiring much less computation. The minimization in (4.6) is the key to a global

resolution of the problem of data association. }

If D is the box with components Di and f(p) the vector function with coordinates fi(p),

the feasible set for the con�guration vector can be de�ned by

S = fp j f(p) 2 Dg = f�1(D): (4.7)

Characterizing S is therefore a set-inversion problem, which can be solved using SIVIA,
with T (P) an inclusion test for t(p) = (f(p) 2 D): Provided that an algorithm is available
for evaluating r(s;�!u1;�!u2; aj;bj), t(p) and its interval counterpart T (P) can be computed
using (4.6), (4.4) and (4.3).

We have seen in Example 2 that the Boolean operator 2 can be given an interval meaning.
The use of a programming language that allows operator overloading1 (such as C++,

FORTRAN 90 and ADA ) makes it possible to use exactly the same code to compute

T (P); provided that the point variables s, �!u1, �!u2, x, y, �, fi and f are replaced by their
interval counterparts S,

�!
U1,

�!
U2, X, Y , �, Fi and F and that all the necessary operators

and functions +, cos, sin, min, 2 and r(:; :; :; :; :) have been suitably overloaded.

Let us now describe an algorithm for computing r. When used with interval arguments

in a context of operator overloading, the same algorithm will be used to compute R. Let

1Such languages allow the rede�nition of classical operators such as +;�; �; = for structures (such as
matrices, vectors, complex numbers, intervals, : : : ) that have not been initially de�ned in the language.
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h be the orthogonal projection of s onto (ab), h1 be the intersection of the lines (s;
�!u1)

and (ab), and h2 be the intersection of the lines (s;
�!u2) and (ab).

The minimizerm� of k�!smk, if any, belongs to the �nite setK = fh;h1;h2; a;bg. Therefore

r(s;�!u1;�!u2; a;b) = 1 if s =2 �ab,

= min k�!smk otherwise.

m 2 K \ [ab] \ C
(4.8)

Assume that s 2 �ab, so that det(
�!sa;�!sb) > 0. In order to express r(s;�!u1;�!u2; a;b) as a

�-algorithm, introduce the following vector functions:

fh(s;
�!u1;�!u2; a;b) =

�
h�!ab;�!sai �h�!ab;�!sbi h�!u1;

�!
abi �h�!u2;

�!
abi

�T
;

fhi(s;
�!ui ; a;b) =

�
det(�!ui ;�!sa) � det(�!ui ;

�!
sb)

�T
; i = 1; 2;

fv(s;
�!u1;�!u2;v) =

�
� det(�!u1;�!sv) det(�!u2;�!sv)

�T
;v = a;b:

(4.9)

It is trivial to show that

h 2 [ab] \ C () fh(s;
�!u1;�!u2; a;b) � 0;

hi 2 [ab] \ C () fhi(s;
�!ui ; a;b) � 0; i = 1; 2;

v 2 [ab] \ C () fv(s;
�!u1;�!u2;v) � 0; v = a;b:

(4.10)

The algorithm described in Table 2 computes r(s;�!u1;�!u2; a;b), based on (4.10), (4.8) and
(4.1). In its description, `(s; (ab)) denotes the distance from the point s to the line (ab)

and `�!u (s; (ab)) the distance from s to (ab) along the unit vector �!u .
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r(s;�!u1;�!u2; a;b)

Input : a;b; s;�!u1;�!u2;
Step 1 rh = �(fh(s;

�!u1;�!u2; a;b);`(s; (ab));1)
Step 2 rh1 = �(fh1(s;

�!u1; a;b);`�!u 1(s; (ab));1)
Step 3 rh2 = �(fh2(s;

�!u2; a;b); `�!u 2(s; (ab));1)
Step 4 ra = �(fa(s;

�!u1;�!u2; a); k�!sak;1)
Step 5 rb = �(fb(s;

�!u1;�!u2;b); k
�!
sbk;1)

Step 6 r = �(det(�!sa;�!sb);1;minfrh; rh1 ; rh2 ; ra; rbg)
Output: return (r)

Table 2: Computation of the remoteness r(s;�!u1;�!u2; a;b)
of a landmark [a;b] from a cone C(s;�!u1;�!u2).

Remark 2. This algorithm has been kept simple on purpose. The performance of its

interval evaluation could be improved by adding more tests. For example, taking into

account that

det(�!u1;
�!
ab) � 0 and det(�!u2;

�!
ab) � 0 =) r(s;�!u1;�!u2; a;b) =1; (4.11)

the interval evaluation of r becomes more e¢ cient if the following instruction is inserted

after Step 6:

r = �
�
( det(�!u1;

�!
ab) det(�!u2;

�!
ab) )T;1; r

�
: (4.12)

}

4.2. Comparison with other approaches

The existing methods for the static localization of a robot from onboard sonar mea-

surements can be classi�ed depending on how noise is characterized (by bounds or by

probability distributions) and on whether they handle the problem of associating the

range data with segments of the map. Most methods assume the data association to be
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given a priori. Based on a statistical description of noise by probability distributions and

a linearization of the model, a static version of extended Kalman �ltering (EKF) can then

be used, which leads to very simple computations, but the results are only local, and

disconnected solutions due, e.g., to map symmetries (see Figure 4.5 below) are not dealt

with. When bounds are available instead of noise distributions, bounded-error estimation

can be used, see, e.g., [22], [23] and[19], and the references therein. For models linear in

their parameters, the most commonly employed method, known in the literature as OBE

(outer bounding ellipsoid) [1], recursively computes an ellipsoid guaranteed to contain all

possible values of the parameter vector that are consistent with the measurements and

error bounds [18]. Computation is almost as simple as with EKF and, as for EKF, a

linearization is necessary to make OBE applicable to robot localization and a prior data

association is usually assumed available.

The solution classically used to perform data association when it is not given a priori is to

enumerate all possible associations between measurements and segments before eliminat-

ing as many of them as possible. This multiple hypothesis testing (MHT) can be combined

with EKF [3][14][15] or OBE [6][7], which gives these methods the ability to deal with

ambiguity. Provided that the bounds used for OBE take into account the linearization

error, the results obtained by combining MHT and OBE can even be made global and

guaranteed. However, the complexity of MHT increases so quickly with the number of

segments in the map and the number of sonars that it can only be used on fairly simple

examples. Moreover, the results obtained by combining MHT and OBE are usually very

pessimistic, because the error bounds have to be taken large and because of the ellipsoidal

approximation committed each time a new sensor datum is incorporated. By contrast,

the set-inversion method advocated here uses an exact description of the set of all con�g-

urations that are consistent with the measurements and hypotheses on the error bounds.

It does not perform any linearization. The data association does not need to be available a

priori, and all feasible associations are obtained as a by-product of the algorithm. The set

S of all feasible con�gurations is enclosed in the set of boxes computed by the algorithm.
Precision in the description of S can be increased by decreasing " at the cost of increasing
the volume of computation. The complexity of the method is exponential in the number

of parameters to be estimated. However, here, dim(p) = 3, small enough for the method

to remain tractable. Table 3 summarizes the properties of various approaches considered.
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Estimation Data Validity Model Error Disconnected Complexity

method association of results description solutions

EKF a priori local linearized distribution ignored low

OBE a priori local linearized bounds ignored low

MHT + EKF generated local linearized distribution handled huge

MHT + OBE generated global linearized bounds handled huge

SIVIA generated global nonlinear bounds handled high

Table 3: Comparison of approaches for static localization.

4.3. Examples

Consider �rst the situation displayed on Figure 4.3, in which �ve sonars have reported

measurements. For each of them, the half aperture of the emission cone is taken as

 = 11:3� and the relative precision of the measurement as � = 0:02. With each data

point d(i), a thick uncertainty arc can be associated, resulting from the intersection of

the corresponding emission cone with the ring centered on s(i) with interval radius Di =

[d(i)(1��); d(i)(1+�)]. A con�guration is feasible if each of these thick arcs intersects a
landmark and no other landmark is located between one arc and the corresponding sonar.

Figure 4.3: Actual con�guration of the robot, symmetrical test case.

Figure 4.4 describes the set S� [�S, which encloses S. It consists of two connected sets;
each corresponding to a possible association between the data and the landmarks of the

environment, as shown on Figure 4.5.
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Figure 4.4: Outer approximation of S, symmetrical test case. The con�guration of the
robot is guaranteed to be in one of the boxes. The two disconnected groups of boxes
correspond to radically di¤erent data associations. On a given component the precision
for x and y is similar. The apparent plate shape of these two components is due to the
scales.

Figure 4.5: Con�gurations belonging to disconnected components of S.

Consider now the situation displayed on Figure 4.6, where the same sonars have reported

measurements but where the environment is no longer symmetrical with respect to an axis

parallel to x. S� [ �S, as estimated by SIVIA, is presented on Figure 4.7. It has only
one connected component, because the matching between measurements and landmarks

is now unique.

In both cases, for " = 0:02, the result is obtained in less than one minute with a P166MMX

processor.
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Figure 4.6: Actual con�guration of the robot, asymmetrical test case.

Figure 4.7: Outer approximation of S, asymmetrical test case. There is now only one
connected component. The uncertainty on the con�guration of the robot is less than �10
cm for x and y, and less than �4 degrees for �.

5. Conclusions

Two contributions to the methodology of nonlinear bounded-error estimation have been

presented. The �rst one is a new version of SIVIA, which drastically decreases the number

of boxes to be stored, thereby signi�cantly increasing the complexity of the problems that

can be considered. The second one is an extension of the class of models that can be

considered to models involving functions computed by branching algorithms, implicitly

or explicitly involving if statements. Such models include those of physical phenomena

involving saturation or mechanical stops and of systems that change their dynamical

behavior under conditions described by logical tests.
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A third contribution of the paper is a detailed formalization of the guaranteed localization

of a robot from bounded-error range data as a set-inversion problem. Because of the many

di¤erent situations that have to be accounted for, computation relies on a branching

algorithm. Trying all a priori possible associations of landmarks to the distances measured

by the sonar belt, which is a bottleneck of global autonomous robot localization because

of its combinatorial complexity, is avoided, and a posterior association is provided by the

algorithm.

These three contributions have been put at work to enclose all feasible con�gurations of

a robot in a reasonably small (but possibly disconnected) set. The method can deal with

a large number of sonars and with a map consisting of a large number of segments, and

the results provided are global and guaranteed. To the best of our knowledge, no other

method can make similar claims. Extension to the tracking of a moving robot and to the

case where the data contain outliers due, e.g., to faulty sensors or to an outdated map is

under consideration.
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Notation

Vectors are in bold with an arrow on top: �!u . Points are in bold: a;b; c. Coordinates for
two-dimensional vectors �!u and points a are denoted by xu; yu and xa; ya.

h�!u ;�!v i : scalar product of �!u and �!v;
(ab) : line supported by a and b;
�!
ab : vector from a to b;

(s;�!u ) : line supported by s and with direction vector �!u ;
 : half aperture of the emission cone,

i : sonar index, (i = 1; : : : ; imax);

j : landmark index, (j = 1; : : : ; jmax);

`(s; (ab)) : distance from s to (ab);

`�!u (s; (ab)) : distance from s to (ab) along the unit vector �!u ;
p = (x; y; �)T : robot con�guration,

S : Set of all feasible robot con�gurations.
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