
���� �������� 	
��� �����
��
 ��� �����

Luc Jaulin

Laboratoire des Signaux et Systèmes, CNRS

Supélec, Plateau de Moulon,

91192 Gif-sur-Yvette Cedex, France.

On leave from

Laboratoire d�Ingénierie des Systèmes Automatisés,

ISTIA, 62 avenue Notre Dame du Lac,

49000 Angers, France.

Phone: (33) 1 69 85 17 59

Fax: (33) 1 69 41 30 60

Email: jaulin@lss.supelec.fr

Abstract: In this paper, the problem of interest is to �nd a path with given endpoints such

that the path lies inside a compact set S given by nonlinear inequalities. The proposed

approach uses interval analysis for characterizing S by subpavings (union of boxes) and

graph algorithms for �nding short feasible paths. As an illustration, the problem of �nding

collision-free paths for a polygonal rigid object through a space that is cluttered with

segment obstacles is considered.

Keywords: Con�guration space, Connexity, Graph, Interval analysis, Motion planning,

Set inversion, Subpavings.

�� ������	
����

In this paper, we present a new approach to �nd a collision-free path for an object in a

given space with obstacles. The issue of path planning in a known environment has been

addressed by many researchers (see, e.g., [17], [14], [18] and [11]). Most of the current

approaches to path planning are based on the concept of con�guration space (C-space) [13].

Each coordinate of the C-space represents a degree of freedom of the object. The number

of independent parameters needed to specify an object con�guration corresponds to the

Administrateur
Sticky Note
@ARTICLE{JaulinMotionRC,
 author = {L. Jaulin},
 year = 2001,
 title = {Path planning using intervals and graphs},
 journal = {Reliable Computing},
 volume = 7,
 pages = {1--15},
 number = 1
}

dimension of the C-space. The start con�guration and the goal con�guration become

two points ~a and ~b of the C-space. An example of such objects are industrial robots

which are kinematic chains in which adjacent links are connected by n prismatic or rotary

joints, each with one degree of freedom. The positions and orientations of each link of the

industrial robot can be characterized by n real numbers, which are the coordinates of a

single n-dimensional point in the C-space (see [15], for more information).

The feasible con�guration space S is the subset of the C-space corresponding to feasible

con�guration of the object, i.e., S contains all con�guration vectors for which the object

does not collide with nearby obstacles. The path planning problem formulated in the

C-space amounts to �nding a path included in S from the start point ~a to the goal point

~b. Many approaches to solve this problem are based on the use of potential functions,

introduced by Khatib [10]. In the potential �eld approach, the obstacles to be avoided

are represented by a repulsive potential, and the goal is represented by an attractive

potential. According to the force generated by the sum of these potential �elds, the

object is expected to reach (if the method does not stop at any local minimum) its goal

con�guration without colliding with obstacles. Other approaches based on the subdivision

of the C-space have also been considered (see [2], [1], [20]). They partition the C-space

with a set of nonoverlapping boxes. Those that have been proved to be inside S, those

that have been proved to be outside S, and those for which nothing has been proved.

The existing methods used to decide if a box is inside or outside the feasible con�guration

space S are not based on interval analysis and are limited to a small class of problems and

they meet some di¢culties with orientation parameters.

Interval analysis is able to prove that a given box is inside or outside S for a huge class of

problems and is used for the �rst time in this context (see also [8]) with classical methods

based on the subdivision of the C-space. Note that interval analysis has already been

used for parametric paths in [7] and [19], but the former methods require a parametric

model for the path, i.e., the path should be parametrized by a vector ~p to be tuned. This

approach is limited to small-dimensional path models (i.e., the dimension of ~p should be

small). In [7] and also in [19], the model chosen for the path was a cubic polynomial. This

paper presents a non parametric approach

Section 2 gives the basic notions for building a graph associated with the path planning

problem. In Section 3, two algorithms able to �nd a feasible path from ~a to ~b are given.

The �rst one characterizes S and then �nds a feasible path. Except the fact that the tests

used to decide about the feasibility of a box are based on interval analysis, this algorithm

2

is rather classical (see, e.g., [2], [1]). The second algorithm, which is new and much more

e¢cient than the �rst one, searches only the regions of the C-space that may lead to a

good feasible path. As an application, the problem of moving a nonconvex polygonal

object without colliding with segment obstacles is considered in Section 4.

��
���� ���
���������� �� ���
����	������ ���
�

Interval analysis makes it possible to build powerful inclusion tests to prove that a box is

inside or outside a set S given by nonlinear inequalities. Using a subdivision algorithm

such as Sivia (Set Inversion Via Interval Analysis see [6]), a guaranteed characterization

of S can be obtained and then a graph associated with this characterization can be built.

The whole procedure is called graph discretization of S and will be used in Section 3 to

solve a path planning problem. This section gives the basic notions needed to understand

the graph discretization principle.

2.1. Inclusion test

A box [~p] of Rn is the Cartesian product of n intervals:

[~p] =
£
p¡
1
; p+
1

¤
£ ¢ ¢ ¢ £

£
p¡n ; p+n

¤
: (2.1)

The set of all boxes of Rn is denoted by IRn. The width of a box [~p] is

width ([~p]) = max
i2f1;:::;ng

¡
p+i ¡ p¡i

¢
(2.2)

A Boolean number is an element of B , f0; 1g where 0 stands for false and 1 for true. By

extension, a Boolean interval is an element of IB , ff0g; f1g; f0; 1gg: For simplicity and

for similarity with classical interval notations, f0g; f1g and f0; 1g will be denoted by 0; 1

and [0; 1]; respectively. If a is a Boolean interval,

0:a = 0; 1:a = a; 0 + a = a; 1 + a = 1; a:a = a+ a = a: (2.3)

For example, we have

([0; 1] + 1) : ([0; 1]:1) = 1:[0; 1] = [0; 1]:

An inclusion test for the Boolean function (or test) t : Rn ! f0; 1g is a function

[t] : IRn ! IB such that for all boxes [~p] 2 IR
n,

[t] ([~p]) = 1) 8~p 2 [~p] ; t(~p) = 1;

[t] ([~p]) = 0) 8~p 2 [~p] ; t(~p) = 0:
(2.4)

3

An inclusion test [t] is thin if, for all vectors ~p, [t] (~p) = t(~p). [t] is minimal if

8 [~p] 2 IR
n; [t] ([~p]) = ft(~p); ~p 2 [~p]g: (2.5)

Example 1: Consider the test

t :
R
2 ! f0; 1g

(p1; p2)
T ! (p1 = 5);

(2.6)

i.e., t(~p) = 1 if and only if p1 = 5. The minimal inclusion test [t] is given by

[t] ([~p]) =

8>><
>>:

1 if [p1] = 5

0 if 5 =2 [p1]

[0; 1] otherwise

(2.7)

Interval analysis (see, e.g., [16]) makes it possible to build thin inclusion tests for a large

class of tests involving nonlinear constraints. The inclusion tests will be used for our path

planning problem to prove that a given box [~p] is inside or outside the feasible con�guration

space S.

2.2. Pavings

A paving of a box [~p0] is a set of nonoverlapping boxes, the union of which is equal to

[~p0]. On Figure 1, a paving P = f[~p1] ; [~p2] ; : : : ; [~p9]g of the box [~p0] = [¡2; 10]£ [¡2; 6] is

represented.

[]p2

[]p4

[]p1[]p1

[]p9

[]p7

[]p8
[]p5

[]p6

[]p3

-2
-2 104 71

4

0

6

2

Figure 1: A paving with 9 boxes

4

Two boxes are neighbors if they have two overlapping faces. For instance, [~p1] and [~p4]

are neighbors, but [~p2] and [~p5] are not neighbors. A subbox of P is an element of P. For

instance, [~p6] is a subbox of P, but [¡2; 4]£ [¡2; 6] is not a subbox of P. A subpaving of P

is a set nonoverlapping subboxes of P. For instance, f[~p6] ; [~p7]g is a subpaving of P. The

subpaving P1 of a paving P that contains all boxes of P that satisfy a given condition is

denoted by

P1 = Subpaving (P;Condition ([~p])) (2.8)

Consider for instance the test t(~p) , (p1 = 5) where p1 is the �rst component of ~p. If [t] ([~p])

is the minimal inclusion test for t(~p) as de�ned by (2.7), since [t] ([~p]
3
) = [t] ([~p5]) = [0; 1]

Subpaving (P; [t] ([~p]) = 0) = f[~p1] ; [~p2] ; [~p4] ; [~p6] ; [~p7] ; [~p8] ; [~p9]g (2.9)

2.3. Graphs

In this subsection, basic de�nitions related to graphs are given. For a detailed introduc-

tion to the fundamentals of graph theory and its varied uses in many �elds of modern

technology, see, e.g., the book of Deo [3]. A graph G = (V;E) consists of a non-empty set

V of vertices and a set E of unordered pairs of vertices of V called edges. If va and vb are

two vertices of the graph, an edge associated with the pair (va; vb) is denoted by ab.

A walk in G is a sequence of k vertices (v1; : : : ; vk) such that for all i 2 (1; : : : ; k ¡ 1), the

edge vivi+1 belongs to E. The walk is a path if vi 6= vj for i 6= j. The walk is a cycle if

vk = v1. A graph is connected if there is a path between any pair of vertices. Two vertices

vi and vj of G are neighbors if the edge vivj exists in E. A subgraph of G is a graph whose

vertices and edges belong to G.

Any paving or subpaving P of a box [~p0] can be represented by a graph G. Each subbox

[~pi] of P is associated with a vertex vi of G. If two boxes [~pi] and [~pj] are neighbors in

P, then the edge vivj exists in G. For instance, the graph G associated with the paving

of Figure 1 is given on Figure 2 and the graph G1 associated with the subpaving (2.9) is

given on Figure 3.

5

v4
v5

v7
v1

v6

v8

v9

v3
v2

Figure 2: The graph G associated with the paving of Figure 1

v4

v7
v1

v6

v8

v9

v2

Figure 3: Graph G1 associated the subpaving (2.9).

G1 is disconnected and is a subgraph of G.

Note that the graph G1 is not connected. It is a subgraph of G. The graph associated with

a paving (or subpaving) P is denoted by G = graph(P) :

�� ���������� ��� ������ � �������� ����

Consider a compact set S included in a box [~p0] and two points ~a and ~b of S. Assume

that a thin inclusion test [t] is available to decide if a box is inside or outside S: A

motion from the start point ~a to the goal point ~b is a one-to-one continuous function

~m : [0; 1] ! Rn; t ! ~m(t); such that ~m(0) = ~a and ~m(1) = ~b. The associated path is the

set ` = f~m(t)jt 2 [0; 1]g. The path ` is feasible, if ` ½ S. In this section, two algorithms

FeasiblePath1 and FeasiblePath2 are given. Both return a box path, i.e., a list of

adjacent boxes f[~pa] ; [~p1] ; : : : ; [~p`¡1] ; [~pb]g; ~pa 2 [~pa] ; ~pb 2 [~pb] ; such that all these boxes

are inside S: When such a box path is found, it is still necessary to �nd a feasible point

path ` from ~a to ~b of the moving object through the con�guration space. In general, the

choice of the �nal point path should be based on domain-speci�c considerations such as

kinematic or dynamic characteristics, not on purely geometric criteria [12]. For instance,

a desirable property of the �nal path is that it be smooth. Here, for the sake of simplicity,

6

a broken line from ~a to ~b lying inside the box path is chosen.

At the beginning of this section, an algorithm able to �nd the shortest path in a graph

is recalled. It will be used as a subroutine by the two algorithms FeasiblePath1 and

FeasiblePath2.

3.1. Finding the shortest path in a graph

Among the algorithms that have been proposed for the shortest path between two speci�ed

vertices va and vb in a graph G, perhaps the most e¢cient one is an algorithm due to

Dijkstra [4]. Although it has been initially given for weighted digraphs (graphs with

directed edges), here a simpli�ed version is presented in Table 1 for (not directed) graphs.

To each vertex v of G is associated an integer d(v) representing the minimum number of

edges between vertices va and v: G (i) ; i 2 N denotes the set of all vertices of G such that

d(v) = i: If the algorithm ShortestPath returns �Failure�, then va and vb are not in the

same connected component of G. Otherwise, it returns a shortest path in the graph.

ShortestPath(G; va; vb)

For each vertex v 2 G, set d(v) =1;

d(va) = 0; dmini = 0;

Repeat

If G (dmini) = ; return (�Failure�);

dmini = dmini + 1;

For each vertex v 2 G (dmini ¡ 1) ;

For each neighbors w of v in G with d(w) =1; d(w) = dmini;

Until d(vb) 6=1;

` = d(vb); v` = vb;

For i = `¡ 1 down to 0, select a neighbor vi of vi+1 such that d(vi) = i;

Return (fva; v1; v2; : : : ; v`¡1; vbg).

Table 1: Algorithm ShortestPath

Run ShortestPath(G; v1; v6) with the graph of Figure 2. We get d(v1) = 0; d(v2) =

d(v4) = 1; d(v3) = d(v5) = 2; d(v6) = d(v7) = d(v8) = d(v9) = 3: ShortestPath returns

the path fv1; v2; v3; v6g or the path fv1; v4; v5; v6g.

7

3.2. Algorithm FeasiblePath1

The �rst part of the algorithm FeasiblePath1, given in Table 2, is the procedure Sivia

(for Set Inversion Via Interval Analysis) (see [6]). Sivia builds two subpavings: P¡ and

P+ satisfying P¡ ½ S ½ P+ and uses a stack of boxes to store all boxes still to be studied.

The graphs G¡ and G+ associated with P¡ and P+ are then built. Then, the algorithm

selects two boxes [~pa] and [~pb] of P
+ such that ~a 2 [~pa] and ~b 2 [~pb]. Note that two or

more acceptable candidates [~pa] and [~pb] may exist if ~a or ~b is on the boundary of a box of

P+. In such a case, the algorithm selects the �rst one it has found. Denote by va and vb

the two vertices of G+ associated with [~pa] and [~pb]. FeasiblePath1 calls the procedure

ShortestPath to get a path L+ of G+ from va to vb. If no path is found, no path exists

in P+ from ~a to ~b and FeasiblePath1 returns (�No path�). In such a case, ~a and ~b are

proved to belong to two di¤erent connected components of S1. If a nonempty L+ is found,

ShortestPath is run again to �nd a path L¡ of G¡ that links va to vb. If a non empty

path L¡ = fva; v1; : : : ; v`¡1; vbg is found, the associated box path in P¡ is included in S

and a point path can thus be generated. If L¡ is empty, the algorithm returns �Failure�

because nothing has been proved about the existence of a feasible path from ~a to ~b: One

can try to run again the algorithm with a smaller ".

1Explanation: If L+ = ;; then the two vertices va and vb belong to two distinct connected component

of the graph G+; i.e., the two points ~a and ~b belong to two distinct connected component of the subpaving

P+. Now, since ~a 2 S;~b 2 S and S ½ P+ then ~a and ~b belong to two distinct connected component

of S: Thus, when FeasiblePath1 returns (�No path�), the conclusion is obtained in a guaranteed way

(provided that outward rounding has been implemented for intervals).

8

FeasiblePath1
³
[t] ;~a;~b; [~p0] ; "

´

If [t] (~a) 6= 1 or [t] (~b) 6= 1, return (�Error: ~a and ~b should be feasible�);

If ~a =2 [~p0] or ~b =2 [~p0], return (�Error: ~a and ~b should belong to [~p0]�);

Stack = f[~p0]g; ¢P = ;; P¡ = ;;

While Stack 6= ;;

Pop into [~p] ;

If [t]([~p]) = 1; P¡ = P¡ [f[~p]g;

If [t]([~p]) = [0; 1] and width([~p]) · ", ¢P = ¢P [f[~p]g;

If [t]([~p]) = [0; 1] and width([~p]) > ",

Bisect([~p]) and stack the two resulting boxes;

EndWhile;

P+ = P¡ [¢P; G+ = Graph(P+) ; G¡ = Graph(P¡) ;

va = vertex([~pa]), where [~pa] 2 P
+ and ~a 2 [~pa] ;

vb = vertex([~pb]), where [~pb] 2 P+ and ~b 2 [~pb] ;

L+ = ShortestPath (G+; va; vb) ; If L
+ = ;, return (�No path�);

If va =2 G¡ or vb =2 G¡; return (�Failure�);

L¡ = ShortestPath (G¡; va; vb) ; If L
¡ 6= ;, return L¡ else return (�Failure�);

Table 2: algorithm FeasiblePath1

3.3. Algorithm FeasiblePath2

The motivation of the new algorithm FeasiblePath2, presented in Table 3, is that for

many path planning problems, the computing time of the graph algorithms are low com-

pare to that of evaluating the inclusion tests [t]. FeasiblePath2 presented in Table 3

chooses carefully the boxes to be bisected. It �rst �nds a shortest path L+ in the graph

associated with an available outer subpaving P+ of S. If no path is found, ~a and ~b are

not in the same connected component of S and the algorithm returns (�No path�). If

the path exists, then FeasiblePath2 tries to �nd the shortest path L¡ in the graph G¡

associated with an inner subpaving P¡ of S. If a path is found, it is returned. Otherwise,

the box path corresponding to L+ has a good chance to contain a feasible path. Thus

all subboxes of this path are bisected and new subpavings P¡ and P+ are thus obtained.

The whole procedure is performed again until a conclusion is reached.

9

FeasiblePath2

³
[t] ;~a;~b; [~p0]

´

If [t] (~a) 6= 1 or [t] (~b) 6= 1, return (�Error: ~a and ~b should be feasible�);

If ~a =2 [~p0] or ~b =2 [~p0], return (�Error: ~a and ~b should belong to [~p0]�);

Denote by P the paving containing the single box [~p0] ;

Repeat

P+ = Subpaving(P, 1 2 [t]([~p])); G+ = Graph(P+) ;

va = vertex([~pa]), where [~pa] 2 P+ and ~a 2 [~pa] ;

vb = vertex([~pb]), where [~pb] 2 P+ and ~b 2 [~pb] ;

L+ = ShortestPath (G+; va; vb) ;

If L+ = ;, return (�No path�);

P¡ = Subpaving(P,[t]([~p]) = 1) ; G¡ = Graph(P¡) ;

If va 2 G¡ and vb 2 G¡; L¡ = ShortestPath (G¡; va; vb) ;

If L¡ 6= ;, return L¡;

C = f[~p] 2 P+j vertex([~p]) 2 L+ and [t] ([~p]) = [0; 1]g;

Bisect all subboxes of C, thus obtaining a new paving P;

Until False.

Table 3: the new algorithm FeasiblePath2

�� �������

In this section, a new test case will be presented and solved using FeasiblePath1 and

FeasiblePath2. The test-case presents two main advantages: (i) the C-space is two-

dimensional so that pictures of S can be provided to illustrate the principle of the algo-

rithms and (ii) the motion from the initial con�guration to the goal con�guration is not

so easy to �nd by hand.

Consider a 2-dimensional room which contains jmax = 2 segment obstacles. The extreme

points of the jth segment are denoted ~aj and ~bj for j 2 J = f1; : : : ; jmaxg. The object

to be moved is a nonconvex polygon with imax = 14 vertices, denoted by ~si 2 R
2; i 2

I = f1; : : : ; imaxg. The �rst vertex ~s1 is constrained to stay on the horizontal line with

equation y = 0 in the room frame. The con�guration of the object is thus represented by a

two dimensional vector ~p = (p1; p2)
T; where p1 is x-coordinate of ~s1 in the room frame and

p2 is the heading angle (in radian) of the object with respect to the a horizontal direction

10

to the right. In the object frame, the x-coordinates of the ~si�s are given by

f0; 0; 14; 14; 10; 10; 12; 12; 2; 2; 18; 18; 20; 20g; (4.1)

and the y-coordinates by

f0; 14; 14; 6; 6; 8; 8; 12; 12; 2; 2; 18; 18; 0g: (4.2)

The coordinates of the segment obstacles in the room frame are given by

~a1 = (8; 10) ;~b1 = (11; 10) ;~a2 = (25; 10) ;~b2 = (28; 10) : (4.3)

Figure 4 illustrates the notion of con�guration space for our test-case.

Figure 4: To a given con�guration of the object in the room

is associated a single point ~p in the C-space.

Figure 5 represents the initial con�guration ~p = (0; 0)T and the goal con�guration ~p =

(17; 0)T of the object, respectively.

Figure 5: Initial and goal con�gurations for the object

A vector ~p associated with a given con�guration for the object is feasible if and only if

² none of the object�s edges intersects one of the segment obstacles:

11

² all extreme points of each segment obstacles are outside the object.

Note that, as illustrated in Figure 4, the vector ~p = (8; ¼=4)T is feasible. Denote by S

the set of all feasible con�guration vector ~p for the object. In what follows, if ~a and ~b are

two points of R2,
h
~a;~b
i
denotes the segment with endpoints ~a and ~b, and

³
~a;~b
´
is the

line supported by ~a and ~b: If A is a compact set, the smallest box which contains A is

denoted by [A]. For instance
h
~a [~b

i
is the smallest box that contains both ~a and ~b. We

set ~simax+1 := ~s1: We have

~p 2 S ,

8<
:
8i 2 I;8j 2 J ; [~si; ~si+1] \

h
~aj;~bj

i
= ; and

~aj and ~bj are outside the object
(4.4)

To test if [~si; ~si+1] \
h
~aj ;~bj

i
= ;, we use the following equivalence

[~si; ~si+1] \
h
~aj ;~bj

i
6= ; ,

8>>><
>>>:

(~si; ~si+1) \
h
~aj ;~bj

i
6= ; and

[~si; ~si+1] \
³
~aj ;~bj

´
6= ; and

[~si+1 [~si] \
h
~aj [~bj

i
6= ;

(4.5)

The last condition is important for the degenerated situation where the points ~si+1; ~si;~aj

and ~bj are aligned. In such a case, the two �rst conditions are always ful�lled and only

the last condition is useful.

The algorithm of Table 4 decides if the con�guration vector ~p is feasible. For a given

segment number j; ~a = (~xa; ~ya)
T and ~b = (~xb; ~yb)

T represent the extreme points of the jth

segment ~a and ~b in the object frame. The four �rst statements of the j-for loop compute

the coordinates of the jth segment obstacle in the object frame. To prove that ~a is inside

the object, it su¢ces to check that
Pimax

i=1 arg(~si ¡ ~a;~si+1¡ ~a) 6= 0: The same can be done

for ~b. If d1 · 0 and d2 · 0 and
h
~a [~b

i
\ [~si+1 [~si] 6= ;, then, because of formula (4.5)

the ith object�s edge intersects the jth segment obstacle and thus the con�guration ~p is

unfeasible.

12

t(~p)

For j = 1 to jmax;

~xa = (xa(j)¡ p1) cos p2 + ya(j) sin p2;

~ya = ¡ (xa(j)¡ p1) sin p2 + ya(j) cos p2;

~xb = (xb(j)¡ p1) cos p2 + ya(j) sin p2;

~yb = ¡ (xa(j)¡ p1) sin p2 + ya(j) cos p2;

~a = (~xa; ~ya)
T ; ~b = (~xb; ~yb)

T ;

If ~a is inside the object, return 0;

If ~b is inside the object, return 0;

For i = 1 to imax;

d1 = det
³
~si ¡ ~b;~si ¡ ~a

´
¤det

³
~si+1 ¡ ~b;~si+1 ¡ ~a

´
;

d2 = det(~si+1 ¡ ~si; ~si ¡ ~a) ¤det
³
~si+1 ¡ ~si; ~si ¡ ~b

´
;

if d1 · 0 and d2 · 0 and
h
~a [~b

i
\ [~si+1 [~si] 6= ;; return 0;

EndFor;

EndFor;

Return 1;

Table 4: Algorithm to test if a con�guration vector ~p is feasible

An inclusion test [t] ([~p]) for t(~p) is given by the algorithm of Table 5. To evaluate [~xa] ;

[~ya] ; [~xb] ; [~yb] ; [~xb] ; [d1] ; [d2], the centered form has been used with respect to p1 and

p2: Procedures to prove that the boxes [~a] and [~b] are inside the polygonal object can be

found in [9].

13

[t] ([~p])

result = 1;

For j = 1 to jmax;

[~xa] = (xa(j)¡ p1) cos [p2] + ya(j) sin [p2] ;

[~ya] = ¡ (xa(j)¡ p1) sin [p2] + ya(j) cos [p2] ;

[~xb] = (xb(j)¡ p1) cos [p2] + ya(j) sin [p2] ;

[~yb] = ¡ (xa(j)¡ p1) sin [p2] + ya(j) cos [p2] ;

[~a] = ([~xa] ; [~ya])
T ; [~b] = ([~xb] ; [~yb])

T ;

If
³
[~a] or [~b] are inside the object

´
, return 0;

For i = 1 to imax;

[d1] = det
³
~si ¡ [~b]; ~si ¡ [~a]

´
¤det

³
~si+1 ¡ [~b]; ~si+1 ¡ [~a]

´
;

[d2] = det(~si+1 ¡ ~si; ~si ¡ [~a]) ¤det
³
~si+1 ¡ ~si; ~si ¡ [~b]

´
;

if ([d1] < 0 and [d2] < 0) return 0;

if (0 2 [d1] or 0 2 [d2]) and
h
[~a] [[~b]

i
\ [~si+1 [~si] 6= ;

result = [0; 1] ;

EndFor;

EndFor;

Return result;

Table 5: Inclusion test algorithm.

In less than 10 minutes on a Pentium 133 and for " = 0:1, FeasiblePath1 generates

the paving presented on Figure 6, with the associated graph. Grey boxes are proved to

be feasible and the black boxes are proved unfeasible. In less than 0:1 seconds, Feasi-

blePath1 �nds the shortest path in the graph. The corresponding motion is displayed

on Figure 7 and as expected, the two obstacle segments still appear on the �gure. For

" = 0:2; FeasiblePath1 fails and is unable to �nd a feasible path.

14

Figure 6: Paving and path generated by FeasiblePath1.

The frame corresponds to the search box [~p0] = [¡28; 57]£ [¡1:4; 2:7] :

Figure 7: Display of the motion. The two segment obstacles are still visible

The con�guration represented on Figure 8 and corresponding to the vector ~z of Figure 7

is a natural deadlock if one tries to solve the problem by hand.

15

Figure 8: A natural deadlock if one tries to solve the problem by hand

In less than 1 minute on a Pentium 133, FeasiblePath2 �nds the path shown on Figure

9. Grey boxes are proved to be inside S, black boxes are outside S and nothing is known

about white boxes. Note that FeasiblePath2 puts e¤orts to bisect and analyze zones of

the C-space only when needed.

Figure 9: Paving and path generated by FeasiblePath2.

The frame corresponds to the search box [~p0] = [¡28; 57]£ [¡1:4; 2:7] :

Remark: The frame box [~p0] = [¡28; 57] £ [¡1:4; 2:7] has been chosen small enough to

make visible the small boxes and large enough to include the whole path. The example

has also been tested for [~p0] = [¡100; 100]£ [¡10; 10] : The computing time obtained by

16

FeasiblePath1 is about three times larger than for the former [~p0] whereas the computing

time obtained by FeasiblePath2 remains unchanged. }

�� ��
�	����

In this paper, a con�guration-space approach has been used to solve the path planning

problem. Interval analysis is used for the �rst time in this context to prove whether a box

of the con�guration space is feasible or not. Combining interval tools and graph tools, two

algorithms have been presented to �nd a good feasible path from a start con�guration to

a goal con�guration. As an application, the problem of planning the path of a polygonal

rigid object among segment obstacles has been considered. One of the main limitation of

the proposed approach is that the computing time increases exponentially with respect to

the number of degree of freedom of the object.

!������
��

[1] Boissonnat, J.D., Faverjon, B. and Merlet, J.P., Techniques de la robotique; perception

et plani�cation, 2, Hermes, 1988.

[2] Brooks, R.A. and Lozano-Pérez, T.A., A subdivision algorithm in con�guration space

for �ndpath with rotation; IEEE Trans. on Sys. Man and Cyber. 15(2), 1985, 224-233.

[3] Deo, N., Graphs theory with applications to engineering and computer science,

Prentice-Hall, 1974.

[4] Dijkstra, E.W.,. A note on two problems in connection with graphs, Numerische

Math, 1, 1959, 269-271.

[5] O. Habert, H. Bullier, A. Pruski, �Distance computing between general shape pre-

processed obstacles and general segments-based robot�, IEEE/RSJ International con-

ference on intelligent robots and systems, IROS, Grenoble, France, 1997.

[6] Jaulin, L. and Walter, E., Set inversion via interval analysis for nonlinear bounded-

error estimation, Automatica, 29(4), 1993, 1053-1064.

[7] Jaulin, L. and Walter, E., Guaranteed tuning, with application to robust control and

motion planning, Automatica, 32(8), 1996, 1217-1221.

17

[8] Jaulin, L. and Godon, A., Motion planning using interval analysis. MISC�99 Work-

shop on Application of Interval Analysis to System and Control, Girona, 24-26 février

1999.

[9] Kie¤er M., Jaulin, L., Walter, E. and Meizel, D., Robust autonomous robot localiza-

tion using interval analysis, Reliable Computing, 1999.

[10] Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, Inter-

national Journal of Robotics Research, 5(1), 1986, 90-98.

[11] Koditschek, D.E., Exact robot navigation by means of potential functions: some topo-

logical considerations, Proceedings of the IEEE International Conference on Robotics

and Automation, Raleigh, NC, 1987, 1-6.

[12] Laumond, J.P., Feasible trajectories for mobile robot with kinematic and environment

constraints, Proc. of Intelligent Autonomous Systems, Amsterdam, 1986.

[13] Lozano-Pérez, T. and Wesley, M., An algorithm for planning collision-free paths

among polyhedral obstacles. Communications of the ACM, 22(10), 1979, 560-570.

[14] Lozano-Pérez, T., Automatic planning of manipulator transfer movements, IEEE

Trans. on SMC, 11(10), 1981, 681-698.

[15] Lozano-Pérez, T., Spatial planning: a con�guration space approach, IEEE Trans. on

Computers, 32(2), 1983.

[16] Moore, R.E., Methods and Applications of Interval Analysis, SIAM, Philadelphia,

1979.

[17] Nilsson, N.J., A mobile automaton: an application of arti�cial intelligence techniques,

Proceedings of the 1st International Joint Conference on Arti�cial Intelligence, Wash-

ington D.C., 1969, 509-520.

[18] O�Dunlaing, C. and Yap, C.K., A retraction method for planning the motion of a

disc, Journal of Algorithms, 6, 1982, 104-111.

[19] Piazzi, A. and Visioli, A. Global minimum-time trajectory planning of mechanical

manipulators using interval analysis, International Journal of Control, 71(4), 1998,

631-652.

[20] Pruski, A., Multivalue codes: application to autonomous robots. Robotic and factories

of the future. Norfolk, USA, 1990.

18

Software: All algorithms have been implemented with Borland-C++ Builder 3.0 to solve

the test-case. The source programs with the associated interval libraries are available on

request. A Windows program (.exe) associated with the example treated in Section 4 can

be found at ://www.istia.univ-angers.fr/~jaulin/graphdemo.html

19

