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Set Inversion via Interval Analysis for 
Nonlinear Bounded-error Estimation* 

LUC JAULIN and ERIC W A L T E R t  

Finding all parameter vectors that are consistent with the data in the sense 
that the error falls within prior bounds is a problem of  set inversion, solved 
in the general nonlinear case via interval analysis. 
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AlWlmet--ln the context of bounded-error estimation, one is 
interested in characterizing the set of all the values of the 
parameters to be estimated that are consistent with the data 
in the sense that the errors between the data and model 
outputs fall within prior bounds. While the problem can be 
considered as solved when the model output is linear in the 
parameters, the situation is far less advanced in the general 
nonlinear case. In this paper, the problem of nonlinear 
bounded-error estimation is viewed as one of set inversion. 
An original algorithm is proposed, based upon interval 
analysis, that makes it possible to characterize the feasible 
set for the parameters by enclosing it between internal and 
external unions of boxes. The convergence of the algorithm 
is proved and the algorithm is applied to two test cases. The 
results obtained are compared with those provided by 
signomial analysis. 

1. INTRODUCTION TO BOUNDED-ERROR 
ESTIMATION 

THIS PAPEa IS concerned with the problem of 
estimating the unknown parameters of a model 
from experimental data collected on a system 
under given experimental conditions (e.g. 
location of input and output ports, shape of 
inputs, measurement times). Let y ~ R n, be the 
vector of all these data. It may consist for 
instance of ny scalar measurements performed at 
given times on a single-input-single-output 
dynamical system, but multi-input-multi-output 
dynamical systems or static processes could be 
considered as well. A parametric structure M(.) 
is assumed for the model of this system, i.e. a set 
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of models parametrized by a vector p e P c R n, 
to be estimated, where P is the prior feasible set 
for the parameters. For the experimental 
conditions used, each model M(p) generates a 
vector output y,,,(p) homogeneous to the data y. 
The dependency of y,,, in the experimental 
conditions needs not to be made explicit since 
these are assumed fixed. The vector function y,, 
is assumed to be continuous and locally 
one-to-one (or identifiable). Define the error 
between the data and model output by 

era(p) = y - y,,(p). (1) 

In the context of bounded-error estimation (e.g. 
Walter, 1990; and the many papers on the 
subject in B/tny~sz and Keviczky, 1991) it is 
assumed that e,,(p) must belong to some prior 
feasible set E c R n, to be admissible, and the 
problem to be solved is that of finding the set 
of all admissible values of p corresponding to an 
admissible error, i.e. 

= {p ~ P [ era(p) ~ IF}. (2) 

In what follows, we shall assume that P and n: 
can be defined by finite sets of inequality 
constraints. For any p ~ ~, there exists e ~ n: such 
that 

Y = Ym(P) + e. (3) 

Although set-membership estimation can be set 
in a purely deterministic context, it can also 
receive a stochastic interpretation. If P and II= 
are, respectively, the support of the prior 
probability density functions (pdf) for p and for 
e,,(p) then, from Bayes' rule, 5 is the support 
of the posterior pdf for p. If P = I~ np then S is 
the set of all values of p such that the likelihood 
of the data is nonzero. 

The estimation problem can always be 
reformulated so as to include the inequalities 
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defining ff~ among those defining E, so that only 
one prior feasible set needs to be considered. 
can then equivalently be defined as 

S = y ; ' ( y  - I1:) = y , ~ ' ( V )  = e,7,, '(E), (4) 

where e,~ ~ and y2' are the reciprocal functions 
(in a set-theoretic sense) of e,, and y,,,, and 
where ~ = y -  E is the prior feasible set for the 
model outputs. The problem to be solved thus 
appears as one of set inversion. 

The interested reader is referred to the 
surveys (Kurzhanski and V/tlyi, 1991; Milanese 
and Vicino. 1991a; Norton, 1987a; Walter and 
Piet-Lahanier, 1990) for a bibliography on 
bounded-error estimation. The methods to be 
used for characterizing $ depend on whether 
era(p) is atiine (linear) in p or not. In the first 
case, the problem of guaranteed estimation can 
be considered as solved when E is a box. 
Methods exist to characterize 5 exactly and 
recursively (Broman and Shensa, 1990; Mo and 
Norton, 1990; Walter and Piet-Lahanier, 1989). 
Ellipsoids and boxes guaranteed to contain $ 
can also be computed (Belforte et al., 1990; 
Fogel and Huang, 1982; Kurzhanski and V~lyi, 
1991; Milanese and Belforte, 1982; Pronzato et 
al., 1989), In the latter case, when the error is 
nonlinear in the parameters, guaranteed 
bounded-error estimation is far less advanced. 
For some types of output-error models, it has 
been proven (CI6ment and Gentil, 1990; Norton, 
1987b) that $ is contained in a union of convex 
polyhedra, which can be characterized exactly or 
enclosed in a union of ellipsoids or boxes. 

Whether or not the error is atfine in p, 
computing the smallest axis-aligned box contain- 
ing 5 can be performed by solving 2n~, problems 
of mathematical programming. Each of them 
corresponds to the maximization or minimization 
of a component of p subject to the nc inequality 
constraints that define P and E and thus 5. 
When the error is affine in p, this can be 
performed by any of the methods available for 
linear programming, such as Dantzig's simplex 
or Karmarkar's algorithm, provided that P and 
are polytopes. In the general case, global 
optimization methods are needed if guaranteed 
results are to be obtained. Among the many 
methods available for global optimization (e.g. 
Dixon and Szego, 1975, 1978; Mockus, 1989; 
Zhigljavsky, 1991) only deterministic methods 
(Horst and Tuy, 1990; Ratschek and Rokne, 
1988) can be used since stochastic methods 
converge only in probability. In a large number 
of problems of practical interest (such as the 
estimation of the parameters of an A R M A  
model or of a discrete linear state space model), 

signomial programming can be used (Milanese 
and Vicino, 1991b). 

All the methods available so far to give a 
guaranteed characterization of $ in the non- 
linear case were limited to providing a 
simple-shaped set guaranteed to contain it. In 
this paper, we propose a new method to obtain a 
more detailed description of $ based on the use 
of interval analysis for set inversion. This 
approach is similar to the one currently and 
independently being developed by Moore 
(1992). 

Section 2 describes two test cases which will be 
used throughout the paper to illustrate the 
various notions needed. Section 3 presents 
interval analysis, the basic tool of the new 
approach. Section 4 formulates the problem of 
set inversion and gives some theoretical results. 
A new algorithm for set inversion via interval 
analysis (SIVIA) is proposed in Section 5. Using 
a new distance between compact sets introduced 
in Section 4, its theoretical properties are studied 
and the results obtained on the two test cases are 
described. 

2. TEST CASES 

Two test cases will be considered. The first 
one deals with approximating a function on a 
finite interval. It will show that the technique to 
be described can be used even when the 
dimension ny of the data y is infinite. The second 
test case has already been studied by Milanese 
and Vicino (1991b) who estimated the smallest 
axis-aligned box containing the corresponding 
set 5. It will be used to compare the results 
provided by the signomiai and interval-analysis 
approaches, when both apply. 

Test case 1. Find the set 5 of all values of 
p e P = [0, 5] x [0, 5] c •2 such that 

le,,(p, t)l 

=ly ( t ) - y ,~ (p , t ) l<- I  V/e l0 ,1 ] ,  (5) 

where 

y(t) = t  z + 2t + 1 

and (6) 

ym(p, t) =p~ exp (p2t). 

The vector p is feasible if 

Vt ~ [0, 1], - 1  <-- e,,(p, /) -< 1, (7) 

I ominl y(t) - ym(p, t) >- -1 ,  
(8) 

¢ ~ ' / m a x  y(t) -Ym(P, t) --< 1. 
t O~t. <- 1 

Thus, the posterior feasible set $ is the same as 
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if the data y = (0, 0) r were to be fitted with the 
model output 

y,,(p) = ( min {t 2 + 2t + 1 - p ,  exp (p2t)}, 
\ 0 ~ t ~ l  

\ T 

max { t 2 + 2 t +  1 - p l e x p ( p 2 t ) } )  , (9) 
O~t~ 1 / 

the admissible set for the error being 0:= 
{ e l - l _ < e - < l } ,  where 1 represents the two- 
dimensional vector with all components equal to 
o n e .  

Test case 2. Assume that at times t =  
(0.75, 1.5, 2.25, 3, 6, 9, 13, 17, 21, 25) r ,  the 
following data have been recorded (one at a 
time) on a single-output system: 

y = (7.39, 4.09, 1.74, 0.097, -2 .57,  -2 .71,  

-2.07,  - 1.44, -0 .98,  -0 .66)  r. (10) 

The scalar output of the model M(p) at a given 
time t is described by 

Ym(P, t) = P l  exp ( - p z t )  +p3exp  (-p4t) .  (11) 

A MATLAB-like notation will be used (see the 
notation section), so that the vector of the 
outputs of the model M(p) for all measurement 
times t will be denoted by 

Ym(P) = Pl exp (-p2t)  + P3 exp (-p4t) .  (12) 

Following (Milanese and Vicino, 1991b), we 
assume that the set of admissible errors E is 
given by 

= [e] = [ - e  . . . .  emax] 

= {e I - e ~ x  <-- e --< e,.~,,}, (13) 

where 

emax = 0.05 lYl + 0.1 * 1. (14) 

lyl is the n :d imensionai  vector with each 
component equal to the absolute value of the 
corresponding component of y and I is a vector 
of ones. The prior feasible set for the parameter 
is the box 

I~ = [2, 60] x [0, 1] x [ - 3 0 , - 1 ]  x [0, 0.5]. (15) 

Figure 1 presents the data. The bars indicate the 
uncertainty associated with each datum. ~ is the 
set of all values of p such that each of these bars 
contains the scalar model output associated with 
the same time. 

3. I N T E R V A L  A N A L Y S I S  

Interval analysis has been a very active field in 
scientific computation for the last 20 years (e.g. 
Moore, 1979; Neumaier, 1990; Ratschek and 
Rokne, 1988). There are now commercially 

I 

i 

FiG. !. Data with feasible error bars for Test case 2 in the 
(t,y) space. The frame corresponds to the domain 

[- !, 251 x [-7.13]. 

available extensions of FORTRAN and 
PASCAL that include interval arithmetic among 
their features (IBM, 1986; Kulisch, 1987). We 
shall now define the notions of interval analysis 
that will be used in Section 5 for the description 
and analysis of SIVIA. 

3.1. Boxes 
Using boxes in the context of set inversion 

makes it possible to replace point values of 
vectors by subsets of the parameter space, 
thereby allowing a global analysis of infinite sets 
of points with a finite number of operations. 
Note that other types of sets based, e.g. on more 
complex polyhedra or on ellipsoids could be 
used as well. 

Definition 1. An interval Ix] of R (or scalar 
interval) is a closed, bounded and connected set 
of real numbers [x] = [x-, x +] = {x I x -  -<x -< 
X + } .  

Definition 2. A box [x] of •" (or vector interval) 
is the cartesian product of n scalar intervals. 

The set of all boxes of ~n will be denoted by 
0R n. Boxes will be specified indifferently in any 
of the three following ways: 

[xl = (x; ,  x x . . .  x (x=, x+ l 

= [x, l  x Ix21 x - . .  x [x , l  = I x - ,  x+ l .  (16)  

Remark 1. Vectors x of ~"  will also be 
considered as belonging to OR", with x - =  x + =  
X.  

Definition 3. The width w([x]) of [x] • O~ n, is 
given by w([x])= max {x, + - x T } .  

i = 1  . . . . .  . 

Definition 4. The enveloping box [A] of a 
bounded subset A ¢- II~ n is the smallest box of 0t~" 
that contains A. [~] = A {[x]  • 0l~" I A c [x ] } .  
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3.2. Minimal inclusion functions 
The following definition makes it possible to 

extend all concepts of vector arithmetic to boxes. 

Definition 5. Let f be a function from ~" to R p. 
The minimal inclusion function of f, denoted by 
[f], is defined as [f] :0R"-*0RP; [x]--+[{f(x) I x e  
[x]}]. 

[f]([x]) is thus the smallest box of 0R p that 
contains f([x]), i.e. the enveloping box of f([x]). 
It is easy to compute for elementary arithmetic 
operators and functions. 

Example 1. Addition of boxes of 0R 2. 
If 

[xl = [x~, xTl x [x~, x~] 

= [Xll x [x~] = [x- ,  x+l, (17) 

[Yl = [Y~-, Y?] x [yf, y~] 
= [y,] x [Y2] = [Y-, Y+], (18) 

and if + is considered as a function from 
R 2 x  R 2 to R 2 then, since ([x], [y]) is a box of 
OR 4, 

[+l([x],  [y]) 
= [x~- +y~-, x? + yi~l x [xf + y f ,  x~ +Y~I 
= [ x -  + y - , x  + +y+] .  (19) 

In what follows, [+]([x], [y]) will be denoted by 
[x] + [y], and the same notation will be used for 
all elementary arithmetic operators. 

Example 2. Sum of exponentials. 
Consider the function f : R4---~ R ; p--~, 

p,  exp (P2) + P3 exp (P4). From the monotonicity 
of the exponential function, we have 
exp ([p~])= [exp] ( [pd)=  [exp ( p ; ) ,  exp (p,+)], 
and [f] :  OR4--* 0~; [p]--+ [Pl] *exp ([P2]) + [P3] * 

exp (Lo4]). If P l  > 0 and P3 > 0, then 
[ f l ( [p- ,  p + ] ) =  Lo? exp ( p ~ - ) + P 3  exp (p4),  
p~ exp ( p ; )  +p . ;  exp (p~-)]. 

Test case 1. Since Pt -> 0, the minimal inclusion 
function for y,,(p) as defined by (9) is given by 

ly,.l([pl) 

= [ min { t 2 + 2 t  + 1 -p~exp(p~t)}, 
LO~t'~ I 

{t z + 2t + 1 -p~-  exp (p2t )}]  min 
( ) ~ t ~ :  I J 

x [ max {t 2 + 2t + 1 - p~- exp (p~t)}, 
L O ~ t ~  1 

{t 2 + 2t + 1 - p~- exp (p~t)} ]. max 
( ) ~ t ~  1 3 

(20) 

One evaluation of [y,,]([p]) thus amounts to 
solving four simple one-dimensional optimiza- 
tion problems. It is trivial to prove that each of 
them can be solved using any local optimization 
method twice (once initialized at t = 0, then at 
t = l ) .  

Test case 2. As p~>-0, p3-<0 and t > 0 ,  the 
minimal inclusion function for y,,(p) as defined 
by (12) is 

[y,.]([p]) = [p? exp ( - p ~ l )  + P 3  exp (-pgt) ,  

p~ exp ( - p f t )  +p.~ exp ( -p~ t ) ] .  (21) 

3.3. Inclusion functions 
When [f] cannot be computed,  it can be 

approximated by a (nonminimal) inclusion 
function 0:. 

Definition 6. F: flR"---~ 0R p is an inclusion func- 
tion of f: R" - *  R p if (i)  V[x] ~ OR", t(lx]) = 0:([x]) 
and (ii)  w(Ixl)-- ,  0 ~ wff([xl))~ 0. 

Remark 2. An inclusion function 0: exists if and 
only if f is continuous. Contrary to the minimal 
inclusion function [f], 0: is not unique, and 
[f] ,- F. Any intersection of inclusion functions is 
an inclusion function. 

Example 3. Sinusoid. 
Consider now the function f : R2---~ R ; p--* 

Pl sinp2. Taking advantage of the fact that the 
two parameters Pl and Pz appear independently 
in the expression of f ,  we obtain [f]:0R2--+ OR; 
[p]---, [p,]*[sin]([p2]), where the minimal inclu- 
sion function of sin, denoted by [sin]= 
[sin-, sin + ] is defined by: 
If =lk eT/ such that 2 k ~ r - ~ t / 2 e [ p 2 ]  then 
sin- ([P2]) = - 1  else sin- ([P2]) = rain (s inp2,  
s inpf ) ,  if 3 k ~ 7 /  such that 2 k z r + s r / 2 e [ p 2 ]  
then sin + ([P2]) = 1 else sin + ([P2]) = max (s inpz,  
sin p~),  [sinl([p2]) = [ s in -  ( [p2]) ,  sin + ([p2])l- 

Figure 2 illustrates Definitions 5 and 6. For 
any function f obtained by composition of 
elementary operators such as +,  - , * , / ,  sin, 
cos, exp . . . . .  it is easy to obtain an inclusion 
function by replacing each of these elementary 
operators by its minimal inclusion function in the 
formal expression of f (Moore,  1979). The 
resulting inclusion function is called natural 
interval extension in the literature. Relaxing 
Definition 6 by discarding Condition (ii), it is 
also possible to take into account the effect of 
rounding in the computation so as to obtain 
intervals guaranteed to contain the exact 
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FIG. 2. Minimal inclusion function [11 and inclusion function Q: of  a function f. 

Y] 

mathematical solutions. It must be noted, 
however, that the algorithms presented in this 
paper are guaranteed to converge only if (ii) is 
valid. 

Example 4. Consider the function f(x) = x 2 - X. 
A first inclusion function is given by its natural 
interval extension Fl([x])= [x] 2 -  [x]. It is not 
the minimal inclusion function [f],  since for 
instance 

0:,([-1, 31) = [ -1 ,  3] 2 - [ -1 ,  3] 

-- [0, 9] + [ -3 ,  11 = [ -3 ,  101, (22) 

when it is trivial to show that I l l ( [ - 1 ,  3] )=  
[-0.25, 6] c g:~([-1, 3]). Another  inclusion func- 
tion can be obtained by factorizing f(x) as 
x * (x - 1) and by writing 0:2(Ix]) = Ix] * ([x] - 1), 
so that 

0:2([- 1, 31) = l - l ,  31 * ( [ - 1 , 3 1  - 1) 

= [-  1, 3 ] ,  [ - 2 ,  21 = [ - 6 ,  6]. (23) 

A better inclusion function is given by 
F3 = F~ f3 ~:2, such that IF3([-1, 3]) = [ -3 ,  6]. 

Thus, depending on the expression used for 
f(x), substitution of minimal inclusion functions 
for the elementary operators yields different 
inclusion functions. How to choose the expres- 
sion of f(x) so as to obtain the smallest possible 
inclusion function apparently remains an open 
question. 

3.4. Subpavings 
Exploration algorithms aim at covering the 

space of interest. In the context of interval 
analysis, covering is performed with sets of 
boxes, which corresponds to the following 
notions. 

Definition 7. A subpaving of 0~ ~ is a set of 
non-overlapping boxes of 0R" with nonzero 
width. 

Definition 8. If A is the subset of I~ ~ generated 
by the union of all boxes of the subpaving I~, 
then K is a paving of A. 

When no ambiguity can arise, the notation 
will also be used for the subset of R n generated 
by the union of all boxes of the subpaving K. 

Definition 9. The accumulation set of a subpav- 
ing K is the limit of the subset of R n formed by 
the union of all boxes of K with width lower 
than e when e tends to zero. 

Remark 3. Since subpavings only contain boxes 
with nonzero width, the accumulation set of a 
finite subpaving is necessarily void. 

4. SET INVERSION AND SET E N C L O S U R E  

We shall now formulate the problem of 
computing the inverse of a set by enclosing it 
between subpavings. We shall also introduce a 
new distance and the associated notion of 
continuity to be used for the analysis of the 
convergence of the new algorithm. The reader 
only interested in the algorithm can skip this 
section and proceed directly to Section 5. In 
what follows, all sets considered will be 
supposed regular enough for their boundaries to 
be well defined. 

Set inversion problem. Let f be a continuous 
function from R" to •P. Let Y belong to C(~P), 
the set of all compact subsets of R p. The set 
inversion problem is that of characterizing the 
set X such that X = f-~(Y). A possible approach 
consists of enclosing X between finite subpavings 
Ki, and ~out in the sense that K~ c ~ c ~ou,. The 
notions of set inversion and enclosure of 
compact sets between subpavings are illustrated 
by Fig. 3. Recall that f ( X ) = f o f - ~ ( Y ) = Y N  
f(R n) c Y, with f(X) = Y if f is a mapping of R n 
onto R p. 
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IRP 

g) 

FIG. 3. Set  i nve r s ion  p r o b l e m  a n d  e n c l o s u r e  o f  the  s o l u t i o n  c o m p a c t .  

Table 1 gives the interpretation in the context of 
bounded-error estimation of the set inversion 
problem as illustrated by Fig. 3. 

4.1. Distances 
Various distances between compacts will be 

needed to prove the convergence of the 
algorithm presented in Section 5. 

4.1.1. Hausdorff distance. The separation 
between two subsets A and [B of R" is given by 

L®(A, B) = inf L~(a,b), (24) 
a~A,beB 

where L®(a, b) is the distance between a and b 
induced by the L®-norm. The proximity of A to 
B will be characterized by 

h°(A, 6 ) = i n f { r ~ R  +lACB+rlLl} ,  (25) 

where U is the unit sphere in (~", L~). Note that 
h°(., .) is not a symmetric operator, and that the 
proximity may be infinite if A is unbounded. We 
have 

= h°ta IB) h°(a, a) sui? 

(here, a is considered as a singleton), (26) 

A c IB => h°(A, B) = 0, (27) 

h°(A, 0B) = max {h°(A, II~), h°(A, IB)}, (28) 

A ~ B :~ h°(A, C) -< h°(lB, C), (29) 

where ~ is the complement of ~ in R" and 0B is 
the boundary of B. 

TABLE | .  CORRESPONDENCE BETWEEN THE SET INVERSION 
PROBLEM AS SUMMARIZED IN FIG. 3 AND BOUNDED-ERROR 

ESTIMATION 

Fig. 3 Bounded-error  estimation 
II ~ Parameter  space R "t' 
R p Data (or error) space R " '  
f Model output y~ (or error  e, .)  
Y Feasible set for the model output Y (or error  [)  
X Posterior feasible set for the parameters  .~ 

f(X) Set of all model outputs (or errors) associated with 

Proof. We just give a proof for (28), the 
others being trivial. From (26), h°(A, 3B)= 
s.u  h°(,,, aa). Now 

h'~(a, aB) = max {h"(a, a),  h°(a, [B)}. 

Thus 

h°(A, aa) = sup max {h°(a, B), h°(a, B)} 

: max {su~ h°(a, B), su~ h°(a, B)} 

(26) 
= max {h°(A, B), h°(A, [~)}. 

Definition 10. The Hausdortt distance (e.g. 
Berger, 1979) between two subsets A and B of 
R ~ is given by h,o(A, B)=max{h°(A,  6), 
h"(a, A)}. 

The operator h~ is a distance for C(l~n), i.e. for 
any A, B and C belonging to C(R"), it satisfies 
(i) h~(A, B) = 0 ~ A = B, (it) h~(A, B) = 
h~(B, A) and (iii) h~(A, C) -< h~(A, B) + 
h~(B, C). We have 

h~(A, B) = inf {r I A c IB + rLJ and B c A + rU}, 

(30) 

B c A ~ h ° ( A ,  B) = h=(A, B), (31) 

h°(A, II~) = h~(a, A U IB), (32) 

h°(A, 38) = max {h~(B, A U B), h~(~), A U B)}, 

(33) 

h®(A, IB) -> h~(A O C, B O C). (34) 

The proofs for (30), (31), (32) and (34) are 
trivial, (33) follows directly from (28) and (32). 

If the compact obtained by adding to a 
compact A a single point far from it is ho~-far 
from A, the compact obtained by moving the 
boundary of A slightly and drilling a finite 
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number of small holes in the result is hoo-close t o  

A. This illustrates the coarseness of the 
characterization of differences between compacts 
provided by the Hausdorff distance. A finer 
characterization will be needed to define the 
convergence conditions of Theorem 1 in Section 
5.2.1, which motivates the introduction of new 
distances. 

4.1.2. Complementary Hausdorff distance. 

Definition 11. The complementary Hausdorff 
distance between two subsets A and B of ~ is 
given by/~®(A, B) = hoo(A, is). 

Proposition 1. The operator /~® is a semi- 
distance on C ( ~ ) .  

Proof. (i) The opera tor /~  is not a distance since 
/~®(A, B ) =  0 whenever A and B are singletons. 
(ii) The symmetry o f / ~  results from Definition 
11. Let us now check the triangular inequality 
(iii). For any A, B and C belonging to C(R"), 
/zoo(A, a )=h®(A,  IB)= h®(cio (A), clo (IB))= 
h®(clo (A)tq Z, clo (B)A Z) where Z is a very 
large compact sphere containing A, B and C. 
The triangular inequality satisfied by h® when 
operating on compacts implies: h~(clo (&) N Z, 
clo (B) CI 7/) _< hoo(clo (A) f"l 7/, clo (C;) f"l ~_) + 
h®(clo (C) 1"3 27, clo (D) 1"3 7/) = h®(A, (~) + 
h®(C, B) = / ~ ( A ,  C) + /~ (C ,  is). 

As hoo, the complementary Hausdorff distance 
/~® fails to give a fine characterization of the 
difference between compacts as illustrated by the 
following example. If the compact obtained by 
drilling a single small hole in a compact A is not 
/~®-close to A, the compact obtained by moving 
the boundary of A slightly and adding a finite 
number of vectors far from A to the result is 
/~®-close to A. 

4.1.3. Generalized Hausdorff distance. Com- 
bining h~ and /i®, it is possible to obtain a 
new distance that avoids the defects of each of 
them. 

Definition 12. The generalized Hausdorff dis- 
tance between two subsets A and B of R ~ is 
given by m®(A, is) = max (h~(A, a),/i®(A, is)). 

Proposition 2. The operator m~ is a distance on 
c(Rn). 

Proof. (i) If moo(A, IB) = 0 then h~(A, B) = 0 
thus A = B. (ii) moo is obviously symmetric. (iii) 
For any A ,B  and C belonging to C(R~), 
the triangular inequalities satisfied by h® and 
/t® imply that m~(A, B) = max (h~(A, iS), 

/~®(A, B)) -< max (h~(A, C) + h~(C, B),/~oo(A, C) + 
/~®(C, B)) -< max (h~(A, C), /z®(A, C)) + 
max (h®(C, B), /~(C,  B)) = m®(A, C) + mo~(C, B), 
so that the triangular inequality is satisfied. 

4.2. Compact enclosure between two subpavings 
Let (C(R"), ~,  m~) be the set of 

all compacts in R" equipped with the partial 
ordering c and the distance m.~. The set 
of finite subpavings is dense from outside in 
(C(R~), ~,  m®), i.e. we can find an external 
subpaving 0~,~t as m~-close to every compact as 
desired. This, however, does not necessarily 
hold true for an internal subpaving. Consider, 
for instance, a segment of a line in R 2. It can be 
approximated as closely as desired by a 
subpaving of R 2 from the outside but not from 
the inside. To avoid this type of problem, we will 
sometimes restrict consideration to the (large) 
class of compacts defined as follows. 

Definition 13. The compact A is full if 
clo (int (A)) = A. 

The set of all full compact subsets of R ~ will 
be denoted by CI(Rn). For any A e Cj,(R~), 
there exist sequences of subpavings Ki,(k) such 
that 

{ a (35) 
m®(K,.(k), A) ~ 0. 

Proposition 3. /i® is a distance on CI(R~). 

Proof. (i) For any A and B belonging to CI(R~), 
h (A, a )=  hoo(A, h®(clo (A), clo 
hoo(clo (A) tq ;7, clo (Q)) N 7/), where 2~ is a very 
large comp_act sphere containing A and B. 
Therefore h:o(A, B) = 0 :~ hoo(clo (A) tq Z, cio (IB) 
N Z) =0 ,  which implies, as h~ is a distance 
in C(R~), c l o ( A ) N Z = c l o ( B ) N Z ¢ ~ c l o  (A)= 
clo (B) ¢~ int (A) = int (B) ~ clo (int (A)) = clo 
(int (B)), so that A = B from Definition 13. The two 
other properties (ii) and (iii) of a distance result 
from Proposition 1. 

All finite subpavings of R n belong to Cr(Rn). 
The set of finite subpavings is dense from inside 
and outside in (CI(Rn), c ,  moo). Thus for any 
X e Cf(Rn), it is possible to find finite subpavings 
Kin and Ko,t such that Ki. '--X c IKout and that 
the subset ~(X) of C(R n) consisting of all 
compacts X' such that Ki , , - -X 'c  V~ou, has a 
diameter m~(Ki,, ~out) as small as desired. ~3(X) 
is therefore a neighborhood of X, so that X is 
enclosed between Kin and ~,ut. 

Enclosure of a characteristic Z(X). l e t  Z be an 
increasing function from (C(Rn), c )  to the 

AUTO 2g t4-Q 



1060 L. JAULIN and E. WALTER 

partially-ordered metric set (7/, .~). Z(X) may for 
example be its volume vol (X), its enveloping 
box [X], or any function of ~ resulting from the 
maximization of a convex criterion on ~.  All 
these characteristics are very easy to compute for 
subpavings. If ~ . c  X c  ~o,~, then Z ( ~ , . ) ' ~  
Z(X)'~Z(IKo,,).  If Z is continuous around ~,  
then Z(Ki,)~--~Z(X) and Z()~,,,)~-~-~Z(X) when 
m~(~i, ,  [}~,.t)---~ 0. 

Next section proposes an algorithm that 
encloses the solution ~ = f - ~ ( ~ ' )  of a set- 
inversion problem between two finite subpavings 
bracketing a neighborhood of X in (C( I~ ) ,  m~) 
with a diameter as small as desired, provided 
that f - t  is h~ a n d / ~  continuous around ~' and 
is full. This algorithm will therefore make it 
possible to bracket any monotonic characteristic 
Z ( ~ )  continuous around ~ as precisely as 
desired. 

5. ALGORITHM FOR SET INVERSION 

Set inversion (i.e. finding X = f - ~ ( ~  ') given f 
and Y) will be addressed in a general setting, 
before specializing the result to parameter  
estimation. We shall assume that ~ is bounded 
and included in a prior box [x](0), used as the 
initial search domain. 

5.1. Set inversion via interval analysis 
SIVIA (Set Inverter Via Interval Analysis) 

applies to any function f for which an inclusion 
function IF can be computed. Note that this class 
is not restricted to explicit functions, since in- 
clusion functions exist for solutions of differential 
equations. We shall say that a box [x] of DR" is 
feasible if [x] c ~ and unfeasible if [x] n ~ = 0 ,  

else Ix] is ambiguous. Interval analysis gives us 
two conditions, illustrated by Fig. 4, for deciding 
the feasibility of a box [x]. If IF([x])c ~¢ then 
[x] c ~,  so that Ix] is feasible. If IF(Ix]) N V = O 
then [x] n ~ = O, so that [x] is unfeasible. In all 
other cases, the box [x] will be said to be 
indeterminate. Note that an indeterminate box is 
not necessarily ambiguous, but could be feasible 
or unfeasible as well. 

SIVIA makes an extensive use of a stack of 
boxes. A stack is a dynamical structure on which 
only three operations are possible. One may 
stack, i.e. put an element on top of the stack, 
unstack, i.e. remove the element located on top 
of the stack or test the stack for emptiness. We 
shall call principal plane of a box [x] a symmetry 
plane of this box that is orthogonal to an axis i of 
maximal length, i.e. i e {j I w([x]) = w([xj])}. In 
what follows, ~i,  and [K, will, respectively denote 
the subpavings of all feasible and indeterminate 
boxes (Fig. 5); [x](k) will be the box considered 
at iteration k, and er will denote the accuracy 
required for the paving. Upon completion of the 
algorithm, all indeterminate boxes will have a 
width lower than or equal to e ,  

The basic structure of SIVIA can be described 
as follows: 
Program inputs 

Inclusion function: IF 
Set to be inverted: 
Prior feasible box: [x](0) 
Required accuracy for the paving: e, 

Initialization 
k = 0, stack = @, ~i,  = 0 ,  I~i = 0 .  

Iteration k 
Step 1: If ~: ( [x](k))cY,  then IK~,=I~i,U 

[x](k). Go to Step 4. 

x2 

n x 

~n 

X l 
r 

v 

y2 RP 

([x]) y~ 

I I 
Feasible box and associated image by f 

Unfeasible box and associated image 

Indeterminate box and associated image 

Image set ~" and associated reciprocal image X 

FIG. 4. Feasibility of boxes. 
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a4 lR” around V then Kin, K,,, and I$ satisfy 

FIG. 5. Enclosure of X between two subpavings (W,,, = 
Hi, u KJ . 

Step 2: If IF([x](k)) n V = 0, then go to Step 4. 
Step 3: If w([x](~)) 5 E,, then I$ = Ddi U [x](k), 

else bisect [x](k) along a principal 
plane and stack the two resulting 
boxes. 

Step 4: If the stack is not empty, then unstack 
into [x](k + l), increment k and go to 
Step 1. 

End. 
When one is only interested in specific 

properties of X, special care can be taken to 
avoid memorizing Ddi, and I$ by use of suitable 
exhaustive summaries of the properties of I&, 
and I$ of interest (Jaulin and Walter, 1993). 

5.2. Properties of SIVZA 
SIVIA is a finite algorithm, which terminates 

in less than {w([x](O))/c, + l}” iterations. It 
provides the subpavings I$, and Ki (the 
dependency of these subpavings in E, will be 
omitted for notational simplicity). 

5.2.1. Convergence. Let us prove that the 
enclosure of X generated by SIVIA as 

Ki,cXc&“tPHi,UKi, (36) 

defines a neighborhood of X with a diameter that 
converges to zero when E, tends to zero. 

Lemma 1. !Fo hZ(f(Ki), iW) = 0. 
r 

Proof. If [x] E [Miy then w([x])~ E,, and the 
inclusion function (F (to be provided as a 
program input) satisfies w(lF([x]))-* 0 when 
s,+O. Now, IF([x]) is neither inside nor outside 
V and thus intersects its boundary dV. 
Consequently, V[x] E I$, hE(f([x]), av)-+ 0 j 
hZ(f(Ki)y av)-* 0. 

Theorem 1. If I-’ is h,- and &-continuous 

(i) Dd$+ ax, 

(9 k,,s X, 
(iii) Dbi”~, (if X is full), 

when E, tends to zero, where % and s,, 
respectively, mean the h,-convergence from 
within and without. 

Proof. 
Part (i). From (33), hO,(f(Ki), aV’) = max 

{hw(V, f(K) U V), h,(V, f(Wi) U V)} = max 
{h,(V, f(Wi) U V), h,(V, f(Wi) U V)}. Lemma 1 
therefore implies 

I hco(v, f(&) U v) + 0, 
hoa(V, f(Wi) U U) + 0, (37) 

when sr tends to 0. Since f1 is h, and h, 
continuous around V. we also have 

hco(f-l(V), r’(f(wJ U v)) * 0, 
h,(T’(V), r’(f(Ki) U V)) + 0. (38) 

Noting Definition 11 and replacing f’(V) by X, 
we obtain: 

1 

h-(X, f’of(Wi) UX) -0, 

h,(%;, r’of(Ki) U %) + 0. (39) 

Equations (33) and (39) imply that hz(T’o 
f(Ddi), 3X) +O. Since Dbi ~r’of(KJ, (29) then 
implies that h~(Odi, 3X) --, 0. Using (31) and the 
fact that dX c I$, we finally get ht(Obi, 8X) = 
h,(Ki, 3X) +O, which gives (i). 

Part (ii). From (34), we have h,(Ki, 5X) 2 
h,(Dbi U X, 8% U X) (g6) h,(l&, W) + 0. 

Part (iii). Let E > 0 be an infinitely small real 
number. Since X is full, there exists a finite 
subpaving K, c X such that 

1 

h,(Kl, X) < 2~, 

L,(K,, ax)>&. 

Now, for E, sufficiently small, 

(40) 

h-(&T ax) < E, 
thus Ddi n [)di = 0, i.e. K1 c Kin. When c-+0, 
K, s X and then odi” s X. 

5.2.2. Computing time. The computing time 
increases exponentially with n (Jaulin and 
Walter, 1993). This is the main limitation of 
SIVIA. 

5.2.3. Memory used. When one is only 
interested in computing a characteristic of X 
such as [X] or vol (X), only the stack takes a 
significant place in memory (Jaulin and Walter, 
1993). This place is extraordinarily small, as it 
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i 
! ' ' i 

. . . . .  T . . . . . .  - 

F1G. 6. Paving generated by SIVIA for Test ca~ 1 in the 
(P~, P2) space. The frame corresponds to the search domain 

(lo, 51)'. 

Ym(P, I) 

-)t 

FIG. 7. Superposition of all feasible exponentials in Test 
case I. 

can be p roved  tha t  

# s t a c k  < n • int ( iog2(w([x](0)) )  - log2(e,)  + 1). 

(41) 

Fo r  ins tance ,  if n = 100, w([x](O)) = 104 and  
e, = 10 -1°, (41) impl ies  tha t  # s t a c k  < 4600. 

5 ,  is a classical  po in t  e s t i m a t o r  in the 
b o u n d e d - e r r o r  con tex t .  In Tes t  case  1, this 
e s t ima to r  gives an e s t ima te  which is not  feas ib le  
as ev idenced  by Fig. 6. F igure  7 p re sen t s  the  
supe rpos i t ion  of  all e xpone n t i a l s  tha t  c o r r e s p o n d  
to a p a r a m e t e r  vec to r  be long ing  to 5 .  

6. RESULTS OBTAINED ON THE TEST CASES 

The  e s t ima t ion  o f  the  p a r a m e t e r s  o f  the  two 
test cases  de sc r ibed  in Sec t ion  2 will now be  
p e r f o r m e d  using S I V I A .  T h e  r e a d e r  is r e f e r r ed  
to Tab le  1 for  no ta t ion .  

Tes t  case  1. F o r  a r e q u i r e d  accuracy  er = 0.01, in 
a b o u t  3 1 s e c  on a C o m p a q  386/33,  S I V I A  
p r o d u c e s  the  paving  p r e s e n t e d  in Fig.  6 while  
keep ing  in m e m o r y  no  m o r e  than  12 boxes  ((41) 
pred ic t s  a n u m b e r  sma l l e r  than  18). 

The  feas ible  set for  the  p a r a m e t e r s  is 
g u a r a n t e e d  to satisfy 

[0.342, 1.992] x [0.420, 2.646] c [5]  

[0.303, 2.002] x [0.400, 2.813], (42) 

0.76 --- vol ( 5 )  -< 0.84. (43) 

The  cen te r  o f  [5] ,  i .e .  the  T c h e b y s h e v  cen t e r  of  

Tes t  case  2. W e  choose  scales  for  the  p a r a m e t e r s  
such tha t  the  p r io r  feas ib le  box P b e c o m e s  a 
cube  with side 1. This  jus t  changes  the  b i sec t ion  
pol icy  used  dur ing  S tep  3. T a b l e  2 ind ica tes  the  
p e r f o r m a n c e s  o f  S I V I A  for  va r ious  r equ i r ed  
accurac ies  e, .  A n  i m p o r t a n t  i n fo rma t ion  prov-  
ided  by  S I V I A ,  which cou ld  not  be  p r e s e n t e d  in 
this p a p e r  for  obv ious  r easons ,  is the  de t a i l ed  
desc r ip t ion  o f  all the  boxes  o f  the  subpav ings  ~,  
and  1~+,. This  i n fo rma t ion  is a much  m o r e  
de t a i l ed  desc r ip t ion  of  5 than  [5].  

Using  a s ignomia l  a p p r o a c h ,  Mi l anese  and 
Vic ino  (1991b) find a very  g o o d  e s t ima te  of  

[5]  = [17.2, 26.9] x [0.3, 0.49] x [ - 1 6 . 1 ,  - 5 . 4 ]  × 
[0.077,0.136] in abou t  10 minu tes  on a V A X  
8800 c o m p u t e r .  T h e  vo lume  of  the  set  of  
uncer ta in ty  a b o u t  the  loca t ion  of  the  p a r a m e t e r s  
d rops  f rom vol  (P )  -- 841 to  vol ( [5] )  = 1.16. 

D e p e n d i n g  on  the  qual i ty  c r i t e r ion  c o n s i d e r e d ,  
one  o r  the  o t h e r  a p p r o a c h  turns  out  to give 

TABLE 2. P E R F O R M A N C E S  O F  SIVIA O N  T E S T  C A S E  2 F O R  V A R I O U S  R E Q U I R E D  A C C U R A C I E S  E r .  T H E  TIMF~S 

I N D I C A T E D  A R E  F O R  A N  I B M - c O M P A T I B L E  COMPAQ 386/33 P E R S O N A L  C O M P U T E R  

e, Time Iterations vol (l~m) vol (K+.) #Stack #K, #Km 

1 0.27 sec 1 841 0 0 I 0 
2- i 0.49 sec 31 368 0 4 7 0 
2 -2 I sec 167 135 0 6 41 0 
2 3 6sec 765 24 0 9 116 0 
2 4 18 sec 2479 3.9 0 11 304 0 
2 5 44 sec 6217 0.5 0 14 3 × 10 3 0 
2 6 2 mn 14 X I(P 8 X 10 -2 0 16 7 x 103 0 
2 7 5 mn 37 x 10 -~ 16 x 10  - ~  0 19 5 x 1 0  ~ 0 
2 -x 15 mn 12 x 104 52 X 10 - 4  0 23 3 X 104 0 
2 ~ 1 h 66 X 104 26x 10 -4 26 x 10 -5 27 19 x 104 13 x 10 ~ 
2- ]'~ 10h 46 x IO s 17x 10 -4 6x  10 -4 30 15 x l0 s 22 x 104 
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TABLE 3. COMPARtSON OF THE DESCRIPTIONS [5] AND ~ t  OF .~ 
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151 Kou, 

(i) Accurate individual parameter uncertainty intervals. 
(2) Very pessimistic approximation of S. 
(3) The models belonging to M ([.~]) may have completely 

different behaviors. 
(4) Result expressed very concisely. 

(1) Pessimistic individual parameter uncertainty intervals. 
(2) More detailed description of 5. 
(3) The models belonging to M (Ko~t) have similar behaviors. 

(4) Result suitable for exploitation on a computer. 

better results. If one is interested in computing 
precise individual parameter  uncertainty inter- 
vals, then the signomial approach is more 
efficient. In terms of the volume of the domain 
guaranteed to contain the parameters,  the 
interval analysis approach gives a bet ter  result in 
44 sec than the signomial approach in 10 minutes 
on computers with similar power. In two 
minutes, SIVIA reduces the volume of the 
domain guaranteed to contain the parameters  by 
a factor of 10 4. The resulting vol (IKout) is 10 
times smaller than vol ([5]). 

Remark  4. In many practical problems, the set 
of admissible errors ~: is only known approxim- 
ately. It is therefore important to address the 
problem of the sensitivity of the estimates 
obtained to a variation A~' of ~'. From Lemma 
1, SIVIA will generate a set It~out such that the 
proximity (25) of y,n(~out) to both Y and Y + A3f 
is small. This means that any model M(p) with p 
belonging to ~o~, has a behavior consistent (or 
almost consistent) with the data. On the other  
hand, p may be very far from 5 and nevertheless 
such that the error  e, ,(p) is close enough to 1: 
for p to belong to ~o~,. Note that there may be 
some p in [5] that are such that Ym(P) is 
completely inconsistent with the data. 

Table 3 summarizes the properties of two 
descriptions of 5 ,  namely [5] as provided, e.g. 
by the signomial approach and ~,~t as provided 
by SIVIA. 

7. CONCLUSIONS 

Estimating the parameters of a model in the 
context of bounded errors can be formulated as 
a problem of set inversion. If this problem can 
be considered as solved when the model output  
depends linearly on the parameters  to be 
estimated, the situation is far less advanced in 
the general nonlinear case considered in this 
paper. The tools provided by interval analysis 
appear as very promising, because they make it 
possible to obtain guaranteed global results, 
contrary to most methods available so far. 

The set inverter via interval analysis proposed 
here is capable of very quickly eliminating large 
portions of the parameter  space before con- 

centrating on the indeterminate region. Theoret-  
ical results have been given on its complexi ty-- in 
terms of memory and computing t ime- -and  on 
its convergence. The required memory remains 
extremely limited, even when the number  of 
parameters becomes quite large. As could be 
expected, the number  of boxes (which is 
proportional to the computing time) increases 
quickly when the number  of parameters  
increases or when more accuracy is required. 
SIVIA therefore cannot be used with a high 
accuracy when the number  of parameters is too 
large. On the other  hand, used with a low 
accuracy, it may very quickly eliminate a large 
portion of the space to be explored even with a 
rather large number of parameters.  That  may be 
very interesting as an initial procedure before 
using more local approaches. 

To the best of our knowledge, the only other  
method capable of guaranteeing global results 
that has been considered in the context of 
nonlinear estimation from bounded-error  data is 
the signomial approach advocated by Milanese 
and Vicino. Signomial analysis, when applicable, 
seems to provide accurate descriptions of the 
smallest axis-aligned box enclosing the posterior 
feasible set for the parameters 5 more quickly 
than SIVIA. On the other  hand SIVIA applies 
to a larger class of problems of set inversion, and 
characterizes 5 in a much more detailed way. 
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APPENDIX 

Notation 
Brackets [ ] are set apart for interval analysis and 

therefore never used as substitutes for parentheses. The 
symbols - and +,  used as exponents for a quantity, 
respectively mean the lowest and the largest possible value 
for this quantity. 

Vectors v and vector functions f are printed in bold. 
Vector equations and inequalities are to be understood 
componentwise. Usual scalar functions such as exp, 
s i n , . . . ,  when applied to vectors are also to be understood 
componentwise. For instance, if u = (0, a'/2, ~ ) r  and v is the 
three-dimensional vector satisfying v, = sin (uJ  1 -< i <- 3, 
then v = sin (m) = (0, 1,0) r. 
cio (A): 
C(R~): 
G(R"): 
aA: 
e . (p) :  
E: 
e.: 
h_=(a, B): 
h=: 

h~(a, B): 
int (a): 
int (A): 

Ki: 
Kin, Koch: 

L~(a, b): 

L~(A, B): 
m~(A, B): 
np: 
ny: 

P: 

P: 
5: 
U: 
vol (A): 
w([p]): 
y: 

Ym(P): ~': 

Ixi: 

la]: 
{tl: 
f: 

X: 

o: 

closure of A. 
.set of all compacts of R ~. 
set of all full compacts of R" (Definition 13). 
boundary of A. 
error between the model output and the data (1). 
set of admissible errors. 
required accuracy for the paving to be obtained. 
Hausdorff distance (Definition 10). 
complementary Hausdorlt distance (Definition 
11). 
proximity of B to A (25). 
integer part of the real a. 
interior of the set A. 
set of the boxes of R ' .  
indeterminate subpaving. 
subpavings enclosing the set to be characterized 
(36). 
distance between a and b, induced by the 
L~-norm. 
separation between A and B (24). 
generalized Hausdorlt distance (Definition 12). 
dimension of p. 
dimension of y, i.e. number of measurements. 
vector of the parameters of the model to be 
estimated from the data. 
prior feasible set for the parameters. 
posterior feasible set for the parameters (2), (4). 
unit sphere in (R ' ,  L~). 
volume of the compact set A. 
width of a box (Definition 3). 
vector of all data available on the system. 
vector of all model outputs. 
measurement set: ~¢ = y - E. 

box with the same dimension as x (Definitions 1 
and 2). 
enveloping box of ~ (Definition 4). 
minimal inclusion function of f (Definition 5). 
inclusion function of f (Definition 6). 
reciprocal function of f, defined by f ~(~)~- 

Cartesian product of sets. 
cardinal of a finite set &. 
complement of A. 
composition operator. 


