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ABSTRACT

Bounded-error estimation requires prior bounds on the
acceptable errors between the data and corresponding
model outputs. When these bounds can not be satisfied
for all data points, one may look for the set Sq of all
values of the parameter vector such that all errors but q
fall within the acceptable ranges. This corresponds to
considering that there may be up to q outliers in the data.
New algorithms based on interval analysis make it
possible to characterize S in a guaranteed way, either
when q takes its minimum possible value or when it
belongs to a given range of integers. The methodology
readily applies to models nonlinear in their parameters
and is illustrated by a two-dimensional example to allow
pictures to be drawn.

1. INTRODUCTION

This paper deals with estimating the unknown parameter
vector p of a model from a vector y of experimental data
collected on a system. The vector p is assumed to belong
to some (possibly very large) prior box pg in the
parameter space. The model M(p) is a set of equations
parametrized by p that generates a vector y, (p) of
outputs to be compared with the data. Define the error
between the data and model output by

en(P) =y - Yu(p) -

In the context of bounded-error estimation, it is assumed
that each component of e (p) must belong to a known
interval to be admissible. This corresponds to assuming
that e (p) belongs to some prior box e € RY™Y, For p
to yield an admissible error, y,,(p) must therefore belong
to the set of admissible outputs defined by

y:y_ez{y—eleee}. (2)

The problem to be solved is that of finding the set S of
all values of p in p, corresponding to an admissible
output, i.e.

S={pepylyn® e yl=yn® N po ©)
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It can thus be seen as one of set inversion (Jaulin and
Walter, 1993a). A number of methods are available to
characterize S, see, e.g., (Walter, 1990; Norton, 1994,
1995; Milanese et al., 1996) for special issues of
journals and a book devoted to this topic. When y, | is
linear in p, S is a polytope that can be described exactly,
or enclosed in a simpler-shaped set such as an ellipsoid, a
box or a parallelotope. When y_ is nonlinear in p,
methods based on interval analysis are also available to
enclose S§ in a union of boxes with an arbitrary
precision. All these methods rely on the hypothesis that
the prior bounds for the error are correct, which is not
always realistic. This paper is concerned with the case
where some data points may be outliers. Such outliers
may for instance result from sensor failure (or any other
error occuring during the data collection), from an
optimistic choice of the error bounds or from the fact
that the model structure is unable to describe the process
behavior accurately enough. The associated error should
then be allowed to escape the feasible range defined by
the prior bounds. Otherwise, the set S might become
unrealistically small or even empty.

The robust set estimator OMNE (for Outlier Minimal
Number Estimator) has been designed to cater for this
situation (Lahanier, Walter and Gomeni, 1987; Walter
and Piet-Lahanier, 1988; Piet-Lahanier and Walter, 1990;
Pronzato and Walter, 1996). An estimate §' is the set of
all values of p in p, that are associated with the globally
minimum value of a criterion j(p). This criterion is the
number of components Ymi(P) Of ¥, (p) that do not fall
within the feasible range y; defined by their prior bounds
ie. such that y .(p) ¢ y;. It is piecewise constant, and
its gradient is therefore zero wherever it is differentiable.
Moreover, S' is usually not a singleton, may be
nonconvex or even disconnected, and has a nonzero
volume. These features are illustrated by Figure 1 in a
one-dimensional case. The algorithm used so far to
characterize S' was based on a random scanning of the
parameter space and no guarantee could be provided about
the results obtained. One of the purposes of this paper is
to describe a method to characterize ' in a guaranteed
way.
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Figure 1: The criterion to be minimized is not
continuous, and the set of all global minimizers is
disconnected and not countable.

Section 2 briefly introduces interval analysis and defines
the new notions of inclusion and separation degrees.
These notions are used in Section 3 to present a new
algorithm to build a set of boxes in the parameter space
the union of which is guaranteed to contain S'. This
involves the resolution of a finite sequence of set-
inversion problems by the algorithm SIVIA (Set
Inversion Via Interval Analysis) developed by Jaulin and
Walter (1993a). The procedure is illustrated on a test-case
from the literature. In Section 4, a new algorithm for
simultaneously characterizing the isocriteria of j(.) for
several values of the number of data points considered as
outliers is presented. The algorithms described in
Sections 3 and 4 both lead to global and guaranteed
results.

2. INTERVAL ANALYSIS

The following notions will be used for the description of
the algorithms. A box, or vector interval, x of R" is a
vector whose components %, (=1, ..., n) are scalar
intervals:

x=[x], K11 %X [, X3l = %) XXX, = X7, X, (@)

where X~ = (x, X3, x;)T and x* = (xr, xg x;)T.
The set of all boxes of R™ is denoted by IR". A
principal plane of x is a symmetry plane normal to a
side of maximum length. Let f: R™ — RP be a vector
function, the set-valued function f: IR™ — IRP is an
inclusion function of f if

f(x) < f(x) (&)

for any x of IR". This inclusion function is convergent
if, for any sequence of boxes x of IR",

wx) =0 = wif(x) -0, (6)

where w(x) is the width of %, i.e. the length of its
largest side(s). A number of methods exist for deriving
an inclusion function associated with any function
computable in a finite number of steps (see, c.g..
(Moore, 1979; Ratschek and Rokne, 1988)). Consider,
for instance. the function f from ®2 to R !0 given by the
following algorithm:

Input: py, py
Fori:= 11010 do f; := 20 exp(-p,i) — 8 exp(-p,i)
Output: £,ie {1...,10}.

A convergent inclusion function £ for f is given by the
following interval algorithm:

Input:py, py
Fori:=110 10 do {; := 20 exp(-p,i) - 8 exp(-p,i)
Outpur: £, i€ (1, .., 10},

where exp(.) denotes an inclusion function for the
exponential function. The interval operations involved
are as follows. If x = [x™, x"] and y = [y~, y*] are two
scalar intervals and o is a real,

exp(x) = exp(x) = [exp(x"), exp(x )], @
ox = [onx™, cxt]ifa >0, (8)
o.x = [oex®, o.x7] if o < 0 and ©)
x+y=[x+y,x" +y'] (10)

A subpaving of R" is a set of non-overlapping boxes of
IR", with nonzero width. If A is the subset of ®"
generated by the union of all boxes of the subpaving X,
then X is a paving of A. The new notions of separation
and inclusion degrees will be helpful for the algorithms
presented in Sections 3 and 4. The separation degree
berween two scalar intervals = and y of IR is defined by

sep(x,y)=1lifxNy =@
and sep(x,y)=0ifx Ny = . (1

The separation degree between two boxes x and y of
IR" is defined by

n
sep(x, y) = 3. sep(x;. v)- a2

i=

Lemma I:1If x and y are two boxes of IR", then
sep(x,y)>0 o xNy=0.
Proof: sep(x,y) >0« 3i | sep(x;,y;) =1 3Fil
xNy,=0 @xNy =0. 0
The inclusion degree of a scalar interval x into a scalar
interval y is defined by
incl(x,y)=1ifxCy
and incl(x, y) = 0 otherwise. (13)

If x and y are two boxes of IR", then the inclusion
degree of x into y is defined by

n

incl(x, y) = Y, incl(x;, y;). (14)
i=1

Lemma 2:1f x and y are two boxes of IR", then

incl(x,y)=nexCy.

Proof: incl(x,y)=n< Vie (I, .. n}, incl(z;, y)=1

eSVi,ygCy,exCy. ¢

When the box x reduces to a vector x, Lemma 2
becomes



incl(x,y)=n & xey. (15)

The notions of separation and inclusion degrees are
illustrated by Figure 2, where

sep(a. y) = L, inclz, y) = L, incl(a, y) = 1,
sep(b, y) = 2, incl(b, y) = 0, incl(b, ) = 0,
sep(c, y) = 0, incl(c, y) = 2, incl(c, y) = 2,
sep(d, y) = 0, incl(d, y) =0,
sep(e, y) = 1, incl(e, y) = 0.
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Figure 2: Illustration of the inclusion
and separation degrees.

Lemma 3: If x and y are scalar intervals and x is a real in
% then incl(x, y) 2 incl(x, y).

Proof: The value of incl(x, y) is either 0 or 1. If
incl(xz,y) =1 then, x C y ie. V x € x, incl(x, y) = 1.
If incl(x. y) = 0, then incl(x, y) = 0 or 1. 0

Lemma 4:1f x and y are two boxes of IR" and x is a
vector in x, then incl(x, y) 2 incl(x, y).

Proof: From Lemma 3, V ie {l, .., n},
incl(x;, y;) > incl(x;, y;). Therefore

n n
incl(x, y)= 2, incl(x;, y;) = 3 incl(x;, y;) =incl(x, y). ¢
i=1 i=1
Lemma 5:1f x and y are two boxes of IR", then
sep(x, y) + incl(x, y) < n.

Proof: Since x; C y; and x; N y; = @ cannot be satisfied
together, sep (x;, y;) + incl(x;.y) < 1. Vie {1, .., n}.
Therefore

n

sep(x, y)+incl(x, y)= _Z (sep(x;, y+incl(x;, y;)) <n. 0
1=

Lemma 6: 1f x and y are two boxes of IR" and x is any

vector in x, then sep(x, y) + incl(x, y) <n.

Proof: Since x; € y; and x; N y; = & cannot be satisfied
together, sep (x;, y;) + incl(x;, y,) < 1, Vie {1, ... n}.
Therefore

n
sep(x, y)+incl(x, y)= z (sep(x;, y+incl(x;, y;) < n. ¢

3. GUARANTEED OMNE

The parameter vector p is consistent with the ith datum
if Y i(P) € ¥;, s0 that incl(y,, «(p), y;) = 1. The set hE
of model output vectors that are consistent with at least
dim y — q data points, i.e. such that at most q data
points are considered as outliers, is defined by

Yo ={¥p lincl(y,. y) 2dimy - g}. (16)

Note that ¥, = y. The set of all feasible parameter
vectors that are consistent with at least dim y — q data
points can then be defined as follows:

=P e Py lyn®Ie Y) =ya(¥) Npy (D)

The problem of characterizing Sq has thus been cast into
the framework of ser inversion and can easily be solved
with SIVIA, taking into account the fact that outliers are
now allowed via the definition of ¥, and the notions of
separation and inclusion degrees. Let y_ (.) be an
inclusion function of y (.), so that for any box p of the
parameter space y,,(p) is a box guaranteed to contain all
values of y_ (p) for all p in p. Then the two following
propositions hold.

Proposition 1:¥ p C py, incl(y,,(p).y) 2dimy - q =
pC Sq.

Proof: If incl(y, (p). y) = dim y - q then, from
Lemmad, V p € p, incl(y,,(p). y) 2 dilm y —q, 50
VPpeEDp.Yyulp)e Y& pC yu(Yy). Since
P € Po B < S, 4
Proposition 2: sep(y,(p). ¥) > q=pN S, = 2.

Proof: Assume that sep(y,,(p), y) > q. From Lemma 6,
V pep, sep(y,(p),y) + incl(y, (p), y) < dim y.
Therefore Vp € p, incl(y,(p), y) < dim y —
sep(ylm(p), y) <dimy -qsoy,(p) ¢ ¥ . Therefore p
N yu(Yy) = @, which implies that p N §q =d.

The version of SIVIA to be presented in what follows is
parametrized by q, the number of data points considered
as outliers, and ¢, the required accuracy. For a given
value of ¢, if a box p C p satifies none of the two
conditions incl(y,(p), y) 2 dim y — q and sep(y,,(p), ¥)
> q, p is said to be indeterminate. SIVIA(q, €) generates
two subpavings, namely Koy (q) that contains all boxes
that have been proved to be included in Sq and X, 4(q)
that contains all indeterminate boxes with size smaller
than e.

Algorithm SIVIA(q, €)
Inputs: q, number of allowed outliers,
€, required accuracy.
Initialization: stack := @, Kqr(q) =0,
Kina(@) =2, p = pyg.
Iteration:
Step 1 If incl(y (), y) 2 dim y — q,
then K (q) == Kok (q) U p. Go to Step 4.
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Step 2 If sep(y,,(P). ¥) > q, then go to Step 4.
Step 3 If w(p) <e, then K ,y(@) =K 4y(@Q U p,
else {bisect p along a principal plane.
Stack the two resulting boxes}.
Step 4 If the stack is not empty,
then unstack into p and go to Step 1.

End.
Outputs: Kog(q), K;pq(qQ)- ‘ 0

If SIVIA(q, £) returns empty Kok (q) and K, 4(q), then
there exists no vector p in p, consistent with at least
dim y - q data ie. Sq is empty. Therefore, there are at
least q + 1 outliers. If SIVIA(q, €) returns an empty
KQK(q) and a non-empty K 4(q), then any vector p in

belongs to Kmd(q) but it is impossible to know
whether or not S is empty. This indetermination can be
removed by reexecutmg SIVIA(q, &) with a smaller
accuracy coefficient . If SIVIA(q, €) returns a non-
empty KOK(q) then S is non-empty and a bracketting
of S is given by the mclusnons

Kox(@ € 8¢ © Ko@) U Kigg(@- 18

The main algorithm GOMNE (Guaranteed: Outlier
Minimal Number Estimator), to be presented now, uses
SIVIA(q, €) as a subroutine and aims at characterizing
the set S'. GOMNE first calls SIVIA(Q, €£), with an
adaptative £. If Kgg(0) U K;;4(0) turns out to be
empty, there is at least one outlier and GOMNE calls
SIVIA(I €). The prooedure is iterated, increasing q up to
q such that KOK(q ) is not empty. A guaranteed
characterization for the solution set §' i is then glvcn by

the inclusions KOK(q ycs'c Kox(q yu Kmd(q ).

Algorithm GOMNE

Input: &, required accuracy for the characterization
of S'.

Initialization: q := 0.

Iteration:

Step 1 & :=¢,.

Step 2 Call SIVIA(q, &)

Step 3 fKog(q) and K, 4(q) are empty,
then set q :=q+ 1 and go to Step 1.

Step 4 If Kyk(q) is not empty,
then Koi(Q) € S, € Kog(@) U Kyp4(q). End.

Step 5 If Kog(q) is empty and K, 4(q) is non-empty,
then set € := 0.5 &. Go to Step 2.

End. 0

If the required accuracy & is small enough, the condition
in Step 5 of GOMNE almost never occur except in
atypical situations studied in Jaulin and Walter (1993a).

Test case: To illustrate the behavior of GOMNE, a two-
parameter estimation problem is now considered, which
makes it possible to draw pictures of the paving
obtained. This example has been taken from Jaulin and
Walter (1993b) and is a two parameter version of a
problem treated by Milanese and Vicino (1991). In these

papers, the vector of all available data was given by

= (739, 4.09, 1.74, 0.097, -2.57, -2.71,
22,07, -1.44, —0.98, -0.66)T, 19)

but here, to simulate outliers, we arbitrarily replace two
data points by zero and take

= (7.39, 0, 1.74, 0.097, —257 =271,
-2.07, 0, -0.98, —0.66)". (20)

These data correspond to ten scalar measurements, taken
at times

= (075, 1.5,2.25, 3, 6,9, 13, 17,21, 25)T. (1)
The ith component of y, (p) is given by
Ym,i(P) = 20 exp(-p; t)) - 8 exp(-p, t,). 22

As in (Jaulin and Walter, 1993b), the set of all feasible
model outputs is the box defined by

y=-enuy+ €naxls 23
with
max = (4.695, 1., 1.87, 1.0485, 2.285, 2.355,
2.035, 1., 1.49, 1.33)T. (24)

Figure 3 presents the data. The bars indicate the
uncertainty associated with each datum. S is the set of
all the values of p such that the model output goes
through (10 - q) bars.

y

Figure 3: Contaminated experimental data
with error bars.

For a required accuracy g, = 0.005, and p, = [-0.1, 1.5]
% [-0.1, 1.5], GOMNE calls SIVIA(0, &y) which proves
that S, is empty (Figure 4). It then calls SIVIA(1, g),
which succeeds in bracketting S; while generating the
paving presented in Figure 5. The whole procedure takes
less than 13 seconds on a 486 DX4-100 computer.

GOMNE has thus detected that there exists at least one
outlier. To protect oneself against one additional
undetected outlier, it suffices to run SIVIA with g = 2.
This generates the paving presented on Figure 6. Note
that Kog(2) U K, 4(2) is disconnected, which proves
that S, is. This may be due to the fact that the data
considered as outliers are not always the same.
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Figure 4: Paving generated from contaminated
experimental data, assuming no outlier. All white boxes
have been proved not to belong to Ko (0) and K, 4(0),

which turn out to be empty. The frame corresponds to
the search domain [-0.1, 1.5] x [-0.1, 1.5].

P2

P

[ 1

Figure 5: Paving generated from contaminated
experimental data, assuming one outlier. Koy (1) is in
light grey and K, 4(1) in black. The frame corresponds to
the search domain [-0.1, 1.5] x [-0.1, 1.5].

P2

P

Figure 6: Paving generated from contaminated
experimental data, assuming two outliers. K (2) is in
light grey and K, 4(2) in black. The frame corresponds to
the search domain {-0.1, 1.5] x [-0.1, 1.5].

For comparison, the initial data vector with no outliers
has also been processed by SIVIA. The paving obtained
is presented in Figure 7. One can easily check that the

union of Kok (0) and K, 4(0) obtained with the regular
data is included in the union of Kok (2) and X 4(2)
obtained with the contaminated data.

i)

P

Figure 7: Paving generated from regular data, assuming
no outlier. Kok (0) is in light grey and K, 4(0) in black.
The frame corresponds to the search domain
[-0.1, 1.5] x [-0.1, 1.5].

4. CHARACTERIZATION OF ISOCRITERIA

It may be interesting to characterize Sq simultaneously
for several values of q, for instance to detect whether the
shape of Sq changes drastically with the number of data
points rejected, which may help to detect outliers. This
problem can be solved via the characterization of
isocriteria, .i.e. sets of values of p such that j(p) is
constant. This is the purpose of the algorithm ISOON
(Iso Outlier Number) to be presented now. It relies on
the two following conditions, which result from
Propositions 1 and 2:

VP C po incly,(@). y) =dimy -q=p < §;, (25
sepYm®@):¥)>q-1= pNS,,=0. (26)

Any box p that simultaneously satisfies the conditions
of (25) and (26) corresponds to values of the parameters
that are consistent with exactly q data points. It is thus
guaranteed to belong to the isocriterion at level q. Again,
the principle of ISOON is to partition the prior box of
interest into a set of boxes that either are too small to
deserve further consideration or have been proved to
belong to or to have an empty intersection with either of
the isocriteria of interest. If p denotes the current box,
the algorithm searches for a value of q among those of
interest for which (25) and (26) are both satisfied. If such
a value is not found, the current box p is bisected.

Let K;,(@) be the subpaving that contains all the boxes
that are proved to be included in S.~q and that have an
empty intersection with S__;, and let K; 4 be the
subpaving that contains all indeterminate boxes too
small to be bisected. In what follows, the required
accuracy is denoted by € and qq,, is the maximum
number of potential outliers to be considered.




Algorithm ISOON
Initialization: stack := @; Ky q:=@; pi=pgy;
forq:=01to0 qp,, do K (@ =D .
Iteration:

Step 1 Forq:=0to q,,, do{
If incl(y,(p). y) =dim y - q,
then {K; (@) = K;.(q) U p, go to Step 3}.
If sep(y(p). ¥) = q, then go to Step 2.
}

Step 2 If w(p) <, then K y=K; 4 Up,
else {bisect p along a principal plane and stack
the two resulting boxes}.
Step 3 If the stack is not empty,
then unstack into p and go to Step 1.
End. 0

If, for any q > 0, the current box p satisfies the first
condition of the loop in Step 1, then from Proposition
L, p € §,. Moreover, sep(y,(p). ¥} > q - 1, otherwise,
the second condition of Step 1 would have been satisfied
during a previous iteration. Therefore, p N S¢-1=9.

Test case: For the bounded-error estimation problem
presented above, with an accuracy £ = 0.005 and
Gmax = 3, ISOON is completed in less than 3 minutes
and the paving generated is presented in Figure 8.

P2

P
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Figure 8: Paving generated by ISOON from
contaminated experimental data. K; (1) is in light grey,
K;o(2) in medium grey and K (3) in dark grey.
The frame corresponds to the search
domain [-0.1, 1.5] x [-0.1, 1.5].

5. CONCLUSIONS

The implementations of OMNE available so far could
not guarantee their results, because of the random nature
of the search. The new algorithm GOMNE now makes it
possible to characterize the set of all parameter vectors
that are consistent with the largest possible number of
data in a guaranteed way. The data points considered as
outliers can be indicated. They may vary when the
parameters describe this set.

To protect oneself against undetected outliers, one may
choose to decrease the number of data to be consistent
with, The study of the evolution of the estimated set
with the number of rejected data is facilitated by the new
algorithm ISOON.
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