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Abstract

The bounded-error approach to parameter estimation, mainly developed in the context of control and signal processing, is
applied in the electrochemistry field in order to obtain reliable estimates for kinetic parameters. The method is based on the
assumption that an uncertainty bar is available for each measurement. A set guaranteed to contain all values of the parameter
vector that lead to model outputs consistent with these error bars is then computed, based on interval analysis and set inversion.
The resulting technique is applied on simulated and experimental data for several classical electrochemical models. Its merits are
compared to those of a more traditional approach based on least square estimation by iterative local optimization. A first obvious
difference is that the point estimate provided by the latter method may or may not belong to the set estimated by the former,
because it does not take the bounds on the uncertainty into account. Moreover, as our approach is global, it escapes the difficult
problem of initialization encountered with iterative optimization methods. Finally, the set obtained is a natural characterization
of the uncertainty on the estimated parameters. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The electrochemical characterization of metals in-
volves estimating kinetic parameters from experimen-
tally measured current as a function of potential, the
simplest case being when only steady-state conditions
are considered. Assume that a vector y of experimental
data has been collected, and that a mathematical model
depending on a vector p of unknown parameters is
being built, which produces a vector ym(p) of model
outputs. Estimating p then means tuning it to make
ym(p) resemble y, in a sense to be specified. Usually p is
estimated by optimizing a criterion j(p) chosen by the
experimenter.

Classical estimators used in electrochemistry [1–5]
proceed by minimizing a least-square criterion, i.e. they
search for p that minimizes the (possibly weighted)

Euclidean distance between y and ym(p). Ideally, the
resulting point estimate p̂ should then be a global
minimizer of the cost function j(.), and j(p̂) the global
minimum of the cost function. Note that for non-
globally identifiable models, several global minimizers
correspond to the global minimum, thus a prior iden-
tifiability analysis [6,7] on the model may prove that
there are several solutions for p̂. Even when the model
is globally identifiable, in many situations, it turns out
that the value obtained for p̂ depends heavily on the
initial value given to the parameter vector as a result of
using a local iterative method such as the Gauss–New-
ton, quasi-Newton or conjugate gradients algorithms.
Moreover, these iterative algorithms based on local
properties of the cost function may stop before reach-
ing the expected local solution for ill-conditioned prob-
lems. The result may thus even not be a good
approximation of a local minimizer.

On the other hand, global optimization methods based
on a random exploration of parametric space [8], such
as simulated annealing [9], genetic algorithms [10] or
adaptive random search [11], have the ambition to
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bypass initialization problems. However, there is no
guarantee that these methods will find good approxima-
tions of the global minimum and an associated global
minimizer after a finite number of iterations.

An excellent review paper [12] describes these prob-
lems, but leaves them unsolved. In order to obtain a
guaranteed characterization of the global minimizers of
the cost function, one must resort to deterministic
global optimization (see Refs. [13–15] for an applica-
tion to a problem of maximum-likelihood parameter
estimation similar to those considered here). Guaran-
teed as they may be, these methods are once again
point estimators that merely estimate one or several
numerical values for p̂.

The purpose of this paper is to advocate a promising
alternative approach, so far developed in the fields of
control and signal processing. This approach is known
under the name of bounded-error estimation, or set
membership estimation, (see e.g. Refs. [16–19] and refer-
ences therein), and the version implemented here is
global and guaranteed. To the best of our knowledge, it
has never been used in electrochemistry. This approach
encompasses all the acceptable values of the parameter
vector in a set that is characterized. The extent of this
set informs us about the uncertainty with which the
parameters are estimated [20,21]. The methodology is
illustrated by estimating kinetic constants in electro-
chemical reaction mechanisms presented in Section 2.
The notion of set inversion and the algorithm to be
used are introduced in Section 3. Section 4 describes the
results obtained from steady-state data on the mecha-
nisms of Section 2 and illustrates the advantages of
such a guaranteed set estimation.

2. Reaction mechanisms

2.1. Redox model

Consider the classical redox system described as:

O+e−lR (1)

Under steady state conditions, the evolution of the
Faradaic current density as a function of the dimen-
sionless electrode voltage j is given by [18]:

jf=Fk°
cR,init exp(aoj)−cO,init exp(−arj)

1+k°
�exp(aoj)

mR

+
exp(−arj)

mO

� (2)

with k°=ko
aok r

ar and j= f(E−E°) (3)

In these equations k° is the kinetic constant of the
standard electronic transfer and E° the standard poten-
tial; ao and ar are symmetry factors for the reaction, ko

and kr are the associated kinetic constants. mO and mR

are mass transfer constants. F is the Faraday constant,

f=F/RT, where T is the absolute temperature and R
the ideal gas constant, cO,init and cR,init are the initial
concentrations of O and R.

Assuming that mO, mR, E° are known, we define the
parameter vector as:

p= (p1p2)%=
� 1

k°
aO
�%

(4)

where X % is the transposed vector of the vector X, and
the system output as:

y1(t)=
F
jf

(cR,init−cO,init exp(− t))−
1

mR

−
exp(− t)

mO

(5)

with

t=j (6)

Using Eq. (2), the model of y1 can be then written as:

ym
1 (p,t)=p1 exp(−p2t) (7)

which is obviously globally identifiable. Note that Eq.
(7) is a particular case of the sum of exponentials model
also used in the following paragraph.

2.2. Volmer–Heyro6sky model

The Volmer–Heyrovsky mechanism is proposed to
describe the dissolution-passivation of metals, as
follows:

M,s+A−�
k1

MA,s+e− (8)

MA,s�
k2

MA++s+e− (9)

The first step describes the oxidation of a metal M,s
by electrosorption of some species A− as MA,s. The
second step (electrodesorption) regenerates a superficial
free site. Each one of these steps produces one electron.
Assuming that the interfacial depletion in A− is negligi-
ble (so the interfacial concentration of A− is equal to
cA,init), and that the two steps are irreversible, under
steady-state conditions, the kinetics of an electrode
reaction following this mechanism are then described
by:

jf(E)=2FG
cA,initkO1 exp(aO1 fE)kO2 exp(aO2 fE)

cA,initkO1 exp(aO1 fE)+kO2 exp(aO2 fE)
(10)

Taking t= fE and defining the system output by:

y2(t)=
2FG

jf(E)

the corresponding model output can then be written as:

ym
2 (p,t)=

1
kO1 exp(aO1 t)

+
cA,init

kO2 exp(aO2 t)
(11)

=p1 exp(−p3t)+p2 exp(−p4t) (12)
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where:

p=
� 1

kO1

cA,init

kO2

aO1aO2
�%

(13)

From Eq. (12) one readily sees that interchanging the
roles of (p1,p3) and (p2,p4) does not modify ym

2 Thus the
vectors:

pa=
� 1

kO1

cA,init

kO2

aO1 aO2
�%

and

pb=
�cA,init

kO2

1
kO1

aO2 aO1
�%

are such that ym(pa,t)=ym(pb,t) for all t. The parame-
ter vector p is therefore not uniquely identifiable from
such a steady state experiment. See [6,7,22,23] for more
details.

We will now introduce the framework to be used to
obtain guaranteed estimates of the parameters of these
models.

3. Set inversion using interval analysis

In this section, we briefly recall the main ideas of
bounded-error estimation viewed as a problem of set
inversion, and present tools based on interval analysis
that can be applied in the nonlinear context of the
electrochemical models.

Even when all the global minimizers of a suitably
defined cost function can be found, they form a very
incomplete answer to the parameter estimation prob-
lem, because values of the parameter vector that do not
correspond to global minimizers may still be perfectly
acceptable given the uncertainty in the experimental
data. This motivates the interest for a family of tech-
niques known under the generic name of set member-
ship estimation or bounded-error estimation (see e.g.
Refs. [16–19] and references therein).

3.1. Bounded-error estimation

For various reasons (impossibility to repeat experi-
ments, small number of data points, lack of time…) the
statistical distribution of the noise associated with ex-
perimental data is often inaccessible. On the other
hand, sensors are characterized in their technical data
sheets by their maximum absolute measurement errors
on any given range of operation, and this information
can be used to define the largest discrepancy between
the model output and the corresponding measurement
one is prepared to accept. We call error the difference
between the experimental value y and the theoretical
value ym as computed by the model and uncertainty the
upper bound of the absolute value of this error. From
the vector y of all available experimental data and their
uncertainty the set [y ] of all acceptable values for the
vector ym can be built. An estimate p̂ of the parameter
vector will be deemed acceptable if and only if
ym(p̂)� [y ]. Thus, bounded-error estimation consists in
determining the set S of all p ’s in some prior domain of
interest P that are such that ym(p) is consistent with the
data and their uncertainty:

S={p�P �ym(p)� [y ]} (14)

In this paper, uncertainty was quantified from the
information contained in the technical data for the
electrochemical interface [24].

Bounded-error estimation presents the following ad-
vantages compared to the usual statistical approaches:
1. Structural model errors are readily accommodated

(deterministic).
2. The tools of interval analysis turn out to be more

efficient for this type of problem than for problems
of global minimization of a cost function.

3. Contrary to the minimization of the cost function, it
guarantees that the error between the model output
and the corresponding data point remains accept-
able at all data points (see Fig. 1).

3.2. Set in6ersion

Eq. (14) can be rewritten as:

S=ym
−1([y ])SP (15)

Thus, characterizing S is a set-inversion problem,
since we have to compute the reciprocal image of a set
[y ] by the function ym. The computation of a guaran-
teed approximation of S should be based on interval
analysis, which provides effective tools to define rela-
tions, operators and functions on intervals and boxes.

3.3. Inter6al analysis

To real intervals (i.e. finite, closed and connected
subsets of R), an arithmetic can be associated, based on

Fig. 1. Boxes and their images by ym and ym:unfeasible (white),
undetermined (light grey), feasible (black).
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operations and relations. Object-oriented languages
such as C+ + allow one to manipulate intervals on
computers easily and in a guaranteed way. We present
here only the few basic notions and notation needed to
understand this paper, for additional information, see
e.g. Refs. [25–27].

We note a scalar interval [p ] of R as:

[p ]= [p−;p+]={p �p−5p5p+} (16)

The four basic arithmetic rules on intervals are sim-
ply derived from the classic ones for addition, subtrac-
tion, multiplication and division.

A box (or vector interval) [p ] of R
nP is the Cartesian

product of np scalar intervals:

[p ]= [p−;p+]= [p1
−;p1

+]×…× [p1
−;p1

+]×…× [pnp
− ;pnp

+ ]
(17)

The width w([p ]) of a box [p ] is the length of its
largest interval component. The interval extension of a
function f is denoted by [f ] and defined as:

[f ]:[p ]� [f(p)�p� [p ]] (18)

where [X ] is the smallest box including the set X. [f ]([p ])
is often impossible to evaluate. We then approximate [f ]
by a so-called inclusion function, denoted by f[ ] which
can be evaluated. Let f be a continuous function from
R

nP to RN. f[ ] is an inclusion function for f if for any
box [p ] of R

nP, f[ ]([p ]) is a box of RN satisfying:

f([p ])¦ f[ ]([p ])

w([p ])�0 [ w(f[ ]([p ]))�0

3.3.1. Example 1:
Consider the function:

f:D�R

x�x2−2x

with D= [0;1]. A first inclusion function is obtained by
replacing all computations on real numbers by compu-
tations on their interval counterparts. Thus:

f1([0;1])= [0;1]2−2[0;1]= [0;1][0;1]−2[0;1]

f1([0;1])= [0;1]− [0;2]= [−2;1]

Another possibility is to rewrite f(x) as (x−1)2−1,
which leads to:

f2([0;1])= ([0;1]−1)2−1= [−1;0]2−1= [0;1]−1

= [−1;0]

f2([0;1]) is a more accurate enclosure of f([0;1]) than
f1([0;1]). This is due to the fact that [x ] appears twice in
f1 but once in f2. It is always a good practice to write f
in such a way as to decrease the number of occurrences
of each variable.

3.3.2. Example 2:
Consider the function:

f :R2�R

P�p1exp(−p2t)

with p1� [p1], p2� [p2], which corresponds to Eq. (7). A
natural inclusion function is:

f[]([P])= [p1]exp(− [p2]t)

The number of occurrences of each of the two vari-
ables is one, so this inclusion function will be as accu-
rate as possible.

Note that some free downloadable software already
exists to perform interval computations (see Refs.
[28,29]).

3.4. SIVIA

The SIVIA algorithm (an acronym for Set Inversion
via Interval Analysis) solves set-inversion problems in
an effective and guaranteed way. It is recursive and
explores P systematically and exhaustively (contrary to
random-search methods), by means of bisections. The
main idea is to partition P into three unions of boxes,
or subpavings:
� the feasible boxes that have been proved to belong to

S,
� the unfeasible boxes that have been proved to have

an empty intersection with S,
� the undetermined boxes for which nothing has been

proved so far.
Whenever possible, interval analysis will be used to

prove that a box is feasible or unfeasible, by taking
advantage of the following implications:

ym[]([P ])¦ [y ] [ [P ]¦S (19)

ym[ ]([p ])S [y ]=¥ [ [p ]SS=¥ (20)

3.4.1. Example 3:
Since ym[ ]([p ]), which has been obtained by interval

calculus, is a box, the two tests ym[ ]([p ])¦ [y ] and
ym[ ]([p ])S [y ]=¥ are easily evaluated.

Assume that ym(p)=p1
2+p2

2, [y ]= [1;2], and
P= [−2;2]× [−2;2]. The set S is then defined by:

S={(p1,p2)�P �ym(p1,p2)=p1
2+p2

2� [1:2]} (21)

For [p]= [−0.1;0.1]× [−0.1;0.1]

ym[ ]([P])=ym[ ]([−0.1;0.1],[−0.1;0.1])= [0;0.02] (22)

which has an empty intersection with [y]. From Eq. (20)
we know that [P]�S=¥. Now for [p ]= [0.9;1]×
[0.8;1], ym[]([0.9;1],[0.8;1])= [1.45;2]¦ [y ], so from Eq.
(19) we know that [p ]¦S. At last , for [P]= [−2;2]×
[−2;2], we get
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Fig. 2. Characterization of S as defined in Example 2; left o=0.08,
center o=0.04; right o =0.02.

which means that the unknown set S has been brack-
eted, in the sense of inclusion, between two known sets.
The distance between S− and S− DS is an indication
of the precision with which S has been characterized.
We will call the outer approximation of S the set
S+=S− DS

Example 4 (end of Example 3). Consider again the
set S defined by Eq. (21): Characterizing it is a set
inversion problem, since we want to estimate the recip-
rocal image of the interval [1;2] by the function f. The
search space P= [−2;2]× [−2;2] is bounded by the
frame of Fig. 2. The DS subpaving (in grey) contains
the boundary of S, while S− is included in S. From left
to right, the accuracy of the description is improved by
decreasing o, at the cost of more computation. For
instance, [p ]=[−0.01;0.01]×[−1;−0.99]; ym[]([P])=
[0.9801;1.0001] is undetermined and stored in S− for
o=0.08 because w([p ])=0.02; but it is bisected for any
o smaller than 0.02.

4. Application to electrochemical models

We now consider two applications taken from elec-
trochemistry. First we study the redox model, on simu-
lated and real data. This simple two-parameter model,
which is globally identifiable, will be used to illustrate
the behavior of SIVIA.

The study of the Volmer–Heyrovsky model demon-
strates the capacity of the approach to characterize the
entire feasible region for the parameter vector, when
usual point estimators fail.

4.1. Redox model

In order to stress the influence of uncertainty, we first
study S as a function of the volume of [y], on simulated
data. For the true parameter vector p*= (100 0.4)% and
a noise on the current density uniformly distributed in
[−0.01;0.01], Fig. 3 presents the sets obtained for an
uncertainty on jf taken as: (a) 0.1, (b) 0.01. The search
box is P= [10−6;106]× [0;1]. Unlike results from other
methods, a guaranteed solution set is obtained. The
simple version of SIVIA presented here makes no at-

ym[]([P])= [−2;2]2+ [−2;2]2= [0;8] (23)

Neither Eqs. (19) or (20) is satisfied and nothing has
been proved yet about the feasibility of [P].

Whenever the tests Eqs. (19) and (20) are inconclu-
sive, one may bisect [p ] into two subboxes on which the
same analysis can be carried out. To avoid iterating
forever, we introduce a tolerance parameter o to be
tuned by the user. Thus, unless its width is smaller than
o, any box [p ] on which the tests Eqs. (19) and (20) are
inconclusive is bisected, and each resulting subbox is
then tested. Any box with width inferior or equal to o

for which no conclusion can be reached is not bisected
any further but kept instead in a list S− of undeter-
mined boxes.The resulting recursive set-inversion al-
gorithm SIVIA([p ],o) can be summarized as follows:
(initially, S−=ø and DS=P).

[p ], oInput
Step 1 if w([p ] then [p ]6DS (list of undetermined

boxes)
Step 2 if ym[]([p ])¦ [y ], then [p ]6S− (list of feasi-

ble boxes)
Step 3 if ym[]([p ])� [y ]=¥ then return
Step 4 Bisect([p ],[p1],[p2]);

SIVIA([p ],o);SIVIA([p2],o)

Upon completion, after a finite number of steps, we
have

S−¦S¦ (S− DS)

Fig. 3. Results provided by SIVIA for simulated data (redox model). Left: the uncertainty is ten times larger than on the right; parameter
uncertainity estimates are obtained by projecting these sets on each line.
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Table 1
Computational time tc and number of bisections n for decreasing
tolerance parameter o, for the simple version of SIVIA presented
here a

o ntc

0.0261 36
620.0360.5

0.1610.1 310
2.1700.01 3859

33 35919.5510.001
330.5850.0001 538 971

a As the number of bisections quickly increases when one improves
the accuracy, the computational time increases exponentially.

system Fe(CN)6
3− / Fe(CN)6

4− in KCl (0.5 M),
Fe(CN)6

3− (10−2 M), studied with a rotating electrode
(2000 rpm). A Solartron Schlumberger 1286 poten-
tiostat was employed, driven by SAMDIE acquisition
software [32].

Consider the model in Eq. (7) with p defined by Eq.
(4), and take:

cO,init=10−5 mol cm−3, cR,init=0 mol cm−3,

6=0.977×10−2 cm2 s−1

v=2000×
p

30
rad s−1, E°=0.223 V/SHE

Classically, the estimates of the parameter vector are
obtained on the Tafel lines. By fitting asymptotes one
gets a particular model output which may or may not
fall within the template as this template is ignored by
the method (see Fig. 4). Moreover the information
provided by the non-asymptotic region is then not
taken into account. The set-inversion approach pre-
sented in this paper allows one to get the set of all
acceptable parameter vectors p for which ym(p) is in-
cluded in the template defined by [y ].

The solution set S obtained by SIVIA turns out to be
empty, which implies that one hypothesis at least is not
satisfied. Indeed, the faradaic current density is positive
at high electrode potentials, so data for large j do not
belong to the template defined by [y ], assuming that
cR,init=0. This hypothesis should therefore be
questioned.

We then define the model as:

ym
3 (p,t)=

p3−cO,init exp(− t)

p1 exp(−p2t)+
1

mO

+
1

mR

exp(− t)
(24)

and incorporate cR,init in the parameter vector

tempt at minimizing the computational time tc, which
depends on the tolerance parameter o. As o decreases,
the number of bisections n and thus tc increase expo-
nentially (see Table 1). Recent techniques based on
constraint propagation make it possible to improve tc

by reducing n, with the help of any contraction al-
gorithm [30,31]. On a 350 MHz Pentium II, it then
becomes possible to obtain a good estimate (o=0.001)
in less than five seconds.

An uncertainty interval for each parameter can be
obtained by projection of the outer approximation of S
onto the axes of parameter space: (a) for an uncertainty
on jf taken as 0.1, p1� [63.487;141.457], p1� [0.085;0.668]:
(b): if this uncertainty is decreased to 0.01, the parame-
ter uncertainty intervals become p2� [96.141;103.908],
p2� [0.370;0429].

For an uncertainty of 0.001, S becomes empty be-
cause SIVIA has eradicated all p ’s in P, thus proving
that there is no estimate consistent with our data and
hypotheses, something no point estimator can do.

Actual data for a redox system were collected for the

Fig. 4. Relation jf (j): experimental data (mixed line), template deduced from uncertainty in these data (full line), model output for the parameter
vector obtained by the Tafel method (+ ).
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Table 2
Results obtained by SIVIA on the redox example, with 0o=0.0001

Pii [p̂i]pi

1/k°1 [0.01;106] [199.522; 314.580]
[0;1]ao [0.562; 0.743]2
[0;105]3 [1.937×107; 2.361×107]cR,init

[0.1;105]1/mo [132.517;235.526]4
5 1/mo [0.1; 105] [147.340;157.596]

p=
� 1

k°
ao cR,init

1
mO

1
mR

�%
Table 2 presents the results obtained by SIVIA, after

projecting S+onto each of the parameter axes.
The values taken previously for mO and mR were

consistent with these estimates, and the relationship
mO=mR that had been assumed is not invalidated as
the intersection between the intervals [p̂4] and [p̂5] is
non-empty. This assumption can however be dispensed
with, since mO and mR can be estimated separately.
Since m̂O� [4.24×10−3;7.55×10−3] and m̂R� [6.34×
10−3;6.79×10−3], it turns out that mO is estimated
more precisely than mR, which is not surprising because
most of the data correspond to reduction. To improve
the precision on mR, one should explore the anodic
behavior.

4.2. Volmer–Heyro6sky model

First consider noise-free simulated data:

y(ti)=10−5exp(−0.4 ti)+10−9exp(−0.8 ti);

i=1,...,81, (25)

which were generated by Eq. (12) with:

p*= (10−5 10−9 0.4 0.8)%

for cA,init=10−3 mol cm−3. The independent variable ti

varies between −11.61 and 19.35 as we consider

E� [−0.3 V;0.5 V]

We assume that:

P=P1= ([10−9;106] [10−9;106] [0;1] [0;1])% (26)

The projection on the plane (p3,p4) of the set S0 S−

obtained by SIVIA is presented on Fig. 5, left. As could
be expected, it contains two symmetrical point images

p=
� 1

k°
aO cR,init

�%
The outer approximation S+of S computed by

SIVIA is then non-empty and enclosed in the box

[263.652;299.212]× [0.581;0.632]

× [2.039×10−7;2.191×10−7].

Moreover the list S− is non-empty, which proves that S
is not empty. Notice that cR,init� [2.039×10−7;2.191×
10−7], which rules out a zero value. Asymptotic meth-
ods do not allow the estimation of cR,init with this
accuracy based on the present data, as they do not take
into account the non-asymptotic region and the upper
bound for the dimensionless electrode voltage j is too
low.

To escape this limitation of asymptotic methods and
take the data associated with mixed regimes into ac-
count, one may think to use nonlinear programming to
estimate p by least-squares. Again, there would be no
guarantee that the resulting method would be consis-
tent with the template defined by the uncertainty of the
sensors.

So far, the diffusion coefficients and the standard
potential were assumed to be known. We assume now
that they are unknown. An extended parameter vector
can then be defined as:

Fig. 5. Projection in the plane (p3,p4) of the set S+ computed by SIVIA, (left: no noise, search on P1; right: 5% noise, search on the limited region
P2, see text).
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Table 3
Results obtained by minimization of a least-square criterion by the
Gauss–Newton algorithm on the Volmer–Heyrovsky example

i p i* p̂i

10−5 3.57×10−71
9.622×10−610−92

0.46550.43
0.8 0.39784

global minimizer p*, for which the cost would be zero
in this noise-free case. As can be checked on Table 3, p̂
is actually quite far from p*, whereas p* does belong to
the set characterized by set inversion.

Set inversion can also be used to eliminate model
structures that are inconsistent with the data given their
uncertainty. In the case where this uncertainty is negli-
gible, as in the noise-free example, this allows one to
study the distinguishability of model structures in a
numerical way. We take the one-exponential model
described by Eq. (7), and estimate its parameter vector
for the Volmer–Heyrovsky noise-free simulated data.
Point estimators will find a solution, as we showed that
these data can easily be fitted to a one-exponential
model, thus accepting the redox model: numerically,
one would thus conclude that the redox model is not
distinguishable from the Volmer–Heyrovsky model. On
the other hand, provided that o is taken small enough,
SIVIA allows us to prove numerically that the redox
model is inconsistent with the data generated according
to the Volmer–Heyrovsky mechanism.

We take now P=P2= ([10−6;106] [10−9;103] [0;1]
[0;1])%, which eliminates one of the two solutions due to
a lack of global identifiability and which amounts to
assuming that:

k01� [10−6;106]
k02� [10−6;106]

a01� [0;1]
a02� [0;1]

We add 5% noise to the data, and set:

[y ]i= [[0.95× �yi �;1.05× �yi �] for i=1,...,N.

The estimation of p4 becomes very inaccurate (Fig. 5,
right). Note that a least-square method would give even
worse results than in the noise-free case. The failure
should not be blamed upon the estimation method,
which is only the bearer of bad news, but upon the
data. For such ill-conditioned problems, no estimation
method, sophisticated as it may be, can improve the
situation. The solution is rather to design the experi-
ment in such a way as to make the data more informa-
tive, for instance by reducing cA,init or by resorting to
impedance measurements. SIVIA can thus help one to
conceive better experiments to be performed in order to
improve the accuracy of the estimates.

5. Conclusions

While the numerical values of the parameters com-
puted by local iterative optimization of a criterion can
usually not even be guaranteed to correspond to a
global optimizer of this criterion, using set inversion via
interval analysis allows one to characterize the set of all

Fig. 6. Noise-free data: (+ )y(ti)=10−5exp(−0.4 ti)+10−9exp(−
0.8ti); i=1,…,81, and VH model output for P. obtained by minimiz-
ing a least-square criterion with the Gauss-Newton algorithm
(continuous line); although the fit looks perfect, P. is widely off the
mark.

Ã
Ã

Ã

Á

Ä

Ã
Ã

Ã

Â

Å

of the two vectors pa=p* and pb, which confirms
numerically the result of the structural identifiability
study. A third parasitic component, which could not
have been predicted by the identifiability study is also
present. It is made of undetermined boxes, centered on
(p1� [10−9;10−5]; p2� [10−9;10−5]; p3=0.4; p4=0.4)
(see Fig. 5, left). Its volume can be reduced using a
smaller o, but computational time then increases. This
area corresponds to a one-exponential model (p3=p4).
This is because the ratio of amplitudes and the large
difference between the time constants impose the
supremacy of one exponential over the other: the sys-
tem is said to be ill-conditioned.

It seems worthwhile to note that all the local iterative
methods that we tried on this example, including the
simplex, Gauss–Newton, Levenberg–Marquardt, con-
jugate gradient, quasi-Newton, and sequential
quadratic programming methods, tend to converge to
the parasitic region. The estimated parameters p̂i pro-
vided by the Gauss–Newton algorithm are given in
Table 3, and the corresponding model output is pre-
sented on Fig. 6. Although the value of the cost func-
tion is very small (1.00619×10−6) and the model
output seems satisfactory, p̂ does not correspond to the
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acceptable parameter vectors in a guaranteed way.
Guaranteed means here that no acceptable value of the
parameter vector located in the search domain has been
eliminated. The accuracy of the enclosure of the solu-
tion set S is tuned by the parameter o. For any given
positive o, S is guaranteed to be enclosed in the com-
puted outer approximation S+. The smaller o is, the
more accurate the enclosure, at the cost of more com-
plex computations; a compromise must therefore be
struck.

Various models can be considered, for which classical
estimators may fail, because of structural defects of the
model, such as unidentifiability of a given model or
indistinguishability of a set of models, or because of
numerical problems, such as ill-conditioning. The redox
and Volmer–Heyrovsky examples considered in this
paper are cases in point. Moreover, as the solutions
provided are guaranteed, SIVIA allows one to invali-
date hypotheses or models, by proving that the set of
feasible parameters is empty.

The algorithm presented here has two major limita-
tions. First, its complexity is exponential in the number
of parameters, which restricts its use to low-dimen-
sional problems. For the sake of simplicity of exposi-
tion, the version of SIVIA presented here is far from
optimal from the viewpoint of computational time, and
significant improvements can be expected in the near
future. The second limitation is that efficient functions
are needed, which are available only when an explicit
solution for the equations defining the model can be
found. The computation of inclusion functions for dif-
ferential equations is an active domain of research in
interval analysis.

The importance of a realistic specification of the
template that defines the acceptable model outputs
must be stressed. The approach used here for this
specification was to base it on the technical data of the
measuring apparatus, but other options could equally
be considered.

The steady-state data used in this paper often turn
out not to be informative enough, and more accurate
results can be expected from impedance data. This
requires some extensions of the algorithm, presently
under study.
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