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Institut d’Informàtica i Aplicacions, Universitat de Girona, Campus Montilivi,
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Abstract. In this paper, a new algorithm based on Set Inversion techniques and
Modal Interval Analysis is presented. This algorithm allows solving problems involv-
ing quantified constraints over the reals through the characterization of their solution
sets. The presented methodology can be applied over a wide range of problems
involving uncertain (non)linear systems. Finally, an advanced application is solved.
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1. Introduction

Many physical problems can be stated in a logical form by means of
some kind of quantified constraints: formulas with the logical quan-
tifiers, universal and existential, a set of real continuous functions,
equalities or inequalities and variables ranging over real interval do-
mains. More recently, this formulation has been referenced by different
authors under the names: Generalized Constraints Satisfaction Prob-
lems (Shary, 2002) or Quantified Constraints Satisfaction Problems
(QCSP) (Benhamou and Goulard, 2000; Ratschan, 2003).

Cylindrical Algebraic Decomposition (Collins, 1975; Hong, 1992),
for which a practical implementation exists (Brown, ), has been the
most extended method to solve this type of problems. However, this
technique is only well suited for small or middle-size problems because
of its computational complexity. Moreover, it often generates huge
output consisting on highly complicated algebraic expressions which
are not useful for many applications and it does not provide partial
information before computing the total result.
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Methods that appear lately (Garloff and Graf, 1999; Benhamou
and Goulard, 2000) try to avoid some of these problems restricting
oneself to approximate instead of exact solutions, using solvers based
on numerical methods. However, these algorithms are also restricted to
very special cases (e.g. quantified variables only occur once, only one
quantifier,etc.). Recently, some of these deficiencies have been partially
removed by Ratschan (Ratschan, 2003) but, a lot of work remains to
be done before obtaining an efficient general method.

Many practical examples exist on the resolution of QCSP using
the different existing approaches, for example in control engineering
(Abdallah et al., 1999; Jirstrand., 1997; Dorato., 2000; Ratschan and
Veh́ı, 2004; Jaulin et al., 2004), electrical engineering (Sturm, 2000),
mechanical engineering (Ioakimidis, 1999), biology (Chauvin et al.,
1994) and many others (Benhamou et al., 2004).

2. Problem Statement

A Quantified Constraint (QC) is an algebraic expression over the re-
als which contains quantifiers (∃, ∀), predicate symbols (e.g.,=, <,≤),
function symbols (e.g.+,−,×, sin, exp), constants and variables x =
{x1, . . . , xn} ranging over reals domains D = {D1, . . . , Dn}.

An example of a QC is the following one,

(∀x ∈ R) (x4 + px2 + qx + r ≥ 0), (1)

where x is a universally (∀) quantified variable and p, q and r are free
variables.

As defined in (Shary, 2002), a numerical constraint satisfaction prob-
lem, is a triple CSP = (x ,D ,C(x )) defined by

(i) a set of numeric variables x = {x1, . . . , xn},
(ii) a set of domains D = {D1, . . . , Dn} where Di, a set of numeric

values, is the domain associated with the variable xi.

(iii) a set of constraints C(x ) = {C1(x ), . . . , Cm(x )} where a constraint
Ci(x ) is determined by any numeric relation (equation, inequality,
inclusion, etc.) linking a set of variables under consideration.

A solution to a numeric constraint satisfaction problem is an instan-
tiation of the variables of x for which both inclusion in the associated

QSI_RC.tex; 14/03/2005; 17:43; p.2



Quantified Set Inversion Algorithm 3

domains and all the constraints of C(x ) are satisfied. All the solutions
of a constraint satisfaction problem thus constitute the set

Σ = {x ∈ D | C(x ) is satisfied}. (2)

Let us suppose that the constraints C(x ,p) depend on some parame-
ters p1, p2, . . . , pl about which we only know that they belong to some
intervals P1, P2, . . . , Pl. Moreover, these parameters have an associated
quantifier Q ∈ {∀, ∃}. Taking into account the dual character of interval
uncertainty, the most general definition of the set of solutions to such
Quantified Constraint Satisfaction Problem (QCSP) should have the
form

Σ = {x ∈ D | (Q1pσ1 ∈ Pσ1) . . . (Qlpσl
∈ Pσl

)C(x ,p)}, (3)

where

− each Qi is logical quantifier ∀ or ∃,
− p = {p1, p2, . . . , pl} is the set of parameters of the constraints

system considered,

− P = {P1, P2, . . . , Pl} is a set of intervals containing the possible
values of p,

− σ = (σ1, σ2, . . . , σl) is a permutation of the numbers 1, . . . , l.

The sets of the form (3) will be referred to as quantified solutions
sets to the quantified constraints satisfaction problem.

Remark : In this paper, only the case of universal quantifiers preced-
ing the existential ones will be dealt. The solution set corresponding
to this particular case will be referred to as UE-Solution set (ΣUE)
(AE-Solution set by other authors (Shary, 2002)).

3. Quantified Set Inversion

Set Inversion (SI) (Jaulin and Walter, 1993), a well known paradigm
of interval analysis, is well suited approximating solution sets of the
form (2) by means of subpavings (sets of nonoverlapping boxes). The
problem arises when these sets are of the form (3), because classical
Set Inversion is not able to solve this type of problems in a direct way.
The problem of characterizing the sets of the form (3) will be referred
to as Quantified Set Inversion (QSI).
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In this section, a new algorithm based on Modal Interval Analysis
(MIA) (Gardenyes et al., 2001) and inspired on the classical Set
Inversion algorithm is presented. This algorithm, which will be named
Quantified Set Inversion via Modal Interval Analysis (QSIMIA),
allows the characterization of UE-solution sets.

3.1. Quantified Set Inversion via Modal Interval Analysis

Let QCSP = (x ,D , C(x ,p)) be a quantified constraint satisfaction
problem. Let us characterize the set ΣUE of all x such that C(x ,p) is
satisfied.

Let us consider the case when the constraints are under the form
C(x ,p) := f(x ,p) S 0, with f a continuous function from Rn to R and
the UE-Solution Set defined by

ΣUE = {x ∈ R | ∀(pU ,PU
′)∃(pE ,PE

′)f(x ,p) S 0}. (4)

Remark : ∀(x ,X ′) and ∃(x ,X ′) is another denotation for (∀x ∈ X ′)
and (∃x ∈ X ′), respectively, in MIA.

Given a box X (Cartesian product of intervals), an algorithm which
does quantified set inversion is based on a branch-and-bound technique
and the three following sets of bounding rules:

Rule 1 : ∀(x ,X ′)∀(pU ,PU
′)∃(pE ,PE

′) C(x ,p) ⇔
X ⊆ Σ.

This quantified constraint, used to prove that a box X is contained
in the solution set, can not be easily proved by means of classical in-
terval computations. For this reason, MIA techniques are proposed.
MIA is a powerful mathematical tool which allows the evaluation
of quantified constraints over the reals by means of interval compu-
tations. Concretely, the *-semantic theorem of MIA is used. The
quantified constraint, corresponding to Rule 1, can be checked through
the following reasoning

Out(f∗(X ,PU ,PE )) ⊆ Z ⇒ f∗(X ,PU ,PE ) ⊆ Z

⇔ ∀(x ,X ′)∀(pU ,PU
′)∃(pE ,PE

′) f(x ,p) S 0
⇔ X ⊆ Σ,

where X ,PU are proper intervals, PE is an improper one, Out(f∗(X ,PU ,PE ))
is an outer approximation of the the *-semantic extension of the con-
tinuous function f and Z = [0, 0], Z = (−∞, 0) or Z = (0,∞), for
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f(x ,p) = 0, f(x ,p) < 0 or f(x ,p) > 0, respectively.

Remark : A modal interval X is defined as a couple X = (X ′,∀) or
X = (X ′, ∃) where X ′ is its classic interval domain, X ′ ∈ I(R), and the
quantifiers ∀ and ∃ are a selection modality. The modal intervals of the
type X = (X ′, E) are called proper intervals or existential intervals,
the intervals of the type X = (X ′, ∀) are called improper intervals
or universal intervals. A modal interval can be represented using their
canonical coordinates in the form

X = [a, b] =
{

([a, b]′, ∃) if a ≤ b
([b, a]′, ∀) if a ≥ b.

For example, the interval [2, 5] is equal to ([2, 5], ∃) and the interval
[8, 4] is equal to ([4, 8], ∀).

The inclusion operator ⊆ defined by MIA has a different interpre-
tation respect the set based definition used by classical interval analysis.
However, using the canonical coordinates X = [x1, x2] and Y = [y1, y2],
the inclusion maintains the traditional modus operandi; that is to say,

[x1, x2] ⊆ [y1, y2] ⇔ (x1 ≥ y1, x2 ≤ y2) .

For example, the interval [1,−1] is included inside the interval [0, 0].

In order to prove the second rule, used to verify that a box X has
no intersection with the solution set, the following implication is used:

Rule 2 : ¬(∀(pU ,PU
′)∃(pE ,PE

′)∃(x ,X ′) C(x ,p)) ⇒
X ⊆ Σ.

where Σ is the complementary set of Σ defined by

Σ = {x ∈ R | ∃(pU ,PU
′)∀(pE ,PE

′)¬(f(x ,p) S 0)}. (5)

This quantified constraint is, analogously, implied by the following
interval exclusion:

Inn(f∗(X ,PU ,PE )) * Z ⇒ f∗(X ,PU ,PE ) * Z

⇔ ¬(∀(pU ,PU
′)∃(pE ,PE

′)∃(x ,X ′) f(x ,p) S 0)

⇔ ∃(pU ,PU
′)∀(pE ,PE

′)∀(x ,X ′)¬(f(x ,p) S 0)

⇒ ∀(x ,X ′)∃(pU ,PU
′)∀(pE ,PE

′)¬(f(x ,p) S 0)

⇔ X ⊆ Σ,
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with PU a proper interval, X ,PE improper ones, Inn(f∗(X ,PU ,PE ))
an inner approximation of the the *-semantic extension of the con-
tinuous function f and Z = [0, 0], Z = (−∞, 0) or Z = (0,∞), for
f(x ,p) = 0, f(x ,p) < 0 or f(x ,p) > 0, respectively.

Finally, if none of these rules are accomplished, the box X is unde-
fined.

Rule 3 : otherwise, X is undefined.

Remark: When the constraints are under the form C(x ) := f (x ,p) S
0, with f a continuous function from Rn to Rm and each existen-
tially quantified variable appears in only one function component, the
problem is reduced to m different problems, one for each function
component. Then, the solution set may be obtained as

Σ = Σ1 ∩ . . . ∩ Σm.

Table I shows the algorithm which does Quantified Set Inversion
and figure 3.1 shows a two dimensional example of the three possible
situations corresponding to the three rules.

Table I. Quantified Set Inversion Algorithm

Algorithm QSI(In: C,X 0, ε, Out: Σ−,4Σ)

1. Initialization: Stack=X 0;Σ− := ∅;4Σ := ∅
2. Repeat

3. Unstack X ;

4. if Width(X ) ≤ ε, then 4Σ := 4Σ ∪X ,

5. else if Rule 1 is satisfied, then Σ− := Σ− ∪X ,

6. else if Rule 2 is satisfied, then X has no solutions,

7. else Bisect X and stack resulting boxes;

8. Until Stack=∅;

where

− ε: QSI stops the bisecting procedure over X when this precision
is reached,

− Σ−: Subpaving (list of nonoverlapping boxes) representing an inner
approximation of the solution set,
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− 4Σ: Subpaving representing all the undefined boxes.

These subpavings provide the following bracketing of the solution
set:

Σ− ⊆ Σ ⊆ (Σ− ∪4Σ).

Figure 1. Two dimensional example of QSI algorithm.

3.2. f∗ Computation

The quantified constraints corresponding to Rules 1 and 2 have been
reduced to interval inclusions of the *-semantic extension. However,
computing the *-semantic extension of a continuous function f by
means of any of the interpretable rational extensions given by MIA,
provokes an overestimation of the interval evaluation, due to the pos-
sible multi-occurrences of some variable and when the not optimal
rational computations. An algorithm, based on results of MIA and
branch-and-bound techniques which allows to efficiently compute an
inner and an outer approximation of f∗ has been built.

3.2.1. Twin Arithmetic
In order to handle simultaneously inner and outer approximations for
f∗ the set of twins, introduced by Gardenyes et al (Gardeñes et al.,
1980), will be used.

From the lattice of modal intervals (I∗(R),⊆) a new lattice (I∗(I∗(R)),⊆
) can be build following the standard process. One elementA ∈ (I∗(I∗(R)),
named twin, is defined by

A := |[A,A]|

QSI_RC.tex; 14/03/2005; 17:43; p.7



8 P. Herrero, M.A. Sainz, J. Veh́ı and L. Jaulin

where A ∈ I∗(R) is the lower bound and A ∈ I∗(R) is the upper bound
of A, and

I∗(I∗(R) := {A = |[A, A]| | A, A ∈ I∗(R)}
is the set of twins over I∗(R). If A ⊆ A the twin is called proper twin,
which can be identified with the set

A = {X ∈ I∗(R) | A ⊆ X ⊆ A}
of which elements are the modal intervals between both bounds A and
A.

The inclusion between twins A = |[A, A]| and B = |[B,B]| is defined
by means of the interval inclusion between their bounds

A ⊆ B⇔ (A ⊇ B , A ⊆ B).

The lattice operations meet and join on I∗(I∗(R)) for a bounded
family of twins A(I) := {A(i) = [A(i), A(i)] ∈ I∗(I∗(R)) | i ∈ I} (I is
the index’s domain) are defined by

∧

i∈I

A(i) = [
∧

i∈I

A(i),
∧

i∈I

A(i)],

∨

i∈I

A(i) = [
∨

i∈I

A(i),
∨

i∈I

A(i)],

denoted A ∧ B and A ∨ B for the corresponding two-operands’ case.
These operators do not have the same set-theoretical meaning than in
I∗(R).

Figure 2 shows geometrical representations for a proper twin, the
twin inclusion and the twin meet and join operators to illustrate these
concepts.

A

A

B

A

A

B

A

A
B

B

1 1

1

2 ∨1 2 2

∧1 2
PSfrag replacements

A
B

Figure 2. Twins, twin inclusion, twin meet and twin join for two proper twins

3.2.2. Basic Algorithm
Let f be a Rn to R real continuous function and X = (U,V) a modal
interval vector split into their U proper and V improper components.
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Let {U1, . . . ,Ur} be a partition of U and, for every j = 1, . . . , r, let
{V1j , . . . ,Vsj} be a partition of V. Each interval U j ×V kj is called
cell and each V -partition is called strip. Figure 3 shows a geometrical
representation of an example of these partitions, when X has only one
proper component and one improper component.

Ú

strip 2
cell U  × V

4 54

U

V

Figure 3. Partition, strips and cells

Taking into account the definition of the interval *-semantic exten-
sion of f to X, then

f∗(X) :=
∨

u∈U′

∧

v∈V′
[f(u, v)]

=
∨

j∈{1,...,r}

∨

uj∈U′j

∧

v∈V′
[f(uj , v)] (6)

=
∨

j∈{1,...,r}

∨

uj∈U′j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′kj

[f(uj , vkj )] (7)

∈
∨

j∈{1,...,r}

∨

uj∈U′j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′kj

|[[f(uj , vkj )], [f(uj , vkj )]]| (8)

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
|[f∗(ǔj ,Vkj

), f∗(Uj , v̌kj
)]| (9)

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
|[Inn(fR(ǔj ,Vkj )), Out(fR(Uj , v̌kj ))]|, (10)

where ǔj is any fixed point of U′
j (j = 1, . . . , r) and v̌kj

is any fixed
point of V′

kj
(kj = 1j , . . . , sj), for example the mid-points or the bounds

of the intervals, and fR is the modal rational interval extension of the
function f (Gardenyes et al., 2001), because
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(6) is true in accordance with the associativity of the join operator,

(7) is true in accordance with the associativity of the meet operator.

(8) is true because the point-wise interval [f(uj , vkj )] obviously be-
longs to the proper twin |[[f(uj , vkj )], [f(uj , vkj )]]|, with equal bounds.

(9) is true since [f(uj , vkj )] = f∗(uj , vkj ) ⊇ f∗(uj ,Vkj ) implies
∨

j∈{1,...,r}

∨

uj∈U′j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′kj

[f(uj , vkj )] ⊇

⊇
∨

j∈{1,...,r}

∨

uj∈U′j

∧

kj∈{1j ,...,sj}
f∗(uj ,Vkj )

⊇
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
f∗(ǔj ,Vkj )

and, similarly, [f(uj , vkj
)] = f∗(uj , vkj

) ⊆ f∗(Uj , vkj
) implies

∨

j∈{1,...,r}

∨

uj∈U′j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′kj

[f(uj , vkj )] ⊆

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
f∗(Uj , v̌kj ).

(10) is true because

f∗(ǔj ,Vkj ) ⊇ Inn(fR(ǔj ,Vkj ))

and
f∗(Uj , v̌kj ) ⊆ Out(fR(Uj , v̌kj )).

The final relation (10) is equivalent to

Inner approx. :
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
Inn(fR(ǔj ,Vkj )) ⊆ f∗(X) (11)

Outer approx. :
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}
Out(fR(Uj , v̌kj )) ⊇ f∗(X) (12)

for any partition of X . Moreover, the finer partition, the better ap-
proximations.

3.2.3. Improving the f∗ Computation
In order to reduce the run time of the branch-and-bound algorithm, a
set of additional criteria, based on the study of the monotony of the
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function, the syntax tree of the function and theorems from MIA,
can be applied. The use of these criteria can drastically improve the
computation effort by several orders of magnitude.

Remark: The results showed in this paper have been obtained using
the improved version of the f∗ algorithm, which is not detailed in this
paper.

3.2.4. Example
Let be the quantified constraint

∀(x, [0, 6]′) ∀(z, [6, 8]′) ∃(y, [2, 8]′) (f(x, y, z) = 0)

where f(x, y, z) := x2 + y2 + 2xy − 20x− 20y + 100− z.
To prove this quantified constraint, it is sufficient to verify the

following interval inclusion

Out(f∗([0, 6], [6, 8], [8, 2]) ⊆ [0, 0].

In less than 0.05 seconds on a Pentium IV the f∗ algorithm obtains
the following result: inner approximation [1.01921024,−2.0000001] and
outer approximation [0.99040255,−1.99999999]. As Out(f∗([0, 6], [6, 8], [8, 2]) ⊆
[0, 0] fulfills, the quantified constraint is true.

4. Application to Control

4.1. Advanced Aircraft Application

An important question in advanced aircraft applications (Jirstrand.,
1997) is to know what orientation (α, β) of an aircraft, with respect to
the airflow, can be controlled by the admissible control-surface config-
urations (u1, u2, u3). See figure 4.

The aerodynamic moments acting over the aircraft TL, TM and
TN , are nonlinear functions of α, β, which are the angles of attack
and sideslip respectively, and the control-surface deflections (u1, u2, u3),
which are the aileron, elevator, and rudder deflections respectively.
These moments are usually given in tabular form together with some
interpolation method. In (Stevens and Lewis, 1993) these tables are
listed for an F-16 aircraft and the following are scaled polynomial
approximations of the corresponding functions
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Figure 4. The orientation of an aircraft with respect to the airflow.

TL(α, β, u1, u3) = −q1β − q2αβ + q3a
2β + q4β

3 + u1(−q5 − q6α +
q7α

2 − q8α
3 + q9β

2 + q10αβ2) + u3(q11 − q12α +
q13α

2 − q14α
3 + q15α

4 − q16β
2 − q17αβ2 +

q18α
2β2 + q19β

4),
TM (α, u2) = −q20 − q21u2 + u2

2 + q22u
3
2 + q23α− q24u2α +

q25u
2
2α− q26α

2 + q27α
2 + q28α

3,

TN (α, β, u1, u3) = q29β − q30αβ − q31α
2β + q32α

3β − q33β
3 +

q34αβ3 + u1(−q35 + q36α− q37α
2 + q38β

2 +
q39α

3 − q40αβ2) + u3(−q41 + qα−
q42α

2 + q43β
2 + q44α

3 + q45αβ2 − q46α
4 −

q47α
2β2 − q48β

4),

where {q1, · · · , q48} are polynomial coefficients, which in the present
work are considered uncertain in contrast with the original work.

This problem can be stated as a QCSP :

− Set of numeric variables x = {α, β}.
− Set of variables’ domains X = {A,B}.
− Set of universally quantified parameters pU = {q1, · · · , q48}.
− Set of existentially quantified parameters pE = {u1, u2, u3}.
− Set of parameters domains PU = {Q1, · · · , Q48} and PE = {U1, U2, U3}

where Ui = [−1, 1] for i = 1, 2, 3.
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Table II. Uncertain coefficients

q1 q2 q3 q4 q5 q6 q7

38∓ 0.1 170∓ 0.1 148∓ 0.1 4∓ 0.1 52∓ 0.1 2∓ 0.1 114∓ 0.1

q8 q9 q10 q11 q12 q13 q14

79∓ 0.1 7∓ 0.1 14∓ 0.1 14∓ 0.1 10∓ 0.1 37∓ 0.1 48∓ 0.1

q15 q16 q17 q18 q19 q20 q21

8∓ 0.1 13∓ 0.1 13∓ 0.1 20∓ 0.1 11∓ 0.1 12∓ 0.1 125∓ 0.1

q22 q23 q24 q25 q26 q27 q28

6∓ 0.1 95∓ 0.1 21∓ 0.1 17∓ 0.1 20∓ 0.1 81∓ 0.1 139∓ 0.1

− Set of constraints C(x ,p) = {TL(α, β, u1, u3, q1, · · · , q19) = 0,
TM (α, u2, q20, · · · , q28) = 0, TN (α, β, u1, u3, q29, · · · , q48) = 0}.

And its UE-solution is expressed by

ΣUE = {α× β|∀(q1, Q
′
1) · · · ∀(q48, Q

′
48)∃(u1, U

′
1)∃(u2, U

′
2)∃(u3, U

′
3)

(TL(α, β, u1, u3, q1, · · · , q19) = 0 ∧ TM (α, u2, q20, · · · , q28) = 0 ∧
TN (α, β, u1, u3, q29, · · · , q48) = 0)}.

4.2. Test Case

Consider the problem stated above of finding the admissible set of
orientation (α, β) of a F-16 aircraft for which the control-surface system
(u1, u2, u3) can keep the aircraft stabilized. For the sake of simplicity,
suppose that the aerodynamic moment TN acting over the aircraft is
already controlled.

Let us suppose an initial search domain (α, β) ∈ ([−1, 1], [−1, 1])
and the uncertain coefficients of table 4.2.

QSIMIA generates, in 35 seconds on a Pentium IV 1.5GHz, and
a precision of ε = 0.1 (smallest bisected variable’s domain), the paving
of figure 4.2. Where the middle dark region corresponds to an inner
approximation of the solution set Σ, the darker region corresponds to
an inner approximation of the non solution set Σ and the lighter region
is undefined.
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Figure 5. Paving generated by QSI algorithm.

5. Conclusions and Work in Progress

The contribution of this paper has been to introduce a new algo-
rithm, named QSIMIA (Quantified Set Inversion via Modal Interval
Analysis), which combines Set Inversion techniques with Modal Interval
Analysis in order to solve continuous Quantified Constraint Satisfac-
tion Problems (QCSP) through the characterization of their solution
sets. The applicability of the method to engineering problems has been
shown by means of solving a control problem on aircraft stabilization.

One of the work in progress consists on solving a QCSP where
one or more existentially quantified variables appears in more than a
function component. Another work in progress consists on reducing the
non polynomial complexity of the QSI algorithm due to the branch-
ing, introducing a narrowing operator (a contractor) for quantified
constraints.
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