A Contractor for the Non-Overlapping of
 Objects Described by Non-Linear Inequalities

Ignacio SALAS \& Gilles CHABERT

Content

Definitions

The Non-Overlapping Constraint
The Contractor
Experiments
Summary

Definitions

About Objects and Shapes

Definitions

- Our target are the curved shapes
- That can be represented by non-linear inequalities
- In a general way with disjunctions of system of non-linear inequalities

Definitions

System $_{1} \quad$ U System ${ }_{2} U$ System $_{3} U^{\text {System }}$

The resulting shape is not necessarily convex

And this allows to represent the avalaible space for packing as a regular shape (called "enclosing shape")

Definitions

Moving and Reference Objects

All the objects that we consider must take a rol at some moment

Reference Object

It is an object fixed, and it is used as reference for to contract the origin box of other object

Moving Object

It is an object which origin box we want to contract

The Non-Overlapping Constraint

Between Regular Shapes

Between an Enclosing Shape and a regular Shape

The overlapping with the enclosing shape is handled as with any other shape, since the description of the objects allows a transparent process.

The Non-Overlapping Constraint

The Contractor

- Target: Remove all the parts that violate the non-overlapping constraint
- The contraction operates over 2 objects
- The reference object
- The moving object

The Contractor

CtcPacking

CtcShadowPropagator

CtcSubpacking

The Contractor

CtcShadowPropagator

It is important not to lose solutions and perform the contraction in an efficient way

The Shadow

The Contractor

The Contractor

The Contractor

CtcSubpacking

The origin box of each moving object is contracted with Sweep.

The Contractor

The Sweep algorithm

The Contractor

The Inflator

Our main objective it is to find the biggest box in the intersection of the object

And respect the dimensions of the Working Area (WA)

If exists some box F, it is possible translate it to the forbidden point

Forbidden
point

The Contractor

The Contractor

The Contractor

How to obtain the point \mathbf{P} ?

Our objective is find a point that belongs to the moving object and to the compulsory part of the reference object

Where always will be possible to find the reference object, given an origin box

The Contractor

How to obtain the point \mathbf{P} ?

Contract the box \mathbf{C} w.r.t. the reference object, centered in the middle point

$$
o_{r}+S_{r} \subseteq C
$$

The Contractor

How to obtain the point \mathbf{P} ?

Inflate C w.r.t. the reference object and the middle point of the box \mathbf{C}

Pick randomly a point in the resulting box and check if it belongs to both objects

Using interval evaluation

Else, Bisect
The contracted box

The Contractor

Inflate the point \mathbf{P}

The point \mathbf{P} is inflated using the box translated and the compulsory part

The inflators of Ibex can inflate inside inequalities

It is possible to inflate inside the same box all the inequalities that are part of the shape

The Contractor

Inflate the point \mathbf{P}

For this we have defined an intersection of inner inflators ...

And a union of inner inflators

Choose the box with the greatest perimeter

The Contractor

Hence, it is possible to construct a box \mathbf{B} inside the compulsory part of the reference object, i.e.

$$
B \subseteq\left(\bigcap_{p_{r} \in\left[O_{r}\right]}\left\{p_{r}+S_{r}\right\}\right)
$$

The Contractor: overlapping shape

- The overlapping shape it is the region where the reference shape will always collide with the moving shape.
- Can be calculated exactly with polytopes, but we are using curved objects.

We calculate something different

$$
\text { Overlapping } g_{r, m}=\bigcap_{x \in[\mathbf{X}]}\left(x \oplus S_{r} \oplus-S_{m}\right)
$$

The Contractor: our forbidden box

The forbidden box that we obtain belongs to this expression

S

Experiments

We consider 2 of the objects as

 reference and 1 as moving| Reference/Moving | $2^{\wedge}-M$ | $2^{\wedge}-M+1$ | \ldots |
| :--- | :--- | :--- | :--- |
| $2^{\wedge}-R$ | | Diameter of the box of the moving
 object | |
| $2^{\wedge}-R+1$ | | | |
| \ldots | Diameter of the box of each
 reference object | | |

The contractor that were used to the experiments:

- CtcShadowPropag (S)
- CtcPacking without CtcShadowPropag (P)
- Ctcpacking with CtcShadowPropag (S+P)

> Experiments in progress

Summary

It is possible describe a great number of shapes with disjunction of conjunctions of non linear inequalities

It is possible find the edges of the shadow shape, which give us a first economic contraction

To use an inflator that searchs the boxes that belongs to the intersection of the objects, allows us to obtain an approximation of the optimal forbidden region

Satisfiability Check

The satisfiability check works similar to the point selector, but only evaluate if the point exists

To find this point, was used a branch \& bound algorithm
Contract some box with the moving shape
Contract the reference shape centered in the some point
Evaluate the intersection in a random point of the resulting box

Sweep

- The target of the sweep algorithm is to prune all the parts of some domain that violate some constraint
- To perform this, we must "saturate" one of the dimensions with forbidden boxes
- This forbidden boxes must consider some forbidden point and the working area

Shadow Calculation

$$
\begin{aligned}
& \frac{\nabla f_{r}\left(x-o_{r}, y-o_{r}\right) \bullet \nabla f_{m}\left(x-o_{m}, y-o_{m}\right)}{\left\|\nabla f_{r}\left(x-o_{r}, y-o_{r}\right)\right\| *\left\|\nabla f_{m}\left(x-o_{m}, y-o_{m}\right)\right\|}=\cos (\theta) \\
& \frac{\nabla f_{r}\left(x-o_{r}, y-o_{r}\right) \bullet \nabla f_{m}\left(x-o_{m}, y-o_{m}\right)}{\left\|\nabla f_{r}\left(x-o_{r}, y-o_{r}\right)\right\| *\left\|\nabla f_{m}\left(x-o_{m}, y-o_{m}\right)\right\|}=-1 \\
& \nabla f_{r}(x, y) \\
& \nabla f_{r}\left(x-o_{r}, y-o_{r}\right) \bullet \nabla f_{m}\left(x-o_{m}, y-o_{m}\right)+ \\
& \left\|\nabla f_{r}\left(x-o_{r}, y-o_{r}\right)\right\| *\left\|\nabla f_{m}\left(x-o_{m}, y-o_{m}\right)\right\|=0
\end{aligned}
$$

