Visibility Contractors Application to Mobile Robot Localization

Rémy GUYONNEAU

JOURNÉE MEA

LISA/LARIS - University of Angers (France)

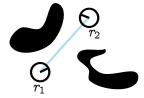
Laurent HARDOUIN
Sébastien LAGRANGE

5th December 2013

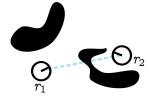
Introduction

- → Visibility is studied and used in several fields
 - Computer graphics
 - Telecommunication
 - Robotics...
- Usually associated to bearing or ranging data
- → We consider the visibility as a boolean information
 - Application to mobile robot localization

- → Visibility is studied and used in several fields
 - Computer graphics
 - Telecommunication
 - Robotics...
- Usually associated to bearing or ranging data
- → We consider the visibility as a boolean information
 - Application to mobile robot localization



- → Visibility is studied and used in several fields
 - Computer graphics
 - Telecommunication
 - Robotics...
- Usually associated to bearing or ranging data
- → We consider the visibility as a boolean information
 - Application to mobile robot localization

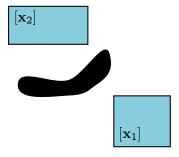


- General Presentation
- 2 Visibility contractors
- 3 Multi-robot localization
- 4 Global localization
- **6** Conclusion

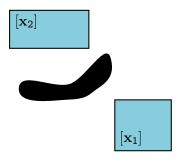
bility contractors Multi-robot localizati

- General Presentation
- 2 Visibility contractors
- 3 Multi-robot localization
- 4 Global localization
- **5** Conclusion

• Developing a contractor associated to the constraint r_1 sees r_2

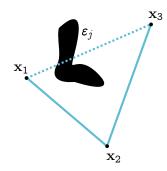


- Developing a contractor associated to the constraint r_1 sees r_2
- Developing a contractor associated to the constraint r_1 does not see r_2



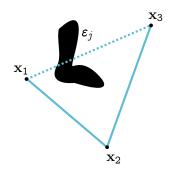
Visibility between two points

- $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\varepsilon_i} \Leftrightarrow Seg(\mathbf{x}_1, \mathbf{x}_2) \cap \varepsilon_j = \emptyset$
 - $\rightarrow \varepsilon_i$: connected subset of \mathbb{R}^n , with $\mathbf{x}_1 \notin \varepsilon_i$ and $\mathbf{x}_2 \notin \varepsilon_i$



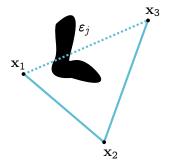
Visibility between two points

- $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\varepsilon_i} \Leftrightarrow Seg(\mathbf{x}_1, \mathbf{x}_2) \cap \varepsilon_j = \emptyset$
 - $\rightarrow \varepsilon_i$: connected subset of \mathbb{R}^n , with $\mathbf{x}_1 \not\in \varepsilon_i$ and $\mathbf{x}_2 \not\in \varepsilon_i$
 - \rightarrow Reflexive relation : $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_1)_{\varepsilon_i}$
 - \rightarrow Symmetric relation : $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\varepsilon_i} \equiv (\mathbf{x}_2 \mathsf{V} \mathbf{x}_1)_{\varepsilon_i}$
 - \rightarrow Non-transitive relation : $(\mathbf{x}_1 \forall \mathbf{x}_2)_{\varepsilon_i} \land (\mathbf{x}_2 \forall \mathbf{x}_3)_{\varepsilon_i} \not\Rightarrow (\mathbf{x}_1 \forall \mathbf{x}_3)_{\varepsilon_i}$



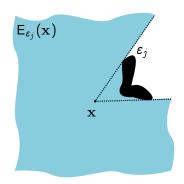
Visibility between two points

- $(\mathbf{x}_1 \lor \mathbf{x}_2)_{\varepsilon_i} \Leftrightarrow Seg(\mathbf{x}_1, \mathbf{x}_2) \cap \varepsilon_i = \emptyset$
 - $\rightarrow \varepsilon_i$: connected subset of \mathbb{R}^n , with $\mathbf{x}_1 \not\in \varepsilon_i$ and $\mathbf{x}_2 \not\in \varepsilon_i$
 - \rightarrow Reflexive relation : $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_1)_{\varepsilon_i}$
 - \rightarrow Symmetric relation : $(\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\varepsilon_i} \equiv (\mathbf{x}_2 \mathsf{V} \mathbf{x}_1)_{\varepsilon_i}$
 - \rightarrow Non-transitive relation : $(\mathbf{x}_1 \forall \mathbf{x}_2)_{\varepsilon_i} \land (\mathbf{x}_2 \forall \mathbf{x}_3)_{\varepsilon_i} \not\Rightarrow (\mathbf{x}_1 \forall \mathbf{x}_3)_{\varepsilon_i}$
 - $ightarrow \ \left((\mathbf{x}_1 \mathsf{V} \mathbf{x}_3)_{arepsilon_j}
 ight)^c = (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_3)_{arepsilon_j}$



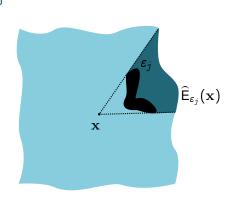
Visibility spaces of a point

$$\bullet \;\; \mathsf{E}_{\varepsilon_{i}}(\mathbf{x}) = \{\mathbf{x}_{i} \in \mathbb{R}^{n} \mid (\mathbf{x}_{i} \mathsf{V} \mathbf{x})_{\varepsilon_{i}}\}$$

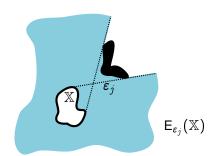


Visibility spaces of a point

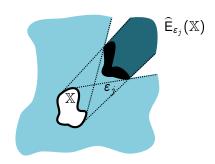
- $\mathsf{E}_{\varepsilon_i}(\mathbf{x}) = \{\mathbf{x}_i \in \mathbb{R}^n \mid (\mathbf{x}_i \mathsf{V} \mathbf{x})_{\varepsilon_i}\}$
- $\widehat{\mathsf{E}}_{\varepsilon_i}(\mathbf{x}) = \{\mathbf{x}_i \in \mathbb{R}^n \mid (\mathbf{x}_i \overline{\mathsf{V}} \mathbf{x})_{\varepsilon_i}\}$ $\rightarrow \left(\mathsf{E}_{\varepsilon_j}(\mathbf{x})\right)^c = \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbf{x})$



•
$$\mathsf{E}_{arepsilon_{i}}(\mathbb{X}) = \{\mathbf{x}_{i} \in \mathbb{R}^{n} \mid \forall \mathbf{x} \in \mathbb{X}, (\mathbf{x}_{i} \mathsf{V} \mathbf{x})_{arepsilon_{i}}\}$$

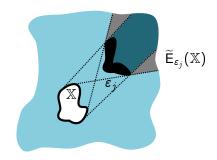


- $\mathsf{E}_{arepsilon_{i}}(\mathbb{X}) = \{\mathbf{x}_{i} \in \mathbb{R}^{n} \mid \forall \mathbf{x} \in \mathbb{X}, (\mathbf{x}_{i} \mathsf{V} \mathbf{x})_{arepsilon_{i}}\}$
- $\widehat{\mathsf{E}}_{\varepsilon_i}(\mathbb{X}) = \{\mathbf{x}_i \in \mathbb{R}^n \mid \forall \mathbf{x} \in \mathbb{X}, (\mathbf{x}_i \overline{\mathsf{V}} \mathbf{x})_{\varepsilon_i}\}$

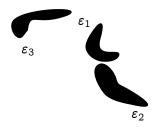


Visibility spaces of a set

- $\mathsf{E}_{\varepsilon_i}(\mathbb{X}) = \{\mathbf{x}_i \in \mathbb{R}^n \mid \forall \mathbf{x} \in \mathbb{X}, (\mathbf{x}_i \mathsf{V} \mathbf{x})_{\varepsilon_i}\}$
- $\widehat{\mathsf{E}}_{\varepsilon_i}(\mathbb{X}) = \{\mathbf{x}_i \in \mathbb{R}^n \mid \forall \mathbf{x} \in \mathbb{X}, (\mathbf{x}_i \overline{\mathsf{V}} \mathbf{x})_{\varepsilon_i}\}$
- $\widetilde{\mathsf{E}}_{\varepsilon_i}(\mathbb{X}) = \{ \mathbf{x}_i \in \mathbb{R}^n \mid \exists \mathbf{x}_1 \in \mathbb{X}, \exists \mathbf{x}_2 \in \mathbb{X}, (\mathbf{x}_i \mathsf{V} \mathbf{x}_1)_{\varepsilon_i} \land (\mathbf{x}_i \mathsf{\overline{V}} \mathbf{x}_2)_{\varepsilon_i} \}$



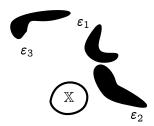
•
$$\mathcal{E} = \bigcup_{j=1}^{n_O} arepsilon_j$$



•
$$\mathcal{E} = \bigcup_{i=1}^{n_O} \varepsilon_i$$

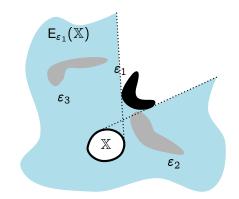
•
$$\mathcal{E} = \bigcup_{j=1}^{n_O} \varepsilon_j$$

• $\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_O} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$



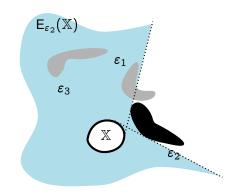
$$oldsymbol{arepsilon} \ \mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} oldsymbol{arepsilon}_j$$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$$



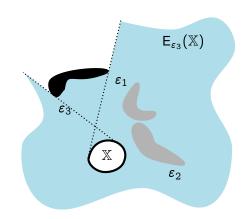
$$ullet$$
 $\mathcal{E}=igcup_{j=1}^{n_{\mathcal{O}}}arepsilon_{j}$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$$



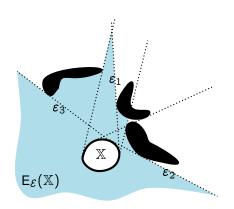
$$ullet$$
 $\mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} arepsilon_j$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$$



$$ullet$$
 $\mathcal{E}=igcup_{j=1}^{n_{\mathcal{O}}}arepsilon_{j}$

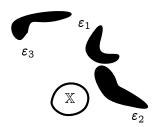
•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_{j}}(\mathbb{X})$$



$$oldsymbol{arepsilon} \mathcal{E} = igcup_{j=1}^{n_{O}} arepsilon_{j}$$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$$

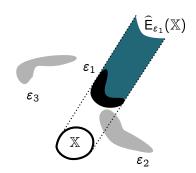
•
$$\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$$



$$oldsymbol{arepsilon} \mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} arepsilon_j$$

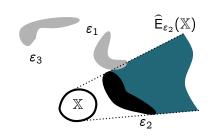
•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{i=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_i}(\mathbb{X})$$

•
$$\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$$



• $\mathcal{E} = \bigcup_{j=1}^{n_{\mathcal{O}}} \varepsilon_j$

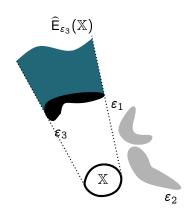
- $\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_j}(\mathbb{X})$
- $\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$



$$oldsymbol{arepsilon} \mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} arepsilon_j$$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{i=1}^{n_O} \mathsf{E}_{\varepsilon_i}(\mathbb{X})$$

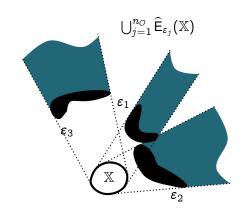
•
$$\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$$



$$oldsymbol{arepsilon} \mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} arepsilon_j$$

•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{j=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_{j}}(\mathbb{X})$$

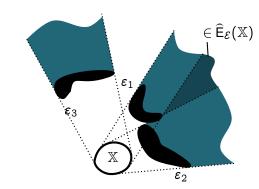
•
$$\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$$



•
$$\mathcal{E} = \bigcup_{j=1}^{n_O} \varepsilon_j$$

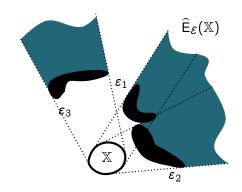
•
$$\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{i=1}^{n_{\mathcal{O}}} \mathsf{E}_{\varepsilon_i}(\mathbb{X})$$

•
$$\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$$



• $\mathcal{E} = \bigcup_{j=1}^{n_O} \varepsilon_j$

- $\mathsf{E}_{\mathcal{E}}(\mathbb{X}) = \bigcap_{i=1}^{n_O} \mathsf{E}_{\varepsilon_i}(\mathbb{X})$
- $\widehat{\mathsf{E}}_{\mathcal{E}}(\mathbb{X}) \supseteq \bigcup_{j=1}^{n_{\mathcal{O}}} \widehat{\mathsf{E}}_{\varepsilon_j}(\mathbb{X})$



General Presentation

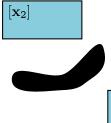
• Developing a contractor associated to the constraint $(x_1 V x_2)_{\mathcal{E}}$

General Presentation

• Developing a contractor associated to the constraint $(x_1 \forall x_2)_{\mathcal{E}}$

$$\rightarrow \mathbf{x}_1 \in [\mathbf{x}_1] \text{ et } \mathbf{x}_2 \in [\mathbf{x}_2]$$

$$\to \ (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not \in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_1]) \ \mathsf{and} \ \mathbf{x}_1 \not \in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_2])$$

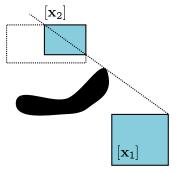


General Presentation

Developing a contractor associated to the constraint $(x_1 V x_2)_{\mathcal{E}}$

$$\rightarrow \mathbf{x}_1 \in [\mathbf{x}_1] \text{ et } \mathbf{x}_2 \in [\mathbf{x}_2]$$

$$\to \, (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not\in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_1]) \text{ and } \mathbf{x}_1 \not\in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_2])$$

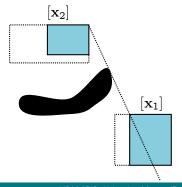


General Presentation

Developing a contractor associated to the constraint $(x_1 V x_2)_{\mathcal{E}}$

$$\rightarrow \mathbf{x}_1 \in [\mathbf{x}_1] \text{ et } \mathbf{x}_2 \in [\mathbf{x}_2]$$

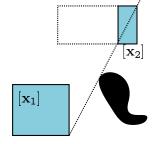
$$\rightarrow \, (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not \in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_1]) \text{ and } \mathbf{x}_1 \not \in \widehat{\mathsf{E}}_{\mathcal{E}}([\mathbf{x}_2])$$



- Developing a contractor associated to the constraint $(x_1 V x_2)_{\varepsilon}$
- Developing a contractor associated to the constraint $(\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}}$

- Developing a contractor associated to the constraint (x₁Vx₂)ε
- Developing a contractor associated to the constraint $(x_1\overline{V}x_2)_{\mathcal{E}}$
 - $ightarrow \mathbf{x}_1 \in [\mathbf{x}_1] \text{ and } \mathbf{x}_2 \in [\mathbf{x}_2]$
 - $\to (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_1]) \text{ and } \mathbf{x}_1 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_2])$

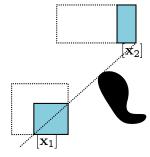
- Developing a contractor associated to the constraint $(x_1 V x_2)_{\varepsilon}$
- Developing a contractor associated to the constraint $(\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}}$
 - $\rightarrow \mathbf{x}_1 \in [\mathbf{x}_1]$ and $\mathbf{x}_2 \in [\mathbf{x}_2]$
 - $\rightarrow (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_1]) \text{ and } \mathbf{x}_1 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_2])$



Objectives

General Presentation

- Developing a contractor associated to the constraint $(x_1 V x_2)_{\varepsilon}$
- Developing a contractor associated to the constraint $(\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}}$
 - $\rightarrow \mathbf{x}_1 \in [\mathbf{x}_1]$ and $\mathbf{x}_2 \in [\mathbf{x}_2]$
 - $\rightarrow (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}} \Rightarrow \mathbf{x}_2 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_1]) \text{ and } \mathbf{x}_1 \not\in \mathsf{E}_{\mathcal{E}}([\mathbf{x}_2])$



- 2 Visibility contractors

With a segment as obstacle - $\varepsilon_i^s = Seg(\mathbf{e}_{1_i}, \mathbf{e}_{2_i})$

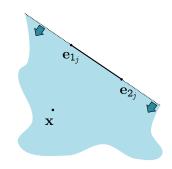
- With a segment as obstacle $\varepsilon_{i}^{s} = Seg(\mathbf{e}_{1_{i}}, \mathbf{e}_{2_{i}})$
 - → Visible space

$$\begin{split} \mathsf{E}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] = \emptyset \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) < 0 \} \end{split}$$

 \mathbf{x}

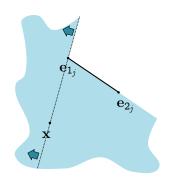
- With a segment as obstacle $\varepsilon_{i}^{s} = Seg(\mathbf{e}_{1_{i}}, \mathbf{e}_{2_{i}})$
 - → Visible space

$$\begin{split} \mathsf{E}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] = \emptyset \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) < 0 \} \end{split}$$



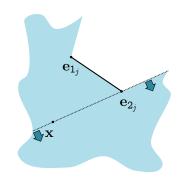
- With a segment as obstacle $\varepsilon_i^s = Seg(\mathbf{e}_{1_i}, \mathbf{e}_{2_i})$
 - → Visible space

$$\begin{split} \mathsf{E}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] = \emptyset \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) < 0 \} \end{split}$$



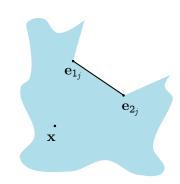
- With a segment as obstacle $arepsilon_{j}^{s} = Seg(\mathbf{e}_{1_{j}}, \mathbf{e}_{2_{j}})$
 - → Visible space

$$\begin{split} \mathsf{E}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] = \emptyset \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) < 0 \} \end{split}$$



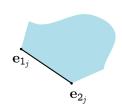
- With a segment as obstacle $\varepsilon_{i}^{s} = Seg(\mathbf{e}_{1_{i}}, \mathbf{e}_{2_{i}})$
 - → Visible space

$$\begin{split} \mathsf{E}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] = \emptyset \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) > 0 \ \lor \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) < 0 \} \end{split}$$



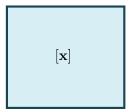
- With a segment as obstacle $\varepsilon_{i}^{s} = Seg(\mathbf{e}_{1_{i}}, \mathbf{e}_{2_{i}})$
 - → Visible space
 - → Non-visible space

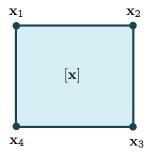
$$\begin{split} \widehat{\mathbf{E}}_{\varepsilon_{j}^{s}}(\mathbf{x}) = & \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & [\mathbf{x}_{i} \cup \mathbf{x}] \cap [\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}] \neq \emptyset \land \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) \leq 0 \land \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x} - \mathbf{e}_{1_{j}}) \leq 0 \land \\ & \zeta_{x} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x} - \mathbf{e}_{2_{j}}) \geq 0 \} \end{split}$$



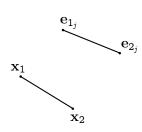
Visibility contractors Multi-robot localization Global localization C

Visibility of a segment





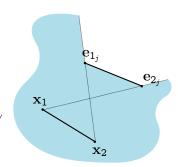
With a segment as obstacle - $\varepsilon_i^s = Seg(\mathbf{e}_{1_i}, \mathbf{e}_{2_i})$



Visibility of a segment

- With a segment as obstacle $arepsilon_j^s = Seg(\mathbf{e}_{1_j}, \mathbf{e}_{2_j})$
 - ightarrow Visible space $\mathsf{E}_{arepsilon_j^s}(Seg(\mathbf{x}_1,\mathbf{x}_2))$

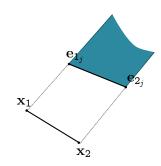
$$\begin{split} & \mathbb{E}_{\mathbf{e}_{j}^{S}}(Seg(\mathbf{x}_{1},\mathbf{x}_{2})) = \{\mathbf{x}_{i} \in \mathbb{R}^{2} \mid \\ & (\zeta_{z_{1}} = \zeta_{z_{2}}) \wedge \left(\zeta_{z_{1}} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{e}_{2_{j}} - \mathbf{e}_{1_{j}}) > 0 \vee \\ & \zeta_{z_{1}} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x}_{1} - \mathbf{e}_{1_{j}}) > 0 \wedge \zeta_{z_{2}} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x}_{2} - \mathbf{e}_{1_{j}}) > 0 \vee \\ & \zeta_{z_{1}} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x}_{1} - \mathbf{e}_{2_{j}}) < 0 \wedge \zeta_{z_{2}} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x}_{2} - \mathbf{e}_{2_{j}}) < 0 \right) \vee \\ & (\zeta_{z_{1}} = -\zeta_{z_{2}}) \wedge \left(\\ & \left(\zeta_{e_{1}} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x}_{1} - \mathbf{e}_{1_{j}}) > 0 \vee \zeta_{e_{1}} \det(\mathbf{x}_{i} - \mathbf{e}_{1_{j}} | \mathbf{x}_{2} - \mathbf{e}_{1_{j}}) < 0 \right) \wedge \\ & \left(\zeta_{e_{2}} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x}_{1} - \mathbf{e}_{2_{j}}) > 0 \vee \zeta_{e_{2}} \det(\mathbf{x}_{i} - \mathbf{e}_{2_{j}} | \mathbf{x}_{2} - \mathbf{e}_{2_{j}}) < 0 \right) \right) \vee \\ & \left(\left[\mathbf{x}_{i} \cup \mathbf{x}_{1} \cup \mathbf{x}_{2}\right] \cap \left[\mathbf{e}_{1_{j}} \cup \mathbf{e}_{2_{j}}\right] = \emptyset \right) \right\}. \end{split}$$



Visibility of a segment

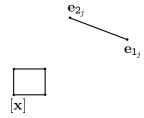
- With a segment as obstacle $\varepsilon_i^s = Seg(\mathbf{e}_{1_i}, \mathbf{e}_{2_i})$
 - \rightarrow Visible space $\mathsf{E}_{\varepsilon_i^s}(Seg(\mathbf{x}_1,\mathbf{x}_2))$
 - ightarrow Non-visible space $\widehat{\mathsf{E}}_{arepsilon_{i}^{s}}(Seg(\mathbf{x}_{1},\mathbf{x}_{2}))$

$$\widehat{\mathsf{E}}_{\varepsilon_{j}^{s}}(Seg(\mathbf{x}_{1},\mathbf{x}_{2})) = \widehat{\mathsf{E}}_{\varepsilon_{j}^{s}}(\mathbf{x}_{1}) \cap \widehat{\mathsf{E}}_{\varepsilon_{j}^{s}}(\mathbf{x}_{2})$$



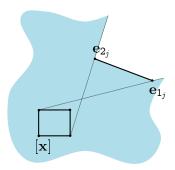
Visibility of a box

With a segment as obstacle - $\varepsilon_i^s = Seg(\mathbf{e}_{1_i}, \mathbf{e}_{2_i})$



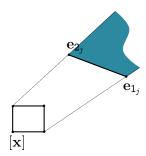
Visibility of a box

- With a segment as obstacle $arepsilon_{j}^{s} = Seg(\mathbf{e}_{1_{j}}, \mathbf{e}_{2_{j}})$
 - ightarrow Visible space $\mathsf{E}_{arepsilon_{j}^{s}}([\mathbf{x}])$



Visibility of a box

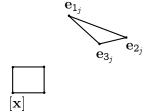
- With a segment as obstacle $\varepsilon_{i}^{s} = Seg(\mathbf{e}_{1_{i}}, \mathbf{e}_{2_{i}})$
 - ightarrow Visible space $\mathsf{E}_{arepsilon_i^s}([\mathbf{x}])$
 - ightarrow Non-visible space $\widehat{\mathsf{E}}_{arepsilon_{i}^{s}}([\mathbf{x}])$



With a convex polygon as obstacle

Convex polygon : set of segments

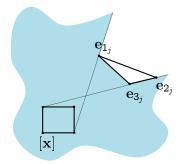
$$ightarrow \; arepsilon_{j}^{p} = igcup_{k=1}^{n_{P_{j}}} arepsilon_{k}^{s}$$



With a convex polygon as obstacle

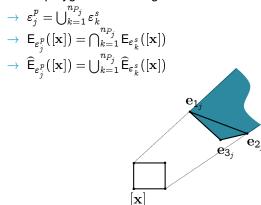
Convex polygon : set of segments

$$\begin{array}{l} \rightarrow \ \varepsilon_{j}^{p} = \bigcup_{k=1}^{n_{p_{j}}} \varepsilon_{k}^{s} \\ \rightarrow \ \mathsf{E}_{\varepsilon_{j}^{p}}([\mathbf{x}]) = \bigcap_{k=1}^{n_{p_{j}}} \mathsf{E}_{\varepsilon_{k}^{s}}([\mathbf{x}]) \end{array}$$



With a convex polygon as obstacle

Convex polygon : set of segments



- General Presentation
- 2 Visibility contractors
- 3 Multi-robot localization
- 4 Global localization
- **6** Conclusion

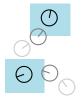
Team of robots

17/26

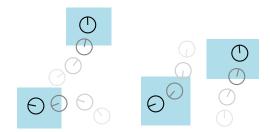
- Team of robots
- Initial poses known

- Team of robots
- Initial poses known

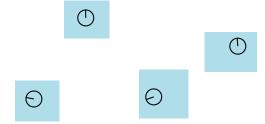
- · Team of robots
- Initial poses known



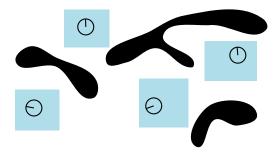
- Team of robots
- Initial poses known



- Team of robots
- Initial poses known
 - \rightarrow The robots are drifting



- Team of robots
- Initial poses known
- Known environment



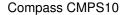
- Team of robots
- Initial poses known
- Known environment
- Is it possible to avoid the drifting of the robot by using a boolean information: the visibility between the robots?

Bounded error context

$$\rightarrow$$
 $\mathbf{q}_{i,0} \in [\mathbf{q}_{i,0}]$

- Bounded error context
- Evaluation of the orientation by using a compass

$$\rightarrow \theta_{i,k} \in [\theta_{i,k}]$$



Compass SEN12753P

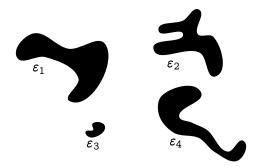
The robots

- Bounded error context
- Evaluation of the orientation by using a compass
- Inter-robot communication
 - \rightarrow At each time step k each robot knows the position estimation of all the robots

The robots

- Bounded error context
- Evaluation of the orientation by using a compass
- Inter-robot communication
- Boolean measurements
 - $\rightarrow r_1 \text{ sees } r_2 \Leftrightarrow (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}}$
 - $\rightarrow r_1$ does not see $r_2 \Leftrightarrow (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}}$
 - $\rightarrow \mathbf{z}_{i,k} = \{0, 1, \cdots, 1\}$
 - 0 : the robot r_i does not see the first robot
 - 1 : the robot r_i sees the second robot
 - . . .
 - 1 : the robot r_i sees the last robot

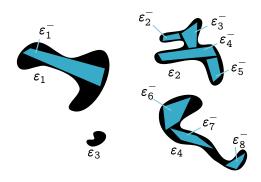
- Environment \mathcal{E}
 - $ightarrow \; \mathcal{E} = igcup_{j=1}^{n_{\mathcal{O}}} arepsilon_{j}$
 - → Sets of convex polygons



Environment characterisations

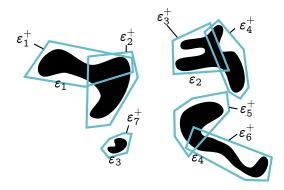
- Environment \mathcal{E}
- Inner characterisation \mathcal{E}^-

$$ightarrow \, \mathcal{E}^- \subset \mathcal{E}$$



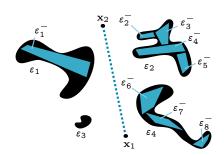
- Environment \mathcal{E}
- Inner characterisation \mathcal{E}^-
- Outer characterisation \mathcal{E}^+

$$ightarrow \mathcal{E} \subset \mathcal{E}^+$$



- Environment \mathcal{E}
- Inner characterisation \mathcal{E}^-
- Outer characterisation \mathcal{E}^+
- Environment/Characterisations

- Environment E
- Inner characterisation \mathcal{E}^-
- Outer characterisation \mathcal{E}^+
- Environment/Characterisations
- r_1 sees $r_2 \Rightarrow (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}^-}$
 - $-\mathbf{x}_1 \in \mathsf{E}_{\mathcal{E}^-}(\mathbf{x}_2), \mathbf{x}_1 \not\in \widehat{\mathsf{E}}_{\mathcal{E}^-}(\mathbf{x}_2)$
 - $-\mathbf{x}_2 \in \mathsf{E}_{\mathcal{E}^-}(\mathbf{x}_1), \mathbf{x}_2 \not\in \widehat{\mathsf{E}}_{\mathcal{E}^-}(\mathbf{x}_1)$



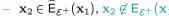
- Environment E
- Inner characterisation \mathcal{E}^-
- Outer characterisation \mathcal{E}^+
- Environment/Characterisations

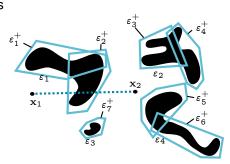
$$ightarrow \ r_1$$
 sees $r_2 \Rightarrow (\mathbf{x}_1 \mathsf{V} \mathbf{x}_2)_{\mathcal{E}^-}$

$$-\mathbf{x}_1 \in \mathsf{E}_{\mathcal{E}^-}(\mathbf{x}_2), \mathbf{x}_1 \not\in \widehat{\mathsf{E}}_{\mathcal{E}^-}(\mathbf{x}_2)$$

$$-\mathbf{x}_2 \in \mathsf{E}_{\mathcal{E}^-}(\mathbf{x}_1), \mathbf{x}_2 \not\in \widehat{\mathsf{E}}_{\mathcal{E}^-}(\mathbf{x}_1)$$

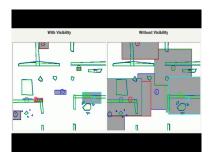
- r_1 does not see $r_2 \Rightarrow (\mathbf{x}_1 \overline{\mathsf{V}} \mathbf{x}_2)_{\mathcal{E}^+}$
 - $-\mathbf{x}_1 \in \widehat{\mathsf{E}}_{\varepsilon+}(\mathbf{x}_2), \mathbf{x}_1 \not\in \mathsf{E}_{\varepsilon+}(\mathbf{x}_2)$
 - $-\mathbf{x}_2 \in \widehat{\mathsf{E}}_{\varepsilon^+}(\mathbf{x}_1), \mathbf{x}_2 \not\in \mathsf{E}_{\varepsilon^+}(\mathbf{x}_1)$





Results

Simulator

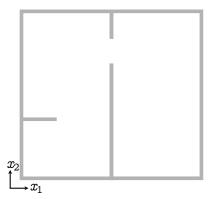


ility contractors Multi-robot localization

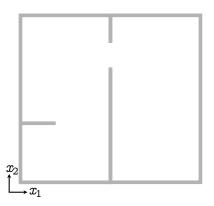
Outlines

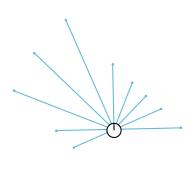
- General Presentation
- 2 Visibility contractors
- 3 Multi-robot localization
- 4 Global localization
- 6 Conclusion

Global localization

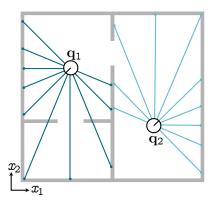


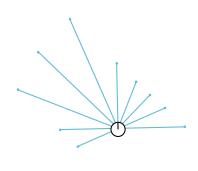
Considered problem





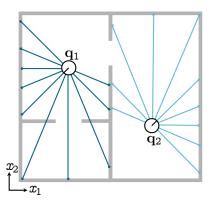
Considered problem

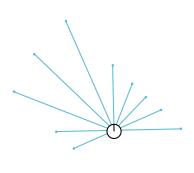




Two poses are consistent with the constraints

Considered problem



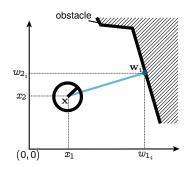


How to process the measurement intersection constraint?

Constraint formalisation

Considering an original constraint

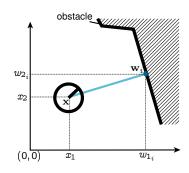
Constraint formalisation



Visibility relations between the robot and all the detected obstacles

Considering an original constraint

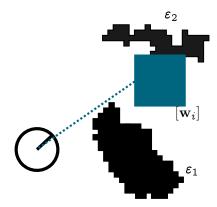
Constraint formalisation



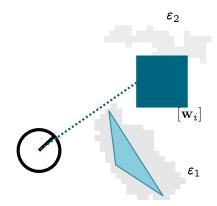
- Visibility relations between the robot and all the detected obstacles
- $\rightarrow \ \forall \varepsilon_i \in \mathcal{E}, \forall i, (\mathbf{x} \lor \mathbf{w}_i)_{\varepsilon_i}$

- Contraction over a visibility information
- Inner characterisation

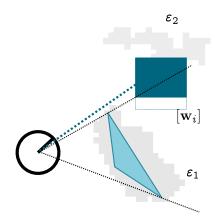
- Contraction over a visibility information
- Inner characterisation



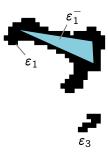
- Contraction over a visibility information
- Inner characterisation

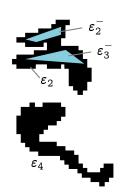


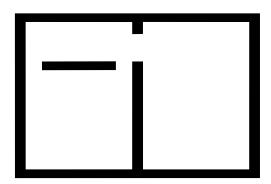
- Contraction over a visibility information
- Inner characterisation



- Contraction over a visibility information
- Inner characterisation
- **Environment characterisation**

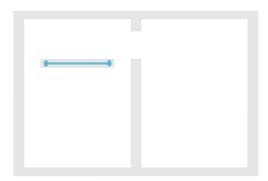




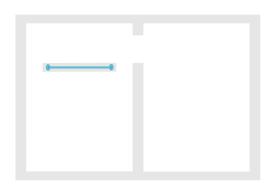


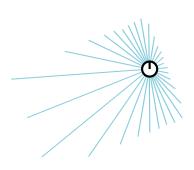
Considered environment

Example

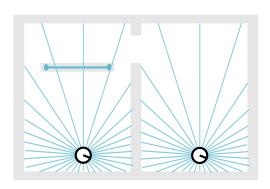


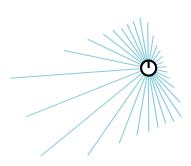
Inner characterisation



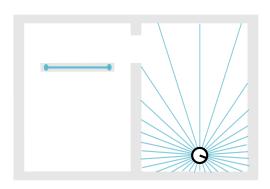


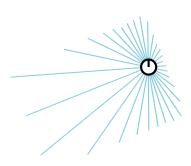
Considered measurements





Result without visibility





Result with visibility

Conclusion

- → Original formalisation of the visibility information
- → Optimal visibility contractors
- → Two applications to mobile robot localization
 - Multi-robot localization
 - Avoid the drifting of the robots
 - Results depend of the number of robots and the environment topology
 - The contractors can be added to classical localization approach
 - Original measurement intersection constraint
 - Improvement of the localization results
 - Avoidance of symmetries
 - Those contractors could be useful to other application