Range-only SLAM with indistinguishable landmarks

Paris, november 13, 2013. L. Jaulin ENSTA-Brest, IHSEV, OSM, LabSTICC.

http://www.ensta-bretagne.fr/jaulin/

1 SLAM problem

 $\begin{array}{l} \text{Robot: } \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), \ \mathbf{x}(\mathbf{0}) = \mathbf{0}.\\ \text{Marks } \mathcal{M} = \{\mathbf{m}(\mathbf{1}), \mathbf{m}(\mathbf{2}), \dots\} \subset \mathbb{R}^{q}. \end{array}$

(*i*) the map is static,

(ii) indistinguishable point marks

(iii) the marks are partially observable

Our SLAM is a *chicken and egg* problem of cardinality three:

(i) if the map and the associations are known, we have localization problem,

(ii) if the trajectory and the associations are known, we have a mapping problem

(iii) if the trajectory and the map are known we have an association problem.

The unknown variables have an heterogenous nature:

(i) marks $\mathbf{m}(j) \in \mathbb{R}^q$

(ii) trajectory $\mathbf{x}(t)$: $\mathbb{R} \to \mathbb{R}^n$,

(iii) the free space $\mathbb{F} \in \mathcal{P}\left(\mathbb{R}^{q}
ight)$

(iv) the data associations is a graph \mathcal{G} .

2 Formalization

A sector $\mathbb H$ is a subset of $\mathbb R^q$ which contains a single mark.

Our SLAM problem:

$$\left\{ egin{array}{l} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{u}) & (ext{evolution equation}) \ \left(t_i, \mathcal{H}_i\left(\mathbf{x}
ight)
ight) & (ext{sector list}) \end{array}
ight.$$

where $t \in [0, t_{\max}]$, $\mathbf{u}(t) \in [\mathbf{u}](t)$.

Each set $\mathcal{H}_i(\mathbf{x}(t_i)) \subset \mathbb{R}^q$ contains a unique mark.

We have an egocentric representation.

We define $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i)).$

Example 1. A robot moving in a plane and located at (x_1, x_2) . At t_3 the robot detects a unique mark at a distance $d \in [4, 5]$. We have

 $\mathcal{H}_3(\mathbf{x}) = \left\{ \mathbf{a} \in \mathbb{R}^2 | (x_1 - a_1)^2 + (x_2 - a_2)^2 \in [16, 25] \right\}.$

Example 2. We have two sectors \mathbb{H}_i and \mathbb{H}_j . Since $\mathbb{H}_i \subset \mathbb{H}_j$, $\mathbb{H}_j \setminus \mathbb{H}_i$ has no mark. Thus we can associate \mathbb{H}_i with \mathbb{H}_j .

Theorem. Define the free space as $\mathbb{F} = \{\mathbf{p} \in \mathbb{R}^q \mid \mathbf{p} \notin \mathcal{M}\}$. Consider *m* sectors $\mathbb{H}_1, \ldots, \mathbb{H}_m$. Denote by $\mathbf{a}(i)$ the mark in \mathbb{H}_i . We have

(i)
$$\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbf{a}(i) = \mathbf{a}(j)$$

(ii) $\mathbb{H}_i \cap \mathbb{H}_j = \emptyset \Rightarrow \mathbf{a}(i) \neq \mathbf{a}(j)$
(iii) $\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}.$

Example.

The two black zones contain a single mark and no mark exists in the hatched area.

Association graph. Consider m detections $\mathbf{a}(1), \ldots, \mathbf{a}(m)$. The *association graph* is the graph with nodes $\mathbf{a}(i)$ such that $\mathbf{a}(i) \to \mathbf{a}(j)$ means that $\mathbf{a}(i) = \mathbf{a}(j)$.

3 Generalized contractors

3.1 Lattices

A *lattice* (\mathcal{E}, \leq) is a partially ordered set, closed under least upper and greatest lower bounds.

The *join*: $x \lor y$. The *meet*: $x \land y$. **Example 1**. The set (\mathbb{R}^n, \leq) is a lattice. We have $\mathbf{x} \wedge \mathbf{y} = (x_1 \wedge y_1, \dots, x_n \wedge y_n)$ and $\mathbf{x} \vee \mathbf{y} = (x_1 \vee y_1, \dots, x_n \vee y_n)$ where $x_i \wedge y_i = \min(x_i, y_i)$ and $x_i \vee y_i = \max(x_i, y_i)$. **Example 2**. If \mathbb{E} is any set, the powerset $\mathcal{P}(\mathbb{E})$ is a complete lattice with respect to the inclusion \subset . The meet corresponds to the intersection and the join to the union.

Intervals. An *interval* [x] of a complete lattice \mathcal{E} is a subset of \mathcal{E} which satisfies

$$[x] = \{x \in \mathcal{E} \mid \land [x] \le x \le \lor [x]\}.$$

Both \emptyset and \mathcal{E} are intervals of \mathcal{E} .

Example 3. The set \mathcal{F} of all functions from \mathbb{R} to $\overline{\mathbb{R}}^n$ is a complete lattice with $\mathbf{f} \leq \mathbf{g} \Leftrightarrow \forall t \in \mathbb{R}, \ \mathbf{f}(t) \leq \mathbf{g}(t)$. An interval of \mathcal{F} is called a *tube*.

3.2 Contractors

A CSP is composed of variables $\{x_1, \ldots, x_n\}$, constraints $\{c_1, \ldots, c_m\}$ and domains $\{X_1, \ldots, X_n\}$.

The domains \mathbb{X}_i should belong to a lattice (\mathcal{L}_i, \subset) .

Here domains are

(i) subsets of \mathbb{R}^n for the location of the marks,

(ii) tubes for the unknown trajectory and

(iii) intervals of subsets of \mathbb{R}^n for the sectors and the free space.

Define $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$. An element X of \mathcal{L} is the Cartesian product of n elements of \mathcal{L}_i : $X = X_1 \times \cdots \times X_n$. The set X will be called *hyperdomain*. A contractor is an operator

which satisfies

$$\begin{split} \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathcal{C} \left(\mathbb{X} \right) \subset \mathcal{C} \left(\mathbb{Y} \right) & \text{(monotonicity)} \\ \mathcal{C} \left(\mathbb{X} \right) \subset \mathbb{X} & \text{(contractance)} \end{split}$$

3.3 Graph intervals

The set of graphs of ${\mathcal A}$ with the relation

 $\mathcal{G} \leq \mathcal{H} \Leftrightarrow orall i, j \in \{1, \dots, m\}, \ g_{ij} \leq h_{ij},$

corresponds to a complete lattice. Intervals of graphs of ${\cal A}$ can thus be defined.

Example

4 SLAM as a CSP

Variables

(i) the trajectory of the robot \mathbf{x} .

(ii) the sectors \mathbb{H}_i

(iii) the location of the mark $\mathbf{a}(i)$ detected at time t_i

(iv) the association graph ${\cal G}$

(v) the free space \mathbb{F} .

Domains

 $\mathbf{x} \in [\mathbf{x}] = [\mathbf{x}^{-}, \mathbf{x}^{+}]$ $\mathbf{a}(i) \in \mathbb{A}(i)$ $\mathbb{H}_{i} \in [\mathbb{H}_{i}] = [\mathbb{H}_{i}^{-}, \mathbb{H}_{i}^{+}]$ $\mathbb{F} \in [\mathbb{F}] = [\mathbb{F}^{-}, \mathbb{F}^{+}]$ $\mathcal{G} \in [\mathcal{G}] = [\mathcal{G}^{-}, \mathcal{G}^{+}].$

Initialization

$$\begin{split} & [\mathbf{x}] (t) = [-\infty, \infty] \text{ if } t > 0 \text{ and } [\mathbf{x}] (0) = 0. \\ & \mathbb{A} (i) = \mathbb{R}^q. \\ & \mathbb{H}_i \in [\emptyset, \mathbb{R}^q]. \\ & \mathbb{F} \in [\emptyset, \mathbb{R}^q]. \\ & \mathcal{G} \in [\emptyset, \top] \end{split}$$

Constraints

(i)
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

(ii) $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i))$
(iii) $\mathbf{a}(i) \in \mathbb{H}_i$
(iv) $\mathbf{a}(i) = \mathbf{a}(j) \Leftrightarrow g_{ij} = 1$
(v) $\mathbf{a}(i) \in \mathbb{H}_j \Leftrightarrow g_{ij} = 1$
(vi) $g_{ij} = 1 \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}$
(vii) $\mathbf{a}(i) \notin \mathbb{F}$

Contractors graph

5 Test-case

Generation of the data.

A simulated robot follows a cycloid for 100sec.

10 landmarks inside $[-8, 8] \times [-8, 8]$.

A rangefinder collects the distance \tilde{d} to the nearest mark.

Resolution. The robot is

$$\begin{cases} \dot{x}_1 = u_1 \cos u_2 \\ \dot{x}_2 = u_1 \sin u_2. \end{cases}$$

We define the set-valued sector functions

$$\begin{aligned} \mathcal{H}_i\left(\mathbf{x}\left(t_i\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_i\right)\right\| \in \left[d_i\right]\right\} \\ \mathcal{H}_{i+1}\left(\mathbf{x}\left(t_{i+1}\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_{i+1}\right)\right\| < \delta_{i+1}\right\} \end{aligned}$$

Illustration of the propagation. Left: the tube becomes more and more accurate. Right: The association graph has more and more arcs.

Superposition of the width of the tube $[\mathbf{x}](t)$

Associations. At the fixed point, 3888 associations have been found, 29128 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have been proven disjoint and 5400 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have not been classified.

Free space \mathbb{F} .