Range-only SLAM with indistinguishable landmarks

Paris, november 13, 2013.
L. Jaulin

ENSTA-Brest, IHSEV, OSM, LabSTICC.
http://www.ensta-bretagne.fr/jaulin/

1 SLAM problem

Robot: $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}), \mathbf{x}(0)=0$.
Marks $\mathcal{M}=\{\mathbf{m}(1), \mathbf{m}(2), \ldots\} \subset \mathbb{R}^{q}$.
(i) the map is static,
(ii) indistinguishable point marks
(iii) the marks are partially observable

Our SLAM is a chicken and egg problem of cardinality three:
(i) if the map and the associations are known, we have localization problem,
(ii) if the trajectory and the associations are known, we have a mapping problem
(iii) if the trajectory and the map are known we have an association problem.

The unknown variables have an heterogenous nature:
(i) marks $\mathbf{m}(j) \in \mathbb{R}^{q}$
(ii) trajectory $\mathbf{x}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$,
(iii) the free space $\mathbb{F} \in \mathcal{P}\left(\mathbb{R}^{q}\right)$
(iv) the data associations is a graph \mathcal{G}.

2 Formalization

A sector \mathbb{H} is a subset of \mathbb{R}^{q} which contains a single mark.

Our SLAM problem:

$$
\begin{cases}\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}) & \text { (evolution equation) } \\ \left(t_{i}, \mathcal{H}_{i}(\mathbf{x})\right) & \text { (sector list) }\end{cases}
$$

where $t \in\left[0, t_{\max }\right], \mathbf{u}(t) \in[\mathbf{u}](t)$.
Each set $\mathcal{H}_{i}\left(\mathbf{x}\left(t_{i}\right)\right) \subset \mathbb{R}^{q}$ contains a unique mark.
We have an egocentric representation.
We define $\mathbb{H}_{i}=\mathcal{H}_{i}\left(\mathbf{x}\left(t_{i}\right)\right)$.

Example 1. A robot moving in a plane and located at $\left(x_{1}, x_{2}\right)$. At t_{3} the robot detects a unique mark at a distance $d \in[4,5]$. We have
$\mathcal{H}_{3}(\mathbf{x})=\left\{\mathbf{a} \in \mathbb{R}^{2} \mid\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2} \in[16,25]\right\}$.

Example 2. We have two sectors \mathbb{H}_{i} and \mathbb{H}_{j}.
Since $\mathbb{H}_{i} \subset \mathbb{H}_{j}, \mathbb{H}_{j} \backslash \mathbb{H}_{i}$ has no mark. Thus we can associate \mathbb{H}_{i} with \mathbb{H}_{j}.

Theorem. Define the free space as $\mathbb{F}=\left\{\mathbf{p} \in \mathbb{R}^{q} \mid \mathbf{p} \notin \mathcal{M}\right\}$. Consider m sectors $\mathbb{H}_{1}, \ldots, \mathbb{H}_{m}$. Denote by a (i) the mark in \mathbb{H}_{i}. We have
(i) $\mathbb{H}_{i} \subset \mathbb{H}_{j} \Rightarrow \mathbf{a}(i)=\mathbf{a}(j)$
(ii) $\mathbb{H}_{i} \cap \mathbb{H}_{j}=\emptyset \Rightarrow \mathbf{a}(i) \neq \mathbf{a}(j)$
(iii) $\mathbb{H}_{i} \subset \mathbb{H}_{j} \Rightarrow \mathbb{H}_{j} \backslash \mathbb{H}_{i} \subset \mathbb{F}$.

Example.

The two black zones contain a single mark and no mark exists in the hatched area.

Association graph. Consider m detections a (1), .., a (m). The association graph is the graph with nodes $\mathbf{a}(i)$ such that $\mathbf{a}(i) \rightarrow \mathbf{a}(j)$ means that $\mathbf{a}(i)=\mathbf{a}(j)$.

3 Generalized contractors

3.1 Lattices

A lattice (\mathcal{E}, \leq) is a partially ordered set, closed under least upper and greatest lower bounds.
The join: $x \vee y$.
The meet: $x \wedge y$.

Example 1 . The set $\left(\mathbb{R}^{n}, \leq\right)$ is a lattice.
We have $\mathbf{x} \wedge \mathbf{y}=\left(x_{1} \wedge y_{1}, \ldots, x_{n} \wedge y_{n}\right)$ and $\mathbf{x} \vee \mathbf{y}=$ $\left(x_{1} \vee y_{1}, \ldots, x_{n} \vee y_{n}\right)$ where $x_{i} \wedge y_{i}=\min \left(x_{i}, y_{i}\right)$ and $x_{i} \vee y_{i}=\max \left(x_{i}, y_{i}\right)$.

Example 2. If \mathbb{E} is any set, the powerset $\mathcal{P}(\mathbb{E})$ is a complete lattice with respect to the inclusion \subset. The meet corresponds to the intersection and the join to the union.

Intervals. An interval $[x]$ of a complete lattice \mathcal{E} is a subset of \mathcal{E} which satisfies

$$
[x]=\{x \in \mathcal{E} \mid \wedge[x] \leq x \leq \vee[x]\}
$$

Both \emptyset and \mathcal{E} are intervals of \mathcal{E}.

Example 3. The set \mathcal{F} of all functions from \mathbb{R} to $\overline{\mathbb{R}}^{n}$ is a complete lattice with $\mathbf{f} \leq \mathbf{g} \Leftrightarrow \forall t \in \mathbb{R}, \mathbf{f}(t) \leq \mathbf{g}(t)$. An interval of \mathcal{F} is called a tube.

3.2 Contractors

A CSP is composed of variables $\left\{x_{1}, \ldots, x_{n}\right\}$,
constraints $\left\{c_{1}, \ldots, c_{m}\right\}$ and domains $\left\{\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right\}$.

The domains \mathbb{X}_{i} should belong to a lattice $\left(\mathcal{L}_{i}, \subset\right)$.

Here domains are
(i) subsets of \mathbb{R}^{n} for the location of the marks,
(ii) tubes for the unknown trajectory and
(iii) intervals of subsets of \mathbb{R}^{n} for the sectors and the free space.

Define $\mathcal{L}=\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{n}$.
An element \mathbb{X} of \mathcal{L} is the Cartesian product of n elements of $\mathcal{L}_{i}: \mathbb{X}=\mathbb{X}_{1} \times \cdots \times \mathbb{X}_{n}$.
The set \mathbb{X} will be called hyperdomain.

A contractor is an operator

$$
\mathcal{C}: \begin{aligned}
& \mathcal{L} \rightarrow \mathcal{L} \\
& \mathbb{X}
\end{aligned}
$$

which satisfies

$$
\begin{array}{ll}
\mathbb{X} \subset \mathbb{Y} \Rightarrow \mathcal{C}(\mathbb{X}) \subset \mathcal{C}(\mathbb{Y}) & \text { (monotonicity) } \\
\mathcal{C}(\mathbb{X}) \subset \mathbb{X} & \text { (contractance) }
\end{array}
$$

3.3 Graph intervals

The set of graphs of \mathcal{A} with the relation

$$
\mathcal{G} \leq \mathcal{H} \Leftrightarrow \forall i, j \in\{1, \ldots, m\}, g_{i j} \leq h_{i j}
$$

corresponds to a complete lattice. Intervals of graphs of \mathcal{A} can thus be defined.

Example

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in\left(\begin{array}{ccc}
{[0,1]} & {[0,1]} & 0 \\
1 & {[0,1]} & {[0,1]} \\
{[0,1]} & {[0,1]} & {[0,1]}
\end{array}\right)
\end{aligned}
$$

4 SLAM as a CSP

Variables

(i) the trajectory of the robot \mathbf{x}.
(ii) the sectors \mathbb{H}_{i}
(iii) the location of the mark a (i) detected at time t_{i} (iv) the association graph \mathcal{G}
(v) the free space \mathbb{F}.

Domains

$\mathbf{x} \in[\mathrm{x}]=\left[\mathrm{x}^{-}, \mathrm{x}^{+}\right]$
$\mathbf{a}(i) \in \mathbb{A}(i)$
$\mathbb{H}_{i} \in\left[\mathbb{H}_{i}\right]=\left[\mathbb{H}_{i}^{-}, \mathbb{H}_{i}^{+}\right]$
$\mathbb{F} \in[\mathbb{F}]=\left[\mathbb{F}^{-}, \mathbb{F}^{+}\right]$
$\mathcal{G} \in[\mathcal{G}]=\left[\mathcal{G}^{-}, \mathcal{G}^{+}\right]$.

Initialization

$[\mathrm{x}](t)=[-\infty, \infty]$ if $t>0$ and $[\mathrm{x}](0)=\mathbf{0}$.
$\mathbb{A}(i)=\mathbb{R}^{q}$.
$\mathbb{H}_{i} \in\left[\emptyset, \mathbb{R}^{q}\right]$.
$\mathbb{F} \in\left[\emptyset, \mathbb{R}^{q}\right]$.
$\mathcal{G} \in[\emptyset, \top]$

Constraints
(i) $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})$
(ii) $\mathbb{H}_{i}=\mathcal{H}_{i}\left(\mathbf{x}\left(t_{i}\right)\right)$
(iii) $\mathbf{a}(i) \in \mathbb{H}_{i}$
(iv) $\mathbf{a}(i)=\mathbf{a}(j) \Leftrightarrow g_{i j}=1$
(v) $\mathbf{a}(i) \in \mathbb{H}_{j} \Leftrightarrow g_{i j}=1$
(vi) $\quad g_{i j}=1 \Rightarrow \mathbb{H}_{j} \backslash \mathbb{H}_{i} \subset \mathbb{F}$
(vii) $\mathbf{a}(i) \notin \mathbb{F}$

Contractors graph

5 Test-case

Generation of the data.

A simulated robot follows a cycloid for 100 sec .
10 landmarks inside $[-8,8] \times[-8,8]$.
A rangefinder collects the distance \tilde{d} to the nearest mark.

Resolution. The robot is

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \cos u_{2} \\
\dot{x}_{2}=u_{1} \sin u_{2}
\end{array}\right.
$$

We define the set-valued sector functions

$$
\begin{aligned}
& \mathcal{H}_{i}\left(\mathbf{x}\left(t_{i}\right)\right) \\
& \mathcal{H}_{i+1}\left(\mathbf{x}\left(t_{i+1}\right)\right)=\left\{\mathbf{a} \mid\left\|\mathbf{a}-\mathbf{x}\left(t_{i}\right)\right\| \in\left[d_{i}\right]\right\} \\
& =\left\{\mathbf{a} \mid\left\|\mathbf{a}-\mathbf{x}\left(t_{i+1}\right)\right\|<\delta_{i+1}\right\}
\end{aligned}
$$

Illustration of the propagation. Left: the tube becomes more and more accurate. Right: The association graph has more and more arcs.

Superposition of the width of the tube $[\mathrm{x}](t)$

Associations. At the fixed point, 3888 associations have been found, 29128 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have been proven disjoint and 5400 pairs ($\mathbf{a}(i), \mathbf{a}(j))$ have not been classified.

Free space \mathbb{F}.

