Guaranteed Characterization of the Explored Space of a Mobile Robot by using Subpayings

Vincent Drevelle Luc Jaulin Benoit Zerr

ENSTA Bretagne, Lab-STICC, Brest (France)

Journée MEA. 14 novembre 2013. Paris

Problem statement Uncertain explored area Application Strangle method Summary 0000 00000000000 00000 00000

Characterization of the Explored area

Mission of the robot

Introduction

Explore a given zone, and ensure that it has been entirely covered by its

- sensor: mapping, mine hunting, search, ...
- tool: lawn-mowing, cleaning, ...

Characterization of the Explored area

Mission of the robot

Introduction

Explore a given zone, and ensure that it has been entirely covered by its

- sensor: mapping, mine hunting, search, ...
- tool: lawn-mowing, cleaning, ...

Computing the area explored by the robot, prior to processing sensor data enables to

- assess mission before long transfer and processing time of sensor data
- focus first data processing on problematic parts of the mission
- plan a new mission to fill the gaps

Characterization of the Explored area

Mission of the robot

Introduction

Explore a given zone, and ensure that it has been entirely covered

- mapping, mine hunting, search, ...
- lawn-mowing, cleaning

Robot positioning is uncertain

Characterize the explored area w.r.t localization uncertainty

Uncertain explored area Strangle method Introduction Problem statement Application Summary

Characterization of the Explored area

Guaranteed

Mission of the robot

Explore a given zone, and ensure that it has been entirely covered

- mapping, mine hunting, search, ...
- lawn-mowing, cleaning

Robot positioning is uncertain

Characterize the explored area w.r.t localization uncertainty

Use interval analysis to compute a guaranteed bracketing of the area explored by the robot

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Problem statement Uncertain explored area Application Strangle method Summary

◆000 0000000000 00000 00000

Introduction

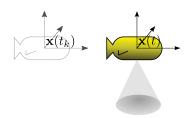
Explored area

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Explored area

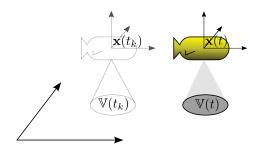
Exploration robot



$$\begin{cases} \dot{x}(t) &= f(x(t), u(t)) \\ y(t) &= g(x(t)) \end{cases}$$

- evolution
- observation

Visible area



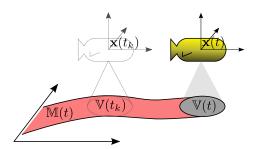
The visible area at time t is represented by the set-valued function $\mathbb{V}(t) = \{ \mathbf{z} \in \mathbb{R}^2 : v(\mathbf{z}, \mathbf{x}(t)) \leq 0 \}$ where $v(\mathbf{z}, \mathbf{x}(t))$ is the visibility function

$$\begin{cases} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{y}(t) &= \mathbf{g}(\mathbf{x}(t)) \\ \mathbb{V}(t) &= \left\{ \mathbf{z} \in \mathbb{R}^2 : v\left(\mathbf{z}, \mathbf{x}(t)\right) \le 0 \right\} \end{cases}$$

- evolution
- observation
- visible area

Introduction Explored area

Explored area



The explored area is the union of the visible areas over the whole trajectory

$$\begin{cases} \dot{\mathbf{x}}(t) &= \mathbf{f}\left(\mathbf{x}(t), \mathbf{u}(t)\right) \\ \mathbf{y}(t) &= \mathbf{g}\left(\mathbf{x}(t)\right) \\ \mathbb{V}(t) &= \left\{\mathbf{z} \in \mathbb{R}^2 : v\left(\mathbf{z}, \mathbf{x}(t)\right) \leq 0\right\} \\ \mathbb{M}(t) &= \bigcup_{\tau \in [0, t]} \mathbb{V}(\tau) \end{cases}$$

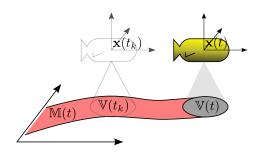
- evolution
- observation
- visible area
- explored area

Explored area with an uncertain trajectory

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Explored area with an uncertain trajectory



- uncertain trajectory
- visibility
- explored map

Summary

Bracketing of the visible area: guaranteed and possible

Guaranteed visible area \mathbb{V}^{\forall} : set of points that have necessarily been observed, regardless of the state uncertainty

$$\mathbb{V}_{[\mathbf{x}]}^{\forall}(t) = \left\{ \mathbf{z} \in \mathbb{R}^2 : \forall \mathbf{x}(t) \in [\mathbf{x}](t), v\left(\mathbf{z}, \mathbf{x}(t)\right) \le 0 \right\}$$
 (1)

Possible visible area \mathbb{V}^{\exists} : set of points that may have been in the robot's field of view:

$$\mathbb{V}_{[\mathbf{x}]}^{\exists}(t) = \left\{ \mathbf{z} \in \mathbb{R}^2 : \exists \mathbf{x}(t) \in [\mathbf{x}](t), v\left(\mathbf{z}, \mathbf{x}(t)\right) \le 0 \right\}$$
 (2)

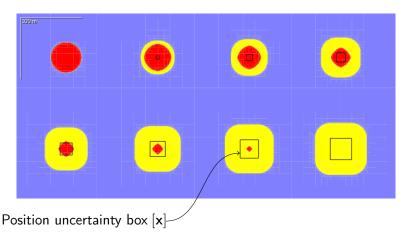
 $\mathbb{V}_{[\mathbf{x}]}^{\forall}(t)$ and $\mathbb{V}_{[\mathbf{x}]}^{\exists}(t)$ form a bracketing of the actual visible area $\mathbb{V}(t)$:

$$\forall t \in [t], \mathbb{V}_{[\mathbf{x}]}^{\forall}(t) \subset \mathbb{V}(t) \subset \mathbb{V}_{[\mathbf{x}]}^{\exists}(t)$$

Explored area with an uncertain trajectory

Introduction

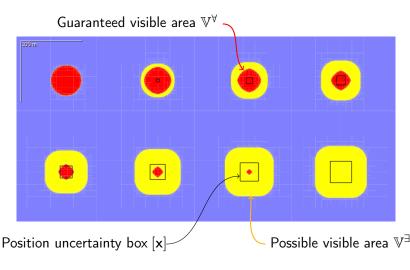
Guaranteed visible area depends on position accuracy Robot is located inside a box. It observes a circular region: $v(\mathbf{z}, \mathbf{x}) = ||\mathbf{z} - \mathbf{x}||^2 - r^2$



Explored area with an uncertain trajectory

Introduction

Guaranteed visible area depends on position accuracy Robot is located inside a box. It observes a circular region: $v(\mathbf{z}, \mathbf{x}) = ||\mathbf{z} - \mathbf{x}||^2 - r^2$



Problem statement Uncertain explored area Application Strangle method Summary 0000 0000 00000 00000 00000

Introduction

Guaranteed and possible explored area

Guaranteed explored area \mathbb{M}^\forall : union of all the guaranteed visible areas during the mission

$$\mathbb{M}_{[\mathbf{x}]}^{\forall} = \bigcup_{t \in [t]} \mathbb{V}_{[\mathbf{x}]}^{\forall}(t), \tag{3}$$

Possible explored area \mathbb{M}^{\exists} : union of all the possible visible areas over time

$$\mathbb{M}_{[\mathbf{x}]}^{\exists} = \bigcup_{t \in [t]} \mathbb{V}_{[\mathbf{x}]}^{\exists}(t). \tag{4}$$

A bracketing of the actual explored area M is given by

$$\mathbb{M}_{[\mathbf{x}]}^\forall\subset\mathbb{M}\subset\mathbb{M}_{[\mathbf{x}]}^\exists.$$

Problem statement Uncertain explored area Application Strangle method Summary 0000 0000 00000 00000 00000

Explored area characterization by Set Inversion

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Interval analysis (Moore)

- Interval $[x] = [\underline{x}, \overline{x}]$. \underline{x} is the lower bound and \overline{x} is the upper bound.
- Box $[x] = [\underline{x}, \overline{x}]$. The vectors \underline{x} and \overline{x} are respectively the lower and upper bounds.
- Interval extension of real arithmetic operators +, -, \cdot and \div , and elementary functions such as tan, sin and exp...

$$[x] + [y] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}],$$

$$[x] \cdot [y] = [\min(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}), \max(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y})].$$

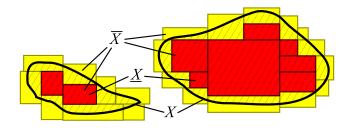
- The interval function [f] is an inclusion function for f if $\forall [x] \in \mathbb{IR}^n$, $f([x]) \subset [f]([x])$.
- The natural inclusion function is obtained by replacing each operator in the expression of the function by its interval counterpart.

Explored area characterization by Set Inversion

Introduction

Set inversion via interval analysis (SIVIA)

Find $X = \mathbf{f}^{-1}([\mathbf{y}])$ such as $X = \{\mathbf{x} \mid \mathbf{f}(\mathbf{x}) \in [\mathbf{y}]\}$, where $[\mathbf{y}]$ is a known interval vector.



SIVIA is a branch-and-bound algorithm. Starting from an arbitrarily big box, it computes an inner subpaving \underline{X} and an outer subpaving \overline{X} such that $\underline{X} \subseteq X \subseteq \overline{X}$.

Strangle method

Quantifier elimination

Introduction

 \forall and \exists quantifiers appear in the expressions of $\mathbb{V}^{\forall}(t)$ and $\mathbb{V}^{\exists}(t)$. Let us remove them to simplify set computations.

Let [v](z,[x]) be the minimal inclusion function for v with respect to x. $[v](z,[x]) = \{v(z,x), x \in [x]\}$

$$z \in \mathbb{V}^{\forall}(t) \Leftrightarrow \forall \mathbf{x} \in [\mathbf{x}], v(\mathbf{z}, \mathbf{x}) \le 0 \Leftrightarrow \overline{v}(\mathbf{z}, [\mathbf{x}]) \le 0$$

 $z \in \mathbb{V}^{\exists}(t) \Leftrightarrow \exists \mathbf{x} \in [\mathbf{x}], v(\mathbf{z}, \mathbf{x}) \le 0 \Leftrightarrow v(\mathbf{z}, [\mathbf{x}]) \le 0$

Expressions of the upper bound $\overline{\nu}$ and of the lower bound ν can be derived by using symbolic interval arithmetic (Jaulin and Chabert, 2010)

$$\begin{array}{l} \underline{v}(\mathbf{z}.[\mathbf{x}]) = H\Big((\mathbf{z}_1 - \overline{\mathbf{x}_1})(\mathbf{z}_1 - \underline{\mathbf{x}_1})\Big) \min\left(\left(\mathbf{z}_1 - \overline{\mathbf{x}_1}\right)^2.\left(\mathbf{z}_1 - \underline{\mathbf{x}_1}\right)^2\right) + H\Big((\mathbf{z}_2 - \overline{\mathbf{x}_2})(\mathbf{z}_2 - \underline{\mathbf{x}_2})\right) \min\left(\left(\mathbf{z}_2 - \overline{\mathbf{x}_2}\right)^2.\left(\mathbf{z}_2 - \underline{\mathbf{x}_2}\right)^2\right) - r^2 \\ \overline{v}(\mathbf{z}.[\mathbf{x}]) = \max\left(\left(\mathbf{z}_1 - \overline{\mathbf{x}_1}\right)^2.\left(\mathbf{z}_1 - \underline{\mathbf{x}_1}\right)^2\right) + \max\left(\left(\mathbf{z}_2 - \overline{\mathbf{x}_2}\right)^2.\left(\mathbf{z}_2 - \underline{\mathbf{x}_2}\right)^2\right) - r^2 \\ \end{array}$$

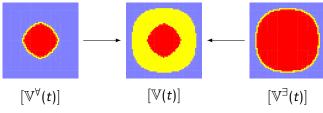
Explored area computation: visible area

Use SIVIA to compute $\mathbb{V}^{\forall}(t)$ and $\mathbb{V}^{\exists}(t)$:

$$\mathbb{V}^\forall(t)\subset\mathbb{V}^\forall(t)\subset\overline{\mathbb{V}^\forall(t)}\quad\text{and}\quad\mathbb{V}^\exists(t)\subset\mathbb{V}^\exists(t)\subset\overline{\mathbb{V}^\exists(t)}$$

-> Bracketing of $\mathbb{V}(t)$ between the two subpavings $\underline{\mathbb{V}^{\forall}(t)}$ and $\overline{\mathbb{V}^{\exists}(t)}$ such that

$$\underline{\mathbb{V}^{\forall}(t)} \subset \mathbb{V}(t) \subset \overline{\mathbb{V}^{\exists}(t)}.$$



Problem statement Uncertain explored area Application Strangle method Summary 0000 0000 0000 00000 00000 00000 00000

Explored area characterization by Set Inversion

Introduction

Explored area computation

Let us define $\underline{\mathbb{M}}^{\forall} = \bigcup_{t \in [t]} \underline{\mathbb{V}}^{\forall}(t)$ and $\overline{\mathbb{M}}^{\exists} = \bigcup_{t \in [t]} \overline{\mathbb{V}}^{\exists}(t)$. Since $\underline{\mathbb{V}}^{\forall}(t) \subset \mathbb{V}^{\forall}(t)$, by applying the union operation, we obtain $\underline{\mathbb{M}}^{\forall} \subset \mathbb{M}^{\forall}$. Similarly, we have $\mathbb{M}^{\exists} \subset \overline{\mathbb{M}}^{\exists}$.

$$\underline{\mathbb{M}}^{\forall} \subset \mathbb{M}^{\forall} \subset \mathbb{M} \subset \mathbb{M}^{\exists} \subset \overline{\mathbb{M}}^{\exists}.$$

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Uncertain explored area Problem statement Application Strangle method Summary 000000

Introduction

Underwater exploration simulation



Simulate an AUV with

- GPS (works on surface) only)
- Speed and depth sensors
- Inertial Measurement Unit
- Acoustic ranging and two beacon buoys

Mission: exploration and covering of a 500 m x 300 m area GPS only at the start and at the end

Underwater exploration simulation

Introduction

Simulated covered area Black = target. Green = explored

GPS + dead reckoning

GPS + inertial + acoustic

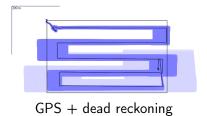
Guaranteed explored area computation

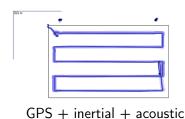
Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- 4 Strangle method
 - Improve guaranteed explored area computation

Position refining Light blue = initial. Blue = contracted.

- Constraint propagation with distance measurements
- Forward-backward constraint propagation over trajectory with evolution equation



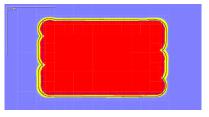


Guaranteed explored area computation

Introduction

Explored area computation. Red=guaranteed (M[♥]), Yellow=possible (M[∃]), Black=truth

GPS + dead reckoning



GPS + inertial + acoustic

- $\underline{\mathbb{M}}^{\forall} \subset \mathbb{M} \subset \overline{\mathbb{M}}^{\exists}$ is verified.
- ullet M $^{\forall}$ is pessimistic wrt to the real explored area, since we only use position information without taking robot evolution into account.

Improve guaranteed explored area computation

Outline

- Problem statement
 - Explored area
- Characterization of the explored area in presence of uncertainties
 - Explored area with an uncertain trajectory
 - Explored area characterization by Set Inversion
- Application
 - Underwater exploration simulation
 - Guaranteed explored area computation
- Strangle method
 - Improve guaranteed explored area computation

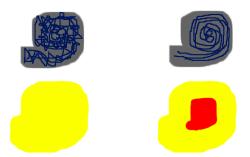
Problem statement Uncertain explored area Application Strangle method Summary 0000 00000 00000 00000 00000

Improve guaranteed explored area computation

Introduction

Taking robot evolution into account

Large position uncertainty does not prevent a robot to guaranteedly explore a zone (e.g. a lawnmower running a spiral trajectory)



We need to take robot evolution model into account to improve the guaranteed explored area computation.

Taking robot evolution into account

Let $x : \mathbb{R} \to \mathbb{R}^n$ be a trajectory. $\mathbb{M}(x)$ is the associated explored area

$$\mathbb{M}\left(\mathbf{x}\right) = \left\{\mathbf{z} \in \mathbb{R}^2 \mid \exists t, \ v\left(\mathbf{z}, \mathbf{x}(t)\right) \leq 0\right\}$$

Let \mathcal{T} be the set of admissible trajectories given a tube and an equation:

$$\mathcal{T} = \{ \mathbf{x} : \mathbb{R} \to \mathbb{R}^n \mid \forall t, \ \mathbf{x}(t) \in [\mathbf{x}](t), \ \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \}$$

The guaranteed explored area can be defined as

$$\mathbb{M}_{\mathcal{T}}^{\forall} = \left\{ \mathbf{z} \in \mathbb{R}^2 \mid \forall \mathbf{x} \in \mathcal{T}, \ \exists t, \ v\left(\mathbf{z}, \mathbf{x}(t)\right) \leq 0 \right\} = \bigcap_{\mathbf{x} \in \mathcal{T}} \mathbb{M}\left(\mathbf{x}\right)$$

The possibly explored area can be defined as

$$\mathbb{M}_{\mathcal{T}}^{\exists} = \left\{ \mathbf{z} \in \mathbb{R}^2 \mid \exists \mathbf{x} \in \mathcal{T}, \ \exists t, \ v\left(\mathbf{z}, \mathbf{x}(t)\right) \leq 0 \right\} = \bigcup_{\mathbf{x} \in \mathcal{T}} \mathbb{M}\left(\mathbf{x}\right)$$

Taking robot evolution into account

Let $\{[x_1], ..., [x_N]\}$ be a partition of the tube [x] (strangle at t_s):

$$[\mathbf{x_i}](t) = \begin{cases} [\mathbf{x}](t) & t \neq t_s \\ part([\mathbf{x}](t), i) & t = t_s, \text{ where } part([\mathbf{x}](t), i) \text{ make a partition of } [\mathbf{x}](t) \end{cases}$$

Let T_i , $i \in \{1...N\}$ be the sets of admissible trajectories for each part:

$$\mathcal{T}_i = \{ \mathbf{x} : \mathbb{R} \to \mathbb{R}^n \mid \forall t, \ \mathbf{x}(t) \in [\mathbf{x}_i](t), \ \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \}$$

Using constraint propagation, the $\{[x_1],...,[x_N]\}$ parts can be refined to $\{[x_1^*],...,[x_N^*]\}$ such that $[x_i]\supseteq [x_i^*]\supseteq \mathcal{T}_i$

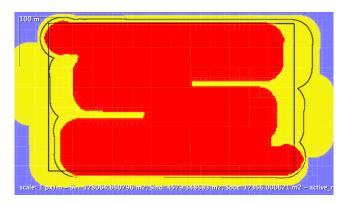
$$\bigcap_{i \in \{1...N\}} \mathbb{M}_{\left[\mathbf{x}_{i}^{*}\right]}^{\forall} \underset{\mathcal{T}_{i} \subseteq \left[\mathbf{x}_{i}^{*}\right]}{\bigcap} \bigcap_{i \in \{1...N\}} \mathbb{M}^{\forall} \left(\mathcal{T}_{i}\right) = \bigcap_{i \in \{1...N\}} \bigcap_{\mathbf{x} \in \mathcal{T}_{i}} \mathbb{M} \left(\mathbf{x}\right) = \mathbb{M}^{\forall}$$

$$\bigcup_{i \in \{1...N\}} \mathbb{M}_{\left[\mathbf{x}_{i}^{*}\right]}^{\exists} \underset{\mathcal{T}_{i} \subseteq \left[\mathbf{x}_{i}^{*}\right]}{\supseteq} \bigcup_{i \in \{1...N\}} \mathbb{M}^{\exists} \left(\mathcal{T}_{i}\right) = \bigcup_{i \in \{1...N\}} \bigcup_{\mathbf{x} \in \mathcal{T}_{i}} \mathbb{M} \left(\mathbf{x}\right) = \mathbb{M}^{\exists}$$

V. Drevelle (ENSTA Bretagne)

Results (GPS + dead reckoning)

Less pessimistic bracketing, by using the robot evolution equation.



Summary

- Interval-based method to characterize the area explored by a robot.
- Position uncertainties lead to explored area uncertainty -> bracketing
 of the explored area between a guaranteed and a possible areas.
- The computed set-interval of the explored area can be used to
 - ensure target as been fully covered
 - focus manual checks on possible but not guaranteed areas
 - plan a complementary mission to improve coverage

Problem statement Application Strangle method Summary

Outlook

Introduction

Robot squads

