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us to Theorem 2. Consider the affine space

P={PeR™", P=P" and PG=H"} (46)
and define
T T
0(P) = dmas |S FEAEIPIQ 0 o)

0 -QTPQ

where Amax denotes the largest eigenvalue. If we find a matrix P
from P such that o (P) < 0, then the transfer function matrix Z(s) is
positive real. Hence, we have the constraint eigenvalue optimization
problem

infpepo(P). 4.8)

The crucial point is to find a handy basis for the affine space P, i.e.,
P=PM)=PR+Y %P v=m-Hm) @9
j=1

where Py, P, -, P, are symmetric with P,G = H” and P,G=
0 with j 1(1)m. This leads to the following unconstrained
eigenvalue optimization problem:

infyerm o (P(y)). 4.10)
There exist iterative methods working very satisfactorily (see Overton
[9]). But in case the infimum is equal to zero, there may arise
problems. The value is approached from above, and it is an unstable
problem to numerically check o(P(vy)) < 0.

As in example (4.1), where p = 1, H = [hy - - hs], and all the
components of G = [gy - gs]T are nonzero, we specify a handy
basis P;,---, Py for the affine space P. Choose

Py = diag{h1/g1, -, hs/95}

and define to each pair of indexes (j, k) (j, k = 1(1)5,5 < k)
a matrix P; having gx/g; and g;/gx as (j, j) and (k, k) entries,
respectively, —1 as (j, k) and (k, ) entries, and zero elsewhere.
Using the initial value v = 0, a desired solution in example (4.1) is
immediately given by P = F,.

4.11)
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Guaranteed Characterization of
Stability Domains Via Set Inversion

Eric Walter and Luc Jaulin

Abstract—A new method is presented for characterizing the set of all
values of the parameters of a linear time-invariant model that are asso-
ciated with a stable behavior. A formal Routh table is used to formulate
the problem as one of set inversion, which is solved approximately but
globally with tools borrowed from interval analysis. The method readily
extends to the design of controllers stabilizing all models in a given class.

I. INTRODUCTION

It is well known that the stability properties of a linear time-
invariant system are determined by those of its characteristic poly-
nomial. A continuous-time system, for instance, is asymptotically
stable if and only if all roots of its characteristic polynomial have
strictly negative real parts. This polynomial is then said to be stable or
Hurwitz. In many engineering problems, the characteristic polynomial
depends on uncertain parameters of the model of the process and it is
useful to characterize the stability domain, i.e., the set S of all values
of these uncertain parameters that correspond to an asymptotically
stable system (see, eg, [1] for a survey). This will be performed
here in the context of continuous-time systems, but transposition to
discrete-time systemns is trivial. The first main feature of the approach
to be proposed is that it produces guaranteed results, contrary to
methods based on systematic exploration over a grid or on random
scanning of the parameter space. Let Pp(s) be the parametrized
characteristic polynomial of the system considered

n
Pp(s) = ax(p)s", )
k=0

where a., (p) = 1 for simplicity. The second main feature of the new
approach to be described is that a; may be any computable function
of the uncertain parameters p, so that the situation considered here
is much more general than in Kharitonov’s theorem [2]. Section II
formulates the characterization of the stability domain

$ = {p|Pp Hurwitz} )

as a problem of set inversion, which can be solved with the tools of
interval analysis. Section III describes an algorithm for set inversion
that makes it possible to bracket S between two subpavings, i.e.,
unions of boxes in the parameter space. Two examples are used to
illustrate the approach and demonstrate the efficiency of the procedure
suggested.
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II. FORMULATION OF THE PROBLEM IN TERMS OF SET INVERSION

The use of the Routh criterion to study the stability of uncertain
polynomials can be traced back at least to [3], where Faedo developed
an early version of interval analysis to derive sufficient conditions
for stability. A formal Routh table can be constructed from Pp(s).
Application of the Routh criterion then results in n inequalities
that correspond to necessary and sufficient conditions for asymptotic
stability in the generic case

filp) >0, 3

Define Y = (]0, co[)™ and let f be a vector function, the coordinates
of which are the f;s. The stability set is then given by

i=1,--+,m.

S=F7'(W. @
Computing S can thus be seen as a problem of set inversion.
Example 1: Consider the polynomial
Pp(s) = &° +sin(p1p2)s” + pis + p1p2. )

Necessary and sufficient conditions for its asymptotic stability are
provided by the Routh table under the form

ap > 0,
az >0, , (©)
ajaz —ap > 0
which translates into
pip2 > 0,
sin (p1p2) > 0, O]
p3sin(p1p2) — pip2 > 0.
Set Y = (J0, oo[)® and
p1 p1p2
fi (m) - sin (p1p2) ®
3 sin (p1p2) — p1p2
The set to be characterized is then § = f~!(Y). o
Example 2: Consider a process described by the transfer function
B(s) _ kws ©)
A(s) ~ (1+Ts)(s2 + 2zwos + w?)’
where the nominal values for the parameters are k = 1, T = -1,

z =1, and wp = 1. The nominal roots of A(s) are 1, —1, and —1,
so that the nominal system is open-loop unstable. The process is to
be controlled with a PID controller in the forward path

R(s) _c1+c2s+cas®

S(s) ~ s (10

and a negative unity feedback. The characteristic polynomial of the
closed-loop system is then

P(s)= st [2zwo + T—l]sa + [2?0 + w? (1 + %)]32
2 2
wp. {1+ c2k) wokey
+ T s+ T a1
and its nominal value is
Pi(s)=s'+5" = (1+c3)s" — 1+ c2)s —cr. (12)
The nominal system is stabilized by setting ¢; = —1, c2 = -2,

and c3 = —6. The problem to be considered is the robustness of the
resulting control to an uncertainty on the value of the time constant
T (assumed to differ from zero) and of the damping coefficient z.
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For this purpose, we want to characterize the set S of all pairs (2, T')
such that the closed-loop system remains stable, i.e., such that
2z—-6 s 1 1

T + 1>s —TSTT
is Hurwitz. From the Routh table, necessary and sufficient conditions
for asymptotic stability are

Pp(s)=s'+ (224 T 1)’ + ( 13)

ag > 0,
az > 0,
asaz —ay; >0,
a1a2a3 — a? — apal > 0.

14

As in Example 1, each a; is a function of the uncertain coefficients,
and characterizing § is a problem of set inversion. ")
Remarks:

i) For such problems with two parameters, one can plot all
curves in the parameter space on which an entry of the first column
of the Routh table vanishes. These curves partition the domain of
interest into regions associated with a given number of unstable roots,
and the determination of the stability region is thus easy. Similar
results could also be obtained by D-decomposition [4]. However,
such methods do not extend easily to problems with more than two
parameters, contrary to the method proposed here.

ii) The complexity of the computation of f increases quickly
with the degree n of Pp(s), so that computer algebra [5] may be
required to deal with complex cases.

iii) By performing the change of variable s' = s + X, where A
is some known positive real, it is possible to characterize all values
of the uncertain coefficients such that the degree of stability is larger
than ), i.e., that the impulse response of the system converges to zero
faster than exp (—At). 0

II. ALGORITEM FOR SET INVERSION

Although S is exactly described by the n inequalities (3), such a
description cannot be conveniently manipulated on a computer. We
shall rather approximate § by subpavings, consisting of unions of
axis-aligned parallelepipeds (or boxes). A prior feasible set for the
parameters will be defined under the form of a box [p,,;,] in the
parameter space. The portion of the stability set § contained in this
prior box will then be enclosed between two subpavings Ki, and
Koue in the sense that

Kin C [pinii.] NS C Kous.

Interval analysis [6] provides [7] a sufficient condition for all the
parameters of a given box [p] of the parameter space to belong to
S, and a sufficient condition for none of them to belong to S. For
that purpose, an inclusion function F is used, i.e., a function such
that for any box [p], F([p]) is a box that contains f([p]). From this
property, one has

15)

Fleh CY=1[p CS, (16)

and
F(ph)NY=Z=>[plNnS=2. 7

Using (16) and (17), the following algorithm generates two sub-
pavings Ki, and Koy that bracket S in the sense of (15). It uses a
stack, which is a structure on which three operations-only are possible,
namely i) stacking, i.e., putting an element on top of the stack, ii)
unstacking, i.e., removing the element located on top of the stack, and
iii) testing the stack for emptiness. In the description of the algorithm,
w([p]) stands for the widzh of the box [p], i.e., the length of its largest
edge(s). The program inputs are the inclusion function F, the set to be
inverted Y, the prior box [p,y;,] and the maximum width ¢, allowed
for an indeterminate box upon completion of the algorithm.




—
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-10 + p!
-10 1
Fig. 1. Subpaving K, of all boxes guaranteed to be stable for Example 1.

(el

10

-10 » P!

0

Fig. 2. Subpaving K. of all indeterminate boxes upon completion of the
algorithm for Example 1.

Initialization:
stack =0, Kin=90, Kouw =9, [p]= [Pinic)-

Iteration k:

Step 1: fF([p)) C Y, then Kin = Kia U [p],

Kout = Kout U [p]. Go to Step 5.

then go to Step 5.

then Kout = Kout U [p]. Go to

Step 5.

Step 4: Bisect [p] perpendicularly to one of its largest edges and
stack the two résulting boxes.

Step 5: If the stack is not empty, then unstack into [p], and go to
Step 1.
End. O

Step 2: UF([ph)NY =2,
Step 3: If w([p]) < e,

The convergence properties of Kin and Koy towards S (in Haus-
dorff’s sense) when ¢, tends to zero have been studied in [7], in the
case where

w({p]) = 0= w(F([p])) — 0. (18)

Remarks:
iv) For any vector function f obtained by composition of
elementary operators such as +, —, X, /, sin, cos, exp,---, it is
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10

_l 0 i
-10 10
Fig. 3. Subpaving K;, of all boxes guaranteed to be stable for Example 2.

> Z

>

10

-10 > Z
-10 10

Fig. 4. Subpaving K. of all indeterminate boxes upon completion of the
algorithm for Example 2.

easy to obtain an inclusion function F by replacing each of these
elementary operators by its minimal inclusion function in the formal
expression of f [6]. As long as machine precision does not become a
limiting factor, the inclusion function thus obtained satisfies (18), so
that one gets better approximations by considering smaller boxes.
Hence the interest of splitting indeterminate boxes into subboxes
as performed by the algorithm. F is not uniquely defined, and its
efficiency obviously depends on how tight the bounds for f([p])
given by F([p]) are. Tighter bounds can be obtained by taking the
intersection of several inclusion functions.

v) The test of Step 1 could be replaced by an application
of Kharitonov’s theorem on a box A([p]), where A is an in-
clusion function for a(p), the vector function with coordinates
a;(p). The resulting test would be much stronger, which would
speed up the algorithm. However, the improvement would be really
significant only if the test of Step 2 could also be replaced by
a test similar to that of Kharitonov which would provide sim-
ple necessary and sufficient conditions for the instability of the
polynomial 3"7_, axs® for all a in [a]. To the best of our knowl-
edge, such a test does not exist yet, and this calls for further
research.

vi) The idea of decomposing a prior feasible set for the parame-
ters into subboxes to be tested for stability can be found in the work
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by Kiendl and coworkers (see, eg, [8]), where a Lyapunov function
is used to establish the stability of subboxes.

Example 1 (continued): The.subpaving Kin of all boxes guar-
anteed to be stable is presented in Fig. 1. Fig. 2 presents the
subpaving K. of all boxes that remain indeterminate upon com-
pletion of the algorithm. Koy is therefore the union of Ki, and
K.. These figures were drawn on-line, without storing the sub-
pavings, for e, = 0.01. The size of the stack, and thus of the
memory required for the algorithm was no more than 20 boxes.
The initial box [p;;,], i.e., the search domain, was taken equal to
{-10, 10] x [-10, 10]. The actual computing time on a Compaq
386/33 was less than 8 minutes. Note that Koy, contains the axes
of the parameter space, contrary to Kin, although these axes do not
belong to S. When e, tends to zero, Kou: does not converge (in
Hausdorff sense) to § because of a discontinuity of f~' around
Y = (10, oo[)® [7). If, for instance, p1 is zero, then p ¢ S,
and it is easy to prove that p has a neighborhood that does not
intersect §. However, f(p) is infinitely close to Y, as, for instance,
the polynomial s® + es® + 2es + €2 is stable for any ¢ > 0. The
image manifold of f comes tangent to Y without penetrating it
locally. :

Example 2 (continued): The subpavings Kin and K. obtained in
145 seconds for €, = 0.01 are presented on Figs. 3 and 4. The initial
search domain was the box [—10, 10] x [—10, 10]. As for Example 1,
Kout, the union of Ki, and K., does not converge to S. It contains
the axis T = 0, on which f is not defined. The trail just below the
axis T = 0 on the right of Fig. 4 disappears when the precision is
increased.

IV. CONCLUSIONS

Finding the stability region of a parameterized polynomial is a key
problem of automatic control. It has received considerable attention
in recent years, especially after the seminal work of Kharitonov. What
has been proposed in this note is a new approach to that problem,
combinihg formal treatments to obtain inequalities that define § and
the use of interval analysis to bracket it. This approach has the
advantage over Kharitonov-based approaches (see, e.g., [9] for recent
results) of not being limited to very special types of dependency of
the coefficients of the characteristic polynomial with respect to the
uncertain parameters. It also has the definite advantage over methods
based on random (or systematic) sampling of the parameter space of
providing guaranteed results. Upon completion of the algorithm, the
domain of interest has been partitioned into a region where the system
is guaranteed to be stable, one where it is guaranteed to be unstable
and an indeterminate region that can be reduced by decreasing the
maximuin width acceptable for an indeterminate box, at the cost of
course of more intensive computation. Systematic use of the notion of
inctusion function has thus made it possible to achieve grid avoidance,
one of the main reasons for the success of Kharitonov’s theorem
among control engineers. The method readily extends to the design
of controllers stabilizing all models in a given class, by considering
boxes in the cartesian product of the model and controller parameter
spaces.
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Production Control of Manufacturing Systems
with Production Rate-Dependent Failure Rates

George Liberopoulos and Michael Caramanis

Abstract—1t is known that for single-part-type production systems with
homogeneous Markovian machine failure rates, special single threshold
feedback policies, called hedging point policies, are optimal, and the
stationary probability distribution of the part-type surplus, for given ten-
tative hedging point values, can be obtained analytically. This approach
is extended to multiple threshold policies with production rate-dependent
machine failure rates. It is shown that the stationary distribution of the
part-type surplus can be obtained under the extended policy and in the
presence of production rate-dependent failure rates. The advantage of
multiple threshold policies is that they can provide a piecewise constant
(step function) approximation of any feedback policy. It is observed that
hedging point policies are not always optimal and, in fact, feedback
policies are not always optimal either.

I. INTRODUCTION

There has been increasing interest in control theoretic approaches
to the production scheduling of failure-prone manufacturing systems.
Kimemia and Gershwin [10] were among the first to formulate the
production control of a manufacturing system with stochastic capacity
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