
Inner and Outer Approximations of Existentially
Quantified Equality Constraints

Alexandre Goldsztejn1 and Luc Jaulin2

1 Computer Science Department, University of Central Arkansas, Conway, Arkansas,
USA. Alexandre@Goldsztejn.com

2 Luc Jaulin: E3I2, ENSIETA, 2 rue F. Verny, 29806 Brest Cedex 09
Luc.Jaulin@ensieta.fr

Abstract. We propose a branch and prune algorithm that is able to
compute inner and outer approximations of the solution set of an exis-
tentially quantified constraint where existential parameters are shared
between several equations. While other techniques that handle such con-
straints need some preliminary formal simplification of the problem or
only work on simpler special cases, our algorithm is the first pure numer-
ical algorithm that can approximate the solution set of such constraints
in the general case. Hence this new algorithm allows computing inner
approximations that were out of reach until today.

1 Introduction

Many problems in computer science amount to characterizing an inner and an
outer approximation of a set defined by nonlinear constraints where quantifiers
may be involved. We address here the case where existential quantifiers are in-
volved (which actually corresponds to the projection of a manifold defined by
equalities). When these constraints are polynomial, symbolic methods have been
shown to be able to solve the problem (see e.g., [1]). However, these techniques
are restricted to very small systems. When the constraints are defined by inequal-
ities, interval methods make it possible to characterize the solution set (see e.g.,
[2]). When equality constraints are involved, the problem is much more difficult
and no general method seems to be available to compute an inner approximation
of a set defined by nonlinear equalities. Some works were already proposed to
deal with some specific subclasses of these problems: [3, 4] are restricted to linear
systems, [5] is restricted to cases where the different constraints do not share any
existentially quantified parameters and [6] is more general but still suffers from
strong restrictions.

The paper is dedicated to the approximation of the graph of an existentially
quantified constraint c(x1, · · · , xnx) defined by(
∃y1 ∈ y1

)
· · ·

(
∃yny

∈ yny

)(
f1(x1, · · · , xnx

, y1, · · · , yny
) = 0 ∧ · · · ∧ fm(x1, · · · , xnx

, y1, · · · , yny
) = 0

)
,

where yk for k ∈ [1..ny] are some bounded and nonempty intervals. Using vec-
torial notations, this constraint is written cf,y(x) and defined by

cf,y(x) ⇐⇒
(
∃y ∈ y

)(
f(x, y) = 0

)
, (1)

where x ∈ IRnx and y ∈ IRny and y is a bounded and nonempty box of dimension
ny and f : IRnx × IRny −→ IRm. The graph of cf,y is denoted by Σ(f,y) :=
{x ∈ IRnx | cf,y(x)}. It is likely to have a non-zero volume if ny ≥ m, i.e. if there
are at least as many existentially quantified variables as equations. Therefore,
both inner and outer approximations are relevant. Many practical problems can
be formulated as the characterization of such a set. Let us quote two of them:

– Control. Most dynamical systems can be described by the following state
equation ẋ(t) = f

(
x(t), u(t)

)
∧ g

(
x(t), y(t), u(t)

)
= 0. where the vector u is

the input vector, x is the state vector and y is the output vector. The feasible
output set O is the set of all ȳ such that one can find a control u such that
g(t) converges to ȳ. As proved in [7], O satisfies

O = {ȳ | ∃ū, ∃x̄, f(x̄, ū) = 0 ∧ g(x̄, ȳ, ū) = 0} , (2)

and its characterization is therefore an instance of the problem we propose
to solve.

– Robotic. The geometric model of a robot can often be described by the
relation f(u, x) = 0, where u is the articulation vector and x is the coordinate
vector of the tool (see e.g., [8]). For serial robots, the relation becomes x =
g(u) and for parallel robots, it is u = g(x). However for more general robots,
neither u nor x can be isolated in the relation. The workspace W of the robot
is defined by

W = {x | ∃u ∈ u, f(x, u) = 0} , (3)

where u is the box of all feasible configuration vectors for the robot. Charac-
terizing the workspace of a general robot can thus be cast into is a projection-
equality problem.

2 Interval Analysis

The modern interval analysis was born in the 60’s with [9]. Since, it has been
widely developed and is today one central tool in the resolution of constraints act-
ing over continuous domains (see [10] and extensive references). We now present
the main concepts of interval analysis that will be used in the sequel.

Intervals are denoted by boldface symbols. The set of intervals is denoted by
IR and contains, by convention, the empty set. The union between intervals is
not an interval in general. The join between intervals (also called interval hull) is
introduced to correct this bad behavior of the union. Let E be a set of intervals.
The join of E, denoted by ∨E, is the smallest interval that contains each interval
of E. When E contains only two elements, i.e. E = {x,y}, the join of E is also
denoted by x ∨ y.

The elementary functions are extended to intervals in the following way: let
◦ ∈ {+,−,×, /} then x ◦ y = {x ◦ y | x ∈ x, y ∈ y}. Due to the monotony prop-
erties of these simple functions, formal expressions for the interval arithmetic are
available. E.g. [a, b]+[c, d] = [a+c, b+d]. Also, continuous one variable functions
f(x) are extended to intervals using the same definition: f(x) = {f(x) | x ∈ x},
which is an interval because f is continuous. When one represents numbers us-
ing finite precision, the previous operations cannot be computed in general. The
outer rounding is then used so as to keep valid the interpretations. For example,
[1, 2] + [2, 3] could be equal to [2.999, 5.001] when rounded with a three decimal
accuracy.

When one considers more complicated functions that are compounded of
elementary functions, he will compute the interval evaluation of the function:
this consists of replacing all real operations by their interval counterpart. A very
basic result from interval analysis proves that the interval evaluation computes
intervals that contain the range of the function. For example, x × (y − x) ⊇
{x(y − x) | x ∈ x, y ∈ y}.

This will be useful to use some vectorial notations. The variables x1, . . . , xn

are denoted by the vector x = (x1, . . . , xn). The domains of the variables x1, . . . , xn

are then denoted by the n-dimensional box x = (x1, . . . ,xn), meaning that the
domain of xk is xk. It will also be useful to denote the vector (x1, . . . , xnx , y1, . . . , yny)
by (x, y) and therefore the box (x1, . . . ,xnx ,y1, . . . ,yny) by (x,y).

3 General Description of the Algorithm

In the sequel, we consider two initial boxes xInit ∈ IRnx and yInit ∈ IRny , both
bounded and nonempty. The inner and outer approximations of Σ(f,yInit) ∩
xInit will be studied. The algorithm is decomposed into three phases:

1. We compute a set of boxes F (called boundary Free boxes) that are proved
not to intersect the boundary of Σ(f,yInit) (Section 4). The remaining boxes
(called Weak boundary boxes) are put in the list W.

2. We classify the boundary free boxes into outer and inner boxes (Section 5).
Unknown boxes can appear here but this is very unlikely.

3. We focus on the weak boundary boxes and classify them into inner boxes or
unknown boxes (Section 6).

This is summarized in Algorithm 1 which is built from functions that are
described in the next sections.

4 Computation of Boundary Free Boxes

The first phase consists of computing two finite sets of boxes F and W (all
subsets of xInit) such that:

1. ∪(F ∪W) = xInit and the boxes of F ∪W do not overlap except perhaps
over their boundaries;

Algorithm 1: Approximate(f,xInit,yInit, ε)

Input: f (from IRnx × IRny to IRm), xInit ∈ IRnx , yInit ∈ IRny , ε ∈ IR+

Output: (I, O, U) (triplet of finite sets of boxes in IRnx)
(F ,W) = BoundaryFreeBoxes(f,xInit,yInit, ε);1

(I′,O,W ′) = ClassifyBoundaryFreeBoxes(f,F ,yInit, ε);2

(I′′,U) = ClassifyWeakBoundaryBoxes(f,W ∪W ′,yInit, ε);3

I = I′ ∪ I′′;4

return (I, O, U);5

2. Each box of F does not intersect xInit∩∂Σ(f,yInit) (these boxes are called
boundary free boxes); therefore, xInit ∩ ∂Σ(f,yInit) is included in ∪W.

The boxes from F will be classified into inner or outer boxes in Section 5 while
the boxes from W will be classified into inner or unknown boxes in Section 6.

Algorithm 2 computes the wanted sets of boxes. The two functions that
are used in Algorithm 2 are described in the rest of the section. First of all,

Algorithm 2: BoundaryFreeBoxes(f,xInit,yInit, ε)

Input: f (from IRnx × IRny to IRm), xInit ∈ IRnx , yInit ∈ IRny , ε ∈ IR+

Output: (F , W) (couple of finite sets of boxes in IRnx)
U ← BranchAndPrune((xInit,yInit), C, ε) where C is given by (6);1

(F ,W)← Projection(xInit,U);2

return (F ,W);3

Subsection 4.1 presents the basic test that will be used to characterize boundary
free boxes. The computations performed at Line 1 are described in Subsection
4.2 while the computations performed at Line 2 are described in Subsection 4.3.

4.1 Basic Test

Our algorithm is based on the study of the relative position of boxes w.r.t.
the boundary of Σ(f,yInit). The following theorem will play a key role in this
approach.

Theorem 1. Let f : IRnx × IRny −→ IRm be a continuously differentiable func-
tion and x̃ ∈ IRnx be an arbitrary vector and y ∈ IRny bounded and nonempty.
For x ∈ IRnx and y ∈ IRny define the matrix Mf,y(x, y) in the following way:(

Mf,y(x, y)
)

ij
:=

{
∂fi

∂yj
(x, y) if yj ∈ int yj

0 otherwise.
(4)

Then x̃ ∈ ∂Σ(f,y) implies(
∃y ∈ y

)(
f(x̃, y) = 0 ∧ rankMf,y(x̃, y) < m

)
. (5)

Fig. 1.

Proof. Provided in Appendix A.1.

Theorem 1 is a generalization of Equation (6) in [11]. Theorem 1 is more effi-
cient in a constraint framework: it can deal with bounded domains directly. The
technique proposed in [11] needs a change of variables that introduces sin and
cos functions, hence leading to less efficient computations.

Example 1. Consider a function f : IR×IR −→ IR whose implicit graph f(x, y) =
0 is plotted on Figure 1. The graph is restricted to IR × y so its projection on
the x-axis equals Σ(f,y). We displayed the vectors a, b, c, d and e which satisfy
the condition rankMf,y(x, y) < 1: first, in the case of a vector (x, y) ∈ {a, b, d},
we have ∂f

∂y (x, y) = 0 and therefore rankMf,y(x, y) = 0. Second, in the case of
a vector (x, y) ∈ {c, e}, the component y is on the boundary of y and therefore
Mf,y(x, y) is set to zero by definition and finally rankMf,y(x, y) = 0. As one
can see on Figure 1, the boundary of Σ(f,y) is included in the projection of
{a, b, c, d, e}.

Definition 1. With the notations introduced in Theorem 1, vectors (x, y) ∈
IRnx × IRny that satisfy f(x, y) = 0 and rankMf,y(x, y) < m are called singular
vectors of f in y (or simply singular vectors as no confusion is possible here).
Then, the weak boundary of Σ(f,y) is defined as the projection of the set of
singular vectors into the x-space.

With these definitions, Theorem 1 is simply stated saying that the boundary of
Σ(f,y) is included inside its weak boundary. In Example 1, the singular vectors
are {a, b, c, d, e}. The projection of these vectors is the weak boundary of Σ(f,y),
and it actually contains ∂Σ(f,y).

The computation of boundary free boxes F is done in two steps: a branch and
prune algorithm is used to construct an outer approximation of the set of singular
vectors (Subsection 4.2), and then this set is projected in order to provide a
rigorous outer approximation of the weak boundary of Σ(f,y) (Subsection 4.3).

4.2 Outer Approximation of the Set of Singular Vectors

An outer approximation of the set of singular vectors is computed using a ba-
sic branch and prune algorithm. This algorithm is described in Algorithm 3.
The function prune

(
ũ, c(u)

)
is often called a contractor and returns a new box

ũ′ ⊆ ũ such that
(
∀u ∈ u

)(
c(u) ⇒ u ∈ u′

)
. This algorithm is well known and

∪BranchAndPrune
(
(xInit,yInit), C, ε

)
, where

C = { f(x, y) = 0 , rankMf,yInit(x, y) < m }, (6)

is obviously an outer approximation of the set of singular vectors of f in (xInit,yInit).

Algorithm 3: BranchAndPrune(u, C, ε)
Input: u ∈ IRn , C (finite set of n-ary constraints) , ε ∈ IR+

Output: U ⊆ IRn

L ← {u};1

while L 6= ∅ do2

ũ← Extract(L);3

if ||wid ũ|| ≥ ε then4

foreach c ∈ C do5

ũ ← Prune(ũ, c(u));6

end7

if ũ 6= ∅ then8

L ← L ∪ Bisect(ũ);9

end10

else11

U ← U ∪ {ũ};12

end13

end14

return U ;15

Usually, the function extract(L) extracts the box that has the largest ||wid ũ||.
This presents the advantage that the search is performed uniformly in the search
space. Extracting the box that has the smallest ||wid ũ|| leads to a deep-first
algorithm. This latter algorithm is well suited for a quick search of one approx-
imate solution and will be used in Section 5. The function bisect must bisect
fairly, meaning that each component is regularly bisected. A widely used bi-
section strategy is to bisect the largest component of the box, hence ensuring
convergence.

Remaining is to describe the contractors that will be used for each of the two
involved constraints. The contractor prune

(
(x,y), f(x, y) = 0

)
can be imple-

mented using the usual constraint satisfaction techniques (cf. [10, 12, 13]). The
contractor prune

(
(x,y), rankMf,y(x, y) < m

)
is implemented using the interval

Gauss elimination algorithm (cf. [14]). First, we need an interval evaluation of

Mf,y(x, y). For x,y, ỹ ∈ IRn, y ⊆ ỹ, let us define Mf,ỹ(x,y) in the following
way: (

Mf,ỹ(x,y)
)

ij
:=

{ ∂fi
∂yj

(x,y) if yj ⊆ int ỹj

0 otherwise,
(7)

where ∂fi
∂yj

(x,y) is an interval evaluation of ∂fi

∂yj
(x, y). With this definition, we

obviously have Mf,ỹ(x, y) ∈ Mf,ỹ(x,y) for all (x, y) ∈ (x,y). We can therefore
define

prune
(
(x,y), rankMf,ỹ(x, y) < m

)
:=

{
∅ if GaussElim

(
Mf,ỹ(x,y)

)
(x,y) otherwise,

where the function GaussElim(M) returns true if and only if the interval Gauss
elimination algorithm succeeds in proving that M has full rank.

4.3 Projection in the x-Space

Algorithm 4 computes the sets of boxes F (boundary free boxes) and W (weak
boundary boxes) using the outer approximation U of the singular vectors com-
puted in the previous subsection. We can display two points:

– Line 6: a box x̃ is put in F only if
(
∀(x̃′, ỹ′) ∈ U

)(
x̃ ∩ x̃′ = ∅

)
. Because

∪U is an outer approximation of the set of singular vectors of Σ(f,yInit),
this proves that x̃ does not contain any projection of some singular vectors.
Hence, x̃ does not intersect the weak boundary of Σ(f,yInit) and finally
does not intersect ∂Σ(f,yInit) neither.

– A box x̃ is either put in F (Line 6) or in W (Line 8) or bisected (Line 11).
Therefore, we have ∪(F ∪W) = x̃, and hence ∂Σ(f,yInit) ⊆ (∪W).

The efficiency of Algorithm 4 can be drastically improved by keeping track of the
tests performed at Line 5 in order to avoid useless comparisons, but the details
are not presented here.

5 Classification of Boundary Free Boxes

In this section, we consider a finite set of boundary free boxes F , i.e. boxes that
are proved not to intersect ∂Σ(f,yInit). We aim to classify these boxes x into
inner boxes, i.e. x ⊆ Σ(f,yInit), and outer boxes, i.e. x ∩Σ(f,yInit) = ∅.

As x ∈ F does not intersect the boundary of Σ(f,yInit), we can study
a simpler problem focusing on one arbitrary vector inside the box x. This is
formalized by Proposition 1.

Proposition 1. Let x ∈ IRn and E be a closed subset of IRn such that x∩∂E =
∅. Then x ∩ E 6= ∅ =⇒ x ⊆ E, or equivalently x 6⊆ E =⇒ x ∩ E = ∅.

Proof. Provided in Appendix A.2.

Algorithm 4: Projection(x,U , ε)

Input: x ∈ IRnx , U (finite set of boxes in IRnx × IRny), ε ∈ IR+

Output: (F , W) (couple of finite sets of boxes in IRnx)
L ← {x};1

while L 6= ∅ do2

x̃ ← Extract(L);3

if ||wid x̃|| ≥ ε then4

if
(
∀(x̃′, ỹ′) ∈ U

)(
x̃ ∩ x̃′ = ∅

)
then5

F ← F ∪ {x̃};6

else7

L ← L ∪ Bisect(x̃);8

end9

else10

W ←W ∪ {x̃};11

end12

end13

return (F ,W);14

This proposition has two interesting consequences. First, given a box x ∈ F ,
we can now focus on one arbitrary vector inside x. The problem will now be to
decide if

(
∃y ∈ yInit

)(
f(midx, y) = 0

)
is true or not, instead of having to decide

if
(
∀x ∈ x

)(
∃y ∈ yInit

)(
f(x, y) = 0

)
is true or not. Second, when a box x is

proved to be inside or outside Σ(f,yInit), the same property holds for all boxes
x′ ∈ F such that x ∩ x′ 6= ∅. This last remark is able to strongly accelerate the
computations but it is not explicitly described in Algorithm 5.

The next proposition is an existence test that allows to check the existence
of a solution to the system of equations g(y) = 0. In our context it will be used
with g(y) = f(midx, y). This existence test is new, and should be compared to
the usual existence tests (e.g. Moore-Kioustelidis). Proposition 2 presents two
advantages over the usual existence tests: first it does not need any precondi-
tioning. Second, it can be applied to under-constrained systems of equations. We
use it here for these two reasons.

Proposition 2. Let g : IRn −→ IRm be a continuously differentiable function
and y ∈ IRn be a bounded nonempty box. Consider a box z such that 0 ∈ z and
g−1(z) ∩ y 6= ∅.3 Suppose that

{(y, z) ∈ (y, z) | g(y) = z ∧ rankMg,y(y) < m} = ∅, (8)

where (
Mg,y(y)

)
ij

:=

{
∂gi

∂yj
(y) if yj ∈ int yj

0 otherwise.

Then there exists y ∈ y such that g(y) = 0.
3 The box z := 0 ∨ g(ỹ), where ỹ ∈ y is an approximate solution of g(y) = 0, is both

efficient and easy to compute.

Proof. Provided in Appendix A.2.

Being given a box x in addition to the initial box yInit, we define a set of
constraints that correspond to the statement of Proposition 2:

C = { f(midx, y) = z , rankMf,yInit(y) < m }. (9)

We can now propose Algorithm 5 that classifies boundary free boxes into
inner boxes and outer boxes (and possibly unknown boxes). Lines preceded by
”Com.” are commented bellow:

Algorithm 5: ClassifyBoundaryFreeBoxes(f,F ,y, ε)

Input: f (from IRnx × IRny to IRm), F (finite sets of boxes in
IRnx), y ∈ IRny , ε ∈ IR+

Output: (I, O,U) (triplet of finite sets of boxes in IRnx)
while F 6= ∅ do1

x← Extract(F);2

Com. L ← BranchAndPrune(y , {f(midx, y) = 0} , ε);3

Com. if L = ∅ then4

O = O ∪ {x};5

else6

y = Extract(L);7

Com. z← 0 ∨ f(midx, midy);8

L′ ← BranchAndPrune((y, z) , C , ε);9

if L′ = ∅ then10

I = I ∪ {x};11

else12

U = U ∪ {x};13

end14

end15

end16

return (I,O,U);17

– Line 3: the branch and prune algorithm must either prove the emptiness or
provide one approximate solution; therefore, it is modified to a deep-first
search algorithm.

– Line 4: if L is empty then the branch and prune algorithm has proved midx /∈
Σ(f,yInit). Because x is supposed to be a boundary free box, Proposition 1
then proves that x ∩Σ(f,yInit) = ∅.

– Line 8: f(midx,midy) is computed using interval arithmetic and therefore
leads to an interval that rigorously contains the image of (midx,midy). The
interval vector z is the join (or interval hull) of the latter interval vector and
0, and it therefore contains both 0 and the image of (midx,midy). Hence, z
is a good interval vector to use in Proposition 2.

Fig. 2.

6 Classification of Weak Boundary Boxes

We consider a box x that was not proved to be a boundary free box. The idea is
to consider a stronger problem Σ(f,yInit′) with yInit′ ⊆ yInit. Then, the weak
boundary of Σ(f,yInit′) is certainly different from the one of Σ(f,yInit), and
the box x is hopefully a boundary free box for the new problem. So, we will
use the algorithms presented in the previous sections to handle the new problem
Σ(f,yInit′).

Let us illustrate this technique with an example. Consider the quantified con-
straint represented on Figure 1. The left-hand side graphic of Figure 2 displays
the unknown boxes generated at Line 1 of Algorithm 2. These boxes contain the
singular vectors of Σ(f,yInit). The projection of these boxes forms the weak
boundary. The right-hand side graphic focuses on one box x̃ among the weak
boundary box. The four boxes of the right hand side graphic are obtained using
the branch and prune algorithm to prune the constraint f(x, y) = 0 with x ∈ x̃
and y ∈ yInit. We can now easily pick up a box yInit′ where no singularity oc-
curs, and the algorithms presented in the previous section are likely to succeed
in proving that it is an inner box.

In practice, however, the difference between singular boxes and nonsingular
boxes is not as clearly identified as on Figure 2. Although finding an efficient
heuristic to compute a new initial box yInit′ is one important forthcoming work,
the experimentations presented in the next section show that this simple heuris-
tic is already useful.

The process described in this section leads to a function

ClassifyWeakBoundaryBoxes(f,W,yInit, ε)

that returns a couple (I,U). The set of boxes I contains the boxes that where
proved to be inside Σ(f,yInit′) ⊆ Σ(f,y). The set of boxes U contains the boxes
we were not able to prove anything about.

Fig. 3.

7 Experimentations

The application of the algorithm to three examples is now presented. No com-
parison is provided as our algorithm is the first numerical algorithm that is able
to compute the inner approximations proposed in this section. Formal quanti-
fier elimination (cf. [1]) can be applied to the first two examples. The results
obtained by our algorithm are similar to the one obtained by formal quantifier
elimination.

7.1 Well-Constrained Academic Problem

The first problem is defined by

f(x, y) =
(

x2
1 + x2

2 + y2
1 + y2

2 − 1
x1 + x2 + y1 + y2

)
; xInit =

(
[−1, 1]
[−1, 1]

)
; yInit =

(
[−0.7, 0.7]
[−0.8, 0.8]

)
.

The pavings plotted in the left hand side graphic of Figure 3 are obtained
after one minute using a precision ε = 0.01. Inner boxes are in gray (light gray
for boundary free boxes and dark gray for weak boundary boxes that have been
proved to be inner boxes) and unknown boxes are in black. The algorithm be-
haves very well with this example and provides a good inner approximation.

7.2 Under-Constrained Academic Problem

The second problem is defined by

f(x, y) =
(

x2
1 + x2

2 + y2
1 + y2

2 + y2
3 − 1

x1 + x2 + y1 + y2 + y3

)
; xInit =

(
[−1, 1]
[−1, 1]

)
; yInit =

 [−0.7, 0.7]
[−0.8, 0.8]

[−2, 2]

 .

The pavings plotted in right hand side graphic of Figure 3 are obtained after
15 minutes using a precision ε = 0.02. The heuristic presented in Section 6 for

Fig. 4.

the classification of weak boundary boxes is clearly not efficient for this example:
it is missing some parts of the weak boundary while 99% of the computations are
spent working on the weak boundary. This will have to be investigated; however,
the algorithm presents a good behavior for the computation and classification of
boundary free boxes.

7.3 Speed Diagram of a Sailboat

The third problem was proposed in [5]. It is defined by

f(v, θ, δr, δs) =
(

αs(V cos(θ + δs)− v sin δs) sin δs − αrv sin2 δr − αfv
(l − rs cos δs)αs(V cos(θ + δs)− v sin δs)− rrαrv sin δr cos δr

)
,

where the following values are chosen for parameters: αs = 500, αr = 300, αf =
60, V = 10, rs = 1, rr = 2, and l = 1. The initial domains are Dom(v) = [0, 20],
Dom(θ) = [−π, π], Dom(δr) = [−π/2, π/2] and Dom(δr) = [−π/2, π/2]. The
graph to be approximated is therefore{

(v, θ) ∈ ([0, 20], [−π, π]) |
(
∃δr ∈ [−π

2
,
π

2
]
)(
∃δs ∈ [−π

2
,
π

2
]
)(

f(v, θ, δr, δs) = 0
)}

.

This set corresponds to the speed v and angle θ w.r.t. the wind that can be
reached for some command δr and δs in their domains. An inner approximation
was computed in [5] after a specific formal simplification of the problem. The
pavings plotted in Figure 4 are obtained after 10 minutes using a precision
ε = 0.01. We obtain the same results as in [5] but without any preliminary
formal simplification. Our algorithm is slower, but it works in a 4 dimensional
space (while the simplification used in [5] decreases the dimension by one), and
it was not yet optimized.

8 Conclusion

We have presented the first numerical algorithm that is able to compute an inner
approximation (and obviously an outer approximation) of the graph of an exis-
tentially quantified constraint with an arbitrary number of equality constraints.

Although some previous works were dedicated to the inner approximation of such
constraints in some special cases, the algorithm we proposed can be applied for
arbitrary numbers of equalities and existentially quantified parameters.

The idea consisting of using a branch and prune algorithm to approximate
the boundary of the constraint graph instead of the constraint graph itself seems
to be new. Not only does it allow simplification of the problem to be solved, but
it should also make the algorithm accumulate on this boundary and therefore
lead to efficient computations. Timings on presented examples are reasonable
but not yet good. However, no optimization has been done in order to present
the concepts clearly. We expect some strong efficiency improvements in the next
implementations of the algorithm. Finally, one advantage of the proposed method
is that it relies only on a simple standard branch and prune algorithm. Therefore,
any future improvement for pruning operators will be useful for our algorithm.

Convergence of the algorithm remains to be studied. This convergence strongly
depends on the heuristic used to deal with weak boundary boxes. Actually, the
simple heuristic proposed in Section 6 showed is usefulness but can be certainly
improved. In particular, experimentations showed it was not very efficient for
under-constrained problems. Therefore, a heuristic that makes the algorithm
convergent will have to be found.

A Proofs

A.1 Proof of Theorem 1

Lemma 1. Let f : IRnx × IRny −→ IRm be a continuous function and y ∈ IRny

be bounded and nonempty. Then Σ(f,y) is closed in IRnx .

Proof. Consider a sequence xn ∈ Σ(f,y) that converges to x̃. We have to prove
x̃ ∈ Σ(f,y). As xn ∈ Σ(f,y), there exists yn ∈ y such that f(xn, yn) = 0. As
y is bounded, the Bolzano-Weierstrass theorem proves that the sequence yn has
at least one accumulation point in y. Let us denote one of these accumulation
points ỹ. We can pick up a subsequence yπ(n) that converges to ỹ. The sequence
xπ(n) obviously converges to x̃. Therefore, limn→∞ f(xπ(n), yπ(n)) = f(x̃, ỹ) = 0.
We proved that there exists ỹ ∈ y such that f(x̃, ỹ) = 0 and hence x̃ ∈ Σ(f,y).

ut

Lemma 2. Let y ∈ IRn. If y ∈ ∂y then there exists i ∈ [1..n] such that yi ∈ ∂yi.

Proof. We prove the contrapose. Suppose for all i ∈ [1..n] we have yi ∈ int yi.
That is, for all i ∈ [1..n] we have inf yi < yi < supyi. This proves y ∈ int y. ut

Proof of Theorem 1. We prove the contrapositive of the statement. There are
only two possible cases:

(
∀y ∈ y

)(
f(x̃, y) 6= 0

)
or

(
∃y ∈ y

)(
f(x̃, y) = 0

)
. Let us

consider both cases. In the first case, we have x̃ /∈ Σ(f,y), and because Σ(f,y) is
closed in IRnx by Lemma 1, we have x̃ /∈ ∂Σ(f,y). The second case relies on the
implicit function theorem. Consider ỹ ∈ y such that f(x̃, ỹ) = 0. By hypothesis,

we have rankMf,y(x̃, ỹ) = m (which implies ny ≥ m). Therefore, there exists
a set of indices E := {e1, · · · , em} such that detM 6= 0 where M ∈ IRm×m is
defined by Mij :=

(
Mf,y(x̃, ỹ)

)
iej

.
Claim: ỹE ∈ int yE . The claim is proved by contradiction. Suppose that

ỹE ∈ ∂yE , therefore by Lemma 2 there exists ej ∈ E such that ỹej
∈ ∂yej

. Then
by definition of Mf,y(x̃, ỹ) we have Mij = 0 for all i ∈ [1..n]. Therefore M is
singular which is absurd because det M 6= 0 by hypothesis.

Now define g : IRnx×IRm −→ IRm by g(x, yE) = f(x, y) where y[1..n]\E is fixed
to ỹ[1..n]\E . With this definition, we have ∂gi

∂yej
(x̃, ỹE) = Mij . As M is nonsingular,

we can apply the implicit function theorem that proves the existence of

(i) some open sets X ⊆ IRnx and Y ⊆ IRm that contain respectively x̃ and ỹE ;
(ii) a continuously differentiable function φ : X −→ Y such that φ(x̃) = ỹE ;
(iii) yE = φ(x) implies g(x, yE) = 0 for any x ∈ X.

Now define Y′ = Y ∩ (int yE) which is open because it is the intersection of two
open sets. As ỹE ∈ int yE and ỹE ∈ Y we have ỹE ∈ Y′. As φ is continuous the
preimage X′ := φ−1(Y′) is also open. Furthermore x̃ ∈ X′ because ỹE ∈ Y′ and
φ(x̃) = ỹE .

For all x ∈ X′ define y ∈ y by yE := φ(x) and y[1..n]\E = ỹ[1..n]\E . Using
(iii), we have g(x, yE) = 0 which implies f(x, y) = 0 by definition of g. We have
therefore proved X′ ⊆ Σ(f,y) which eventually proves that x̃ ∈ int Σ(f,y).
Therefore x̃ /∈ ∂Σ(f,y).

A.2 Proofs of Proposition 1 and Proposition 2

Lemma 3. Let E be closed in IRn and x ∈ int E and x′ /∈ E. Any continuous
path connecting x to x′ intersects ∂E.

Proof. Cf. [15]. ut

Proof of Proposition 1 It is sufficient to prove that the box x is either inside or
outside of E. This is proved by contradiction: let us suppose that x is neither
inside nor outside, i.e. there exist x, x′ ∈ x such that x ∈ E and x′ /∈ E. As x does
not intersect ∂E, we have x ∈ intE. Furthermore, x being path-connected, there
exists a path w that is contained in x and which connects x and x′. Applying
Lemma 3, we prove that w intersects ∂E, and therefore that x intersects ∂E,
which is eventually absurd because we supposed x ∩ ∂E = ∅.

Proof of Proposition 2 We define h(z, y) := g(y) − z and by definition we have
Σ(h,y) =

{
z ∈ IRm |

(
∃y ∈ y

)(
h(z, y) = 0

)}
. We will prove that z ⊆ Σ(h,y),

which will conclude the proof because by hypothesis 0 ∈ z and by definition
of h, h(0, y) = 0 =⇒ g(y) = 0. As g−1(z) ∩ y 6= ∅, there exists ỹ ∈ y
such that g(ỹ) ∈ z. We have g(ỹ) ∈ Σ(h,y) because h(g(ỹ), ỹ) = 0 by def-
inition of h. As g(ỹ) ∈ z by hypothesis, we have z ∩ Σ(h,y) 6= ∅. There-
fore, thanks to Proposition 1, we just have to prove that z ∩ ∂Σ(h,y) = ∅.

By definition of h and Mg,y(y) and Mh,y(z, y), the condition (8) is equivalent
to {(y, z) ∈ (y, z) | h(z, y) = 0 ∧ rankMh,y(z, y) < m} = ∅. As a direct conse-
quence we obtain{

z ∈ z |
(
∃y ∈ y

)(
h(z, y) = 0 ∧ rankMh,y(z, y) < m

)}
= ∅.

Finally, this condition validates the hypothesis of Theorem 1 which proves that
z ∩ ∂Σ(h,y) = ∅, hence concluding the proof.

References

1. Collins, G.: Quantifier elimination by cylindrical algebraic decomposition–twenty
years of progress. In Quantifier Elimination and Cylindrical Algebraic Decompo-
sition (1998) 8–23

2. Ratschan, S.: Uncertainty propagation in heterogeneous algebras for approximate
quantified constraint solving. Journal of Universal Computer Science 6(9) (2000)
861–880

3. Shary, S.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliable computing 8 (2002) 321–418

4. Goldsztejn, A.: A Right-Preconditioning Process for the Formal-Algebraic Ap-
proach to Inner and Outer Estimation of AE-solution Sets. Reliable Computing
11(6) (2005) 443–478

5. Herrero, P., Jaulin, L., Vehi, J., Sainz, M.: Inner and outer approximation of the
polar diagram of a sailboat. Interval analysis, constraint propagation, applications,
Held in conjunction with the Eleventh International Conference on Principles and
Practice of Constraint Programming (CP 2005), Sitges, Spain (2005)

6. Goldsztejn, A.: A branch and prune algorithm for the approximation of non-
linear ae-solution sets. In: Proceedings of the 21st ACM Symposium on Applied
Computing track Reliable Computations and their Applications, Dijon, France,
April 2006 (SAC 2006). (2006)

7. Khalil, H.: Nonlinear Systems, Third Edition. Prentice Hall (2002)
8. Reboulet, C.: Modélisation des robots parallèles. In Boissonat, J.D., Faverjon, B.,

Merlet, J.P., eds.: Techniques de la robotique, architecture et commande. Herms,
Paris, France (1988) 257–284

9. Moore, R.: Interval analysis. Prentice-Hall (1966)
10. Benhamou, F., Older, W.: Applying Interval Arithmetic to Real, Integer and

Boolean Constraints. Journal of Logic Programming 32(1) (1997) 1–24
11. Haug, E., Luh, C., Adkins, F., Wang, J.: Numerical algorithms for mapping bound-

aries of manipulator workspaces. ASME Journal of Mechanical Design 118 (1996)
228–234

12. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis with Exam-
ples in Parameter and State Estimation, Robust Control and Robotics. Springer-
Verlag (2001)

13. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.: Efficient and Safe
Global Constraints for handling Numerical Constraint Systems. SIAM Journal on
Numerical Analysis 42(5) (2005) 2076–2097

14. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge (1990)

15. Goldsztejn, A., Jaulin, L.: Inner Approximation of the Range of Vector-Valued
Functions. (Submitted to Reliable Computing)

